• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Terahertz Photoconductive Emitters with Improved Electrode Structures

    2014-11-26 10:48:24YingXinWangYiJieNiuWeiChengZhiQiangLiandZiRanZhao

    Ying-Xin Wang, Yi-Jie Niu, Wei Cheng, Zhi-Qiang Li, and Zi-Ran Zhao

    1.Introduction

    Terahertz time-domain spectroscopy (THz-TDS) has received much attention recently for its great application potentials in fields of medical, biological, pharmaceutical,chemical and material sciences, quality control, and security inspection[1].Pulsed terahertz sources play an important role in the development of this technique.Broadband and intense terahertz radiation is highly desired for the real-world applications of THz-TDS.Various methods have been developed for the generation of broadband terahertz pulses, such as photoconductive antennas (PCAs)[2], optical rectification in electro-optic crystals[3], and laser-Induced air plasmas[4].PCAs are one of the most promising and widely used emitters due to their good performance in terms of both emission power and spectral bandwidth.

    The radiation characteristics of a PCA mainly depend on the excitation laser, the bias voltage, the substrate material, and the electrodes.Shorter incident laser pulses may lead to the generation of ultrabroadband terahertz radiation[5].Increasing the pump laser intensity or the bias voltage would enhance the emission power of the PCA as long as no saturation effects occur[6].In addition to these extrinsic factors, the intrinsic properties of PCAs are expected to be more significant.It has been shown that low-temperature grown gallium arsenide (LT-GaAs)possesses a short photocarrier lifetime and high mobility and is commonly used for fabrication of the substrate at present[7],[8].The electrode material will determine the contact type of the antenna (ohmic or Schottky) which affects its radiation efficiency[9].So far, many studies have concentrated on the improvement of the antenna performance by designing more appropriate electrode structures.The most conventional structures involve the coplanar strip line[2], dipole[10], and bow-tie[11]antennas,which exhibit slightly different emission characteristics[12].Log-periodic antennas[13]could achieve higher radiation power.However, they usually have resonant behaviors at certain frequencies and are generally employed in terahertz detectors[14].In recent years, new types of antenna structures have been proposed, including four-contact[15],fillet[16], square spiral[17], interdigital finger[18], plasmonic electrodes[19], etc., and their superior performance has been demonstrated especially for the emission efficiency.For a specific structure, the electrode geometrical parameters also have an influence on the antenna characteristics[20].Nevertheless, design and optimization of the electrode structure is of great concern for practical use of PCAs.

    In this work, we design and implement two new types of antenna structures, asymmetric four-contact and arc-shaped, for the efficient generation of pulsed terahertz radiation.They are simply modified from the traditional strip line antenna.Numerical simulation and experimental measurement results show that our proposed antennas have enhanced optical-to-terahertz conversion efficiency.We experimentally demonstrate approximately 40% amplitude increase of terahertz signals emitted from the new structures in comparison to a strip line antenna with similar geometrical parameters.

    2.PCA Design and Fabrication

    For photoconductive terahertz emitters, the strip line is one of the most popular structures and is preferable owing to its relatively good stability with sufficient power and bandwidth.Therefore, based on this kind of structure, we explore the improvement of the antenna efficiency by simply modifying the electrode pattern.We designed two new structures, as shown in Fig.1.The first one is defined as an asymmetric four-contact antenna.At the center, it has an additional gap perpendicular to the strip line.The bias voltage was applied to the two left adjacent contacts and the other two were grounded.The electrode width is 100 μm,and the widths of the vertical and horizontal gaps are all 100 μm.It should be pointed out that Hirota et al.[15]have reported a symmetrical four-contact antenna with two crossed and identical gaps.Different from our work, they used such an emitter to investigate the polarization modulation of terahertz pulses and did not involve the problem of emission efficiency.The second one is an arc-shaped antenna where there exist four semicircular arcs on each side of the strip line.The electrode widths of the arcs and strip line are all 100 μm, and the gap size is 100 μm.The outer radius of the arc is 400 μm.For the strip line in Fig.1 (a), the electrode width and the gap size are also all 100 μm.

    A layer of LT-GaAs with a thickness of 2 μm grown on a 600-μm-thick semi-insulating GaAs wafer served as the substrate material of the PCA.The grown and annealed temperatures of LT-GaAs were 300°C and 600°C,respectively.By Hall-effect measurements, the resistivity and the carrier concentration and mobility of the substrate were determined to be about 2.36×105?·cm, 7.27×109cm-3,and 3.65×103cm2/(V·s), respectively.We fabricated different electrode patterns on the antenna substrate by using the lithography and electron-beam evaporation techniques.The metal electrodes were made of Au-Ge-Ni alloy which had a thickness of 350 nm and forms an ohmic contact between the electrode and the substrate.Each antenna had a lateral size of 5 mm×5 mm and was mounted on a printed circuit board to facilitate applying the bias voltage.

    Fig.1.Schematic of the electrode structures of PCAs: (a) strip line PCA, (b) asymmetric four-contact PCA, and (c) arc-shaped PCA.

    3.Simulation of Terahertz Emission from PCAs

    In order to evaluate the influence of electrode structure on the antenna emission properties, we first performed numerical simulations on the radiation field by using the finite-difference time-domain (FDTD) method.In the simulation, we took the photocurrent generated by the femtosecond laser incident at the electrode gap as the excitation source and its temporal evolution was approximated by a modulated Gaussian pulse.For simplicity, here we only considered the strip line and the asymmetric four-contact antennas.The substrate material was GaAs with a nearly constant refractive index of 3.6[21]and a size of 5 mm×5 mm×0.5 mm.The metal electrode was Au with 5 mm length, 100 μm width, and 100 μm in the gap size, consistent with that of the fabricated samples.We chose an observation point at a distance of 0.4 mm from the excitation source to record the information of terahertz radiation.

    Fig.2.Terahertz signals emitted from the strip line and the asymmetric four-contact PCAs obtained by FDTD simulations: (a)temporal waveforms and (b) frequency spectra.

    Fig.2 illustrates the temporal waveforms and frequency spectra of terahertz signals recorded at the observation point for the two simulated structures.We can see that the terahertz signal is stronger for the four-contact antenna and the increase in peak-to-peak amplitude of the electric field waveform is 20.7% than the strip line antenna.The spectral bandwidths of both structures are almost identical.However, the four-contact antenna has more highfrequency components below about 1 THz and the lowfrequency part of its spectrum below 0.4 THz is suppressed.Based on these simulation results, we can conclude that the antenna structure would indeed affect the generated terahertz intensity and the four-contact antenna has a higher radiation efficiency under the same conditions.Consequently, the design of more reasonable geometrical structure of the electrode may provide an important mean for improvement of the antenna radiation performance.Note that we adopted the same current source for these two structures in the simulation.Actually, different electrode structures could cause different bias electric field distributions, thus yielding different photocurrents.This effect would also have influence on terahertz emission and was not taken into account in the simulation.The real differences of the radiation characteristics need to be further examined by experimental measurements.

    4.Experimental Characterization of the Antenna Performance

    The experimental setup for generation and detection of terahertz radiation is a conventional THz-TDS system[6].Ultrafast femtosecond laser pulses with 100 fs duration,800 nm central wavelength, and 80 MHz repetition rate served as the pump and probe light.The laser was divided into two beams by a beam splitter.The pump beam was focused onto the PCA gap to excite terahertz radiation with an estimated spot size of about 20 μm.The probe beam was guided to a 1-mm-thick ZnTe crystal for electro-optical sampling detection of terahertz pulses.Using a half-wave plate and a polarizer, the pump and probe beam power could be adjusted.The probe beam power was fixed to be about 5 mW during the experiments.

    Firstly, we measured the terahertz signals generated from the strip line, the asymmetric four-contact, and the arc-shaped antennas under the same conditions of bias voltage and pump power.The bias voltage was 100 V.The pump beam with a power of about 50 mW was incident onto the gap center and then scanned to find an optimal spot position corresponding to the maximal terahertz output[9],[22].Fig.3 shows the temporal waveforms and frequency spectra of terahertz pulses emitted from the three kinds of structures.It is clear that the two new designed antennas have produced more intense terahertz radiation than the traditional strip line antenna.The peak-to-peak amplitudes of the pulse waveforms for the four-contact and arc-shaped structures are 43.6% and 38.7% larger,respectively.In the frequency domain, the signals for the two new structures are almost all enhanced within the entire useful range, especially between 0.2 THz and 1.2 THz.Therefore, our experimental observations verify that the efficiency of a terahertz photoconductive emitter could be increased by improving the electrode structure.In contrast to the simulation results, the measured terahertz signal amplitude increase for the four-contact antenna is more remarkable, which might be attributed to the effect of bias electric field distribution associated with the electrode structure, as mentioned above.In the four-contact structure,the local electric field at the center of the crossed gaps has a converging behavior and thus is enhanced, leading to more efficient generation of terahertz pulses.It could be inferred that the arc-shaped antenna should also have a local field enhancement effect because of the existence of arc structures.

    Fig.3.Terahertz signals emitted from the strip line, the asymmetric four-contact, and the arc-shaped PCAs measured by the THz-TDS system: (a) temporal waveforms and (b) frequency spectra.

    Fig.4.Terahertz signal amplitudes under different pump and bias conditions for the asymmetric four-contact antenna: (a) pump power and (b) bias voltage.

    Fig.5.Terahertz signal amplitudes under different pump and bias conditions for the arc-shaped antenna: (a) pump power and (b)bias voltage.

    5.Conclusions

    In conclusion, we have designed, fabricated, and characterized two new types of PCAs, including an asymmetric four-contact structure and an arc-shaped structure.FDTD simulations and THz-TDS measurements demonstrate that the proposed antenna structures have much higher terahertz radiation efficiencies.Compared with the traditional strip line antenna, the increases of the peak-to-peak amplitudes of terahertz pulses emitted from the four-contact and arc-shaped structures can reach as large as 43.6% and 38.7%, respectively.Such increases result from the special electrode structure and the local electric field enhancement occurring in the antenna gap.This work indicates that the improvement of the antenna electrode structure is an effective and feasible way for the development of highly efficient terahertz photoconductive emitters.

    [1]R.M.Smith and M.A.Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl.Spectrosc.Rev., vol.46, no.8, pp.636-679, 2011.

    [2]P.R.Smith, D.H.Auston, and M.C.Nuss, “Subpicosecond photoconducting dipole antennas,” ⅠEEE J.Quantum Electron., vol.24, no.2, pp.255-260, 1988.

    [3]A.Rice, Y.Jin, X.F.Ma, X.-C.Zhang, D.Bliss, J.Larkin,and M.Alexander, “Terahertz optical rectification from<110> zinc-blende crystals,” Appl.Phys.Lett., vol.64, no.11, pp.1324-1326, 1994.

    [4]X.Xie, J.Dai, and X.-C.Zhang, “Coherent control of THz wave generation in ambient air,” Phys.Rev.Lett., vol.96, no.7, pp.075005, 2006.

    [5]Y.C.Shen, P.C.Upadhya, E.H.Linfield, H.E.Beere, and A.G.Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,”Appl.Phys.Lett., vol.83, no.15, pp.3117-3119, 2003.

    [6]W.Cheng, Y.Wang, and Z.Zhao, “New research progress of photoconductive terahertz source,” Laser & Ⅰnfrared, vol.41,no.6, pp.597-604, 2011 (in Chinese).

    [7]D.Liu and J.Qin, “Carrier dynamics of terahertz emission from low-temperature-grown GaAs,” Appl.Opt., vol.42, no.18, pp.3678-3683, 2003.

    [8]S.Rihani, R.Faulks, H.E.Beere, I.Farrer, M.Evans, D.A.Ritchie, and M.Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure,”Appl.Phys.Lett., vol.96, no.9, pp.091101-091101-3,2010.

    [9]W.Shi, L.Hou, and X.Wang, ”High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes,” J.Appl.Phys., vol.110, no.2, pp.023111, 2011

    [10]M.Van Exter, C.Fattinger, and D.Grischkowsky,“High-brightness terahertz beams characterized with an ultrafast detector,” Appl.Phys.Lett., vol.55, no.4, pp.337-339, 1989.

    [11]H.Harde and D.Grischkowsky, “Coherent transients excited by subpicosecond pulses of terahertz radiation,” J.Opt.Soc.Am.B, vol.8, no.8, pp.1642-1651, 1991.

    [12]M.Tani, S.Matsuura, K.Sakai, and S.Nakashima,“Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl.Opt., vol.36, no.30, pp.7853-7859, 1997.

    [13]D, R.Dykaar, B.I.Greene, J.F.Federici, A.F.J.Levi, L.N.Pfeiffer, and R.F.Kopf, “Log-periodic antennas for pulsed terahertz radiation,” Appl.Phys.Lett., vol.59, no.3, pp.262-264, 1991.

    [14]A.D.Semenov, H.Richter, H.-W.Hübers, B.Günther, A.Smirnov, K.S.Il’in, M.Siegel, and J.P.Karamarkovic,“Terahertz performance of integrated lens antennas with a hot-electron bolometer,” ⅠEEE Trans.on Microw.Theory Tech., vol.55, no.2, pp.239-247, 2007.

    [15]Y.Hirota, R.Hattori, M.Tani, and M.Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt.Express, vol.14, no.10, pp.4486-4493, 2006.

    [16]J.Yang, W.Fan, and B.Xue, “Biased electric field analysis of a photoconductive antenna for terahertz generation,” Nucl.Ⅰnstrum.Methods Phys.Res.Sect.A, vol.637, no.1, pp.165-167, 2011.

    [17]J.Y.Suen, W.Li, Z.D.Taylor, and E.R.Brown,“Characterization and modeling of a terahertz photoconductive switch,” Appl.Phys.Lett., vol.96, no.14,pp.141103-141103-3, 2010.

    [18]G.Matth?us, S.Nolte, R.Hohmuth, M.Voitsch, W.Richter,B.Pradarutti, S.Riehemann, G.Notni, and A.Tünnermann,“Microlens coupled interdigital photoconductive switch,”Appl.Phys.Lett., vol.93, no.9, pp.091110-091110-3, 2008.

    [19]C.W.Berry, N.Wang, M.R.Hashemi, M.Unlu, and M.Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat.Commun., vol.4, no.1622, pp.1-10, 2013.

    [20]F.Miyamaru, Y.Saito, K.Yamamoto, T.Furuya, S.Nishizawa, and M.Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas,” Appl.Phys.Lett., vol.96, no.21,pp.211104, 2010.

    [21]D.Grischkowsky, S.Keiding, M.van Exter, and Ch.Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J.Opt.Soc.Am.B, vol.7, no.10, pp.2006-2015, 1990.

    [22]Y.Wang, Z.Zhao, W.Cheng, and L.Wang, “Electric field analysis for the design of LT-GaAs photoconductive terahertz antennas,” presented at the International Conf.on Microwave and Millimeter Wave Technology, Shenzhen,May 5-8, 2012.

    亚洲乱码一区二区免费版| 亚洲人成电影免费在线| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 19禁男女啪啪无遮挡网站| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 特级一级黄色大片| 国产av在哪里看| 亚洲av免费在线观看| av视频在线观看入口| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 熟女电影av网| 宅男免费午夜| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久| 国产成人系列免费观看| 狠狠狠狠99中文字幕| 男人和女人高潮做爰伦理| 精品欧美国产一区二区三| 亚洲精品乱码久久久v下载方式 | 最新中文字幕久久久久| 久久久久久久久大av| 麻豆国产97在线/欧美| 亚洲无线在线观看| 99久久精品国产亚洲精品| 成人一区二区视频在线观看| 精品人妻偷拍中文字幕| 亚洲精品国产精品久久久不卡| 给我免费播放毛片高清在线观看| 中文字幕久久专区| 亚洲人成网站在线播放欧美日韩| 高清日韩中文字幕在线| 成年人黄色毛片网站| 国产在视频线在精品| 成年版毛片免费区| 18禁黄网站禁片免费观看直播| 极品教师在线免费播放| 久久草成人影院| 欧美日本视频| 波多野结衣高清无吗| 国产一区二区在线av高清观看| tocl精华| 少妇的逼水好多| 日韩免费av在线播放| 少妇的逼好多水| 久久久色成人| 欧美一级a爱片免费观看看| 99视频精品全部免费 在线| 九九久久精品国产亚洲av麻豆| 成人午夜高清在线视频| 可以在线观看的亚洲视频| 国产精品一区二区免费欧美| 午夜福利高清视频| 久久久精品欧美日韩精品| 亚洲人与动物交配视频| 中文字幕av在线有码专区| 亚洲成人久久性| 波多野结衣高清作品| 美女cb高潮喷水在线观看| 男人和女人高潮做爰伦理| 三级毛片av免费| 一级毛片女人18水好多| 好男人电影高清在线观看| 国产成年人精品一区二区| 黄片大片在线免费观看| 国内精品久久久久精免费| av福利片在线观看| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 亚洲精品456在线播放app | 欧美一级毛片孕妇| 日本成人三级电影网站| 国产成年人精品一区二区| 看片在线看免费视频| 精品人妻偷拍中文字幕| 99国产综合亚洲精品| 国产麻豆成人av免费视频| 看免费av毛片| 日本黄色视频三级网站网址| 久久久久久大精品| 中出人妻视频一区二区| 国产精品国产高清国产av| 久久人人精品亚洲av| 久久久国产精品麻豆| 51国产日韩欧美| netflix在线观看网站| av天堂在线播放| 午夜福利免费观看在线| 黄色片一级片一级黄色片| 美女被艹到高潮喷水动态| 成人国产一区最新在线观看| 99国产综合亚洲精品| 女人被狂操c到高潮| 特级一级黄色大片| 国产精品免费一区二区三区在线| 可以在线观看的亚洲视频| 国产亚洲精品综合一区在线观看| 国产一区在线观看成人免费| 俺也久久电影网| 国产高清三级在线| 精品电影一区二区在线| av视频在线观看入口| 日韩欧美在线二视频| 白带黄色成豆腐渣| 宅男免费午夜| 少妇人妻精品综合一区二区 | 国产精品乱码一区二三区的特点| 手机成人av网站| 国产亚洲精品一区二区www| 亚洲乱码一区二区免费版| 一个人免费在线观看电影| 99久国产av精品| 在线十欧美十亚洲十日本专区| 色在线成人网| 最后的刺客免费高清国语| 精品久久久久久成人av| 国内精品美女久久久久久| 麻豆国产97在线/欧美| 在线看三级毛片| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 99热6这里只有精品| 欧美乱色亚洲激情| 他把我摸到了高潮在线观看| 国产成人aa在线观看| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 国产精品av视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 欧美大码av| av在线蜜桃| 欧美性猛交黑人性爽| 免费看日本二区| 欧美日韩精品网址| 床上黄色一级片| e午夜精品久久久久久久| 亚洲国产精品合色在线| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 99国产精品一区二区三区| 亚洲片人在线观看| 99精品久久久久人妻精品| 免费观看精品视频网站| 亚洲精品成人久久久久久| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 在线观看av片永久免费下载| 日本免费a在线| 亚洲不卡免费看| 成年女人看的毛片在线观看| 亚洲av一区综合| 内地一区二区视频在线| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 丁香六月欧美| 热99在线观看视频| 狂野欧美白嫩少妇大欣赏| 特级一级黄色大片| 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 手机成人av网站| 亚洲18禁久久av| 亚洲人成伊人成综合网2020| 日本成人三级电影网站| 日韩欧美免费精品| 嫩草影院入口| 亚洲成a人片在线一区二区| 又黄又爽又免费观看的视频| 国产精品三级大全| 色尼玛亚洲综合影院| 国内精品美女久久久久久| 嫩草影院精品99| 国产成人啪精品午夜网站| av在线蜜桃| 中文字幕熟女人妻在线| 制服人妻中文乱码| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 欧美乱色亚洲激情| 19禁男女啪啪无遮挡网站| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| 最近最新中文字幕大全免费视频| 可以在线观看毛片的网站| 欧美日本亚洲视频在线播放| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| a级毛片a级免费在线| 亚洲av电影不卡..在线观看| 亚洲 国产 在线| 岛国在线免费视频观看| 高潮久久久久久久久久久不卡| 人人妻,人人澡人人爽秒播| 69av精品久久久久久| 久久久精品大字幕| 搡女人真爽免费视频火全软件 | 国产精品一区二区三区四区免费观看 | 真人一进一出gif抽搐免费| 久久精品国产综合久久久| 色综合亚洲欧美另类图片| 热99re8久久精品国产| 亚洲欧美日韩东京热| 亚洲18禁久久av| 狂野欧美激情性xxxx| 亚洲精品在线美女| 亚洲五月天丁香| 国产精品野战在线观看| 黄片小视频在线播放| 一级黄片播放器| 岛国在线观看网站| 色综合站精品国产| 久久国产精品人妻蜜桃| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 好看av亚洲va欧美ⅴa在| 香蕉av资源在线| 女警被强在线播放| 婷婷亚洲欧美| 亚洲国产欧美人成| 亚洲人成网站高清观看| 丁香欧美五月| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 最新在线观看一区二区三区| av黄色大香蕉| 成人三级黄色视频| 在线免费观看不下载黄p国产 | 欧美日韩国产亚洲二区| 亚洲熟妇熟女久久| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 欧美成狂野欧美在线观看| 一个人看视频在线观看www免费 | 99久久九九国产精品国产免费| 长腿黑丝高跟| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久亚洲精品不卡| 非洲黑人性xxxx精品又粗又长| 九九在线视频观看精品| 国产精品久久久久久人妻精品电影| av专区在线播放| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 嫩草影视91久久| 俺也久久电影网| 国产精品乱码一区二三区的特点| 90打野战视频偷拍视频| 啦啦啦观看免费观看视频高清| 啦啦啦免费观看视频1| 99精品久久久久人妻精品| 亚洲专区国产一区二区| 丝袜美腿在线中文| 亚洲一区二区三区不卡视频| 露出奶头的视频| 国产又黄又爽又无遮挡在线| 91av网一区二区| 亚洲国产色片| 在线a可以看的网站| 欧美一区二区亚洲| 人人妻人人看人人澡| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 久久久久久九九精品二区国产| 老鸭窝网址在线观看| 国产亚洲精品一区二区www| 变态另类丝袜制服| 日本一本二区三区精品| 国产精品一及| 国产高清videossex| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 日本熟妇午夜| 91麻豆av在线| 女人高潮潮喷娇喘18禁视频| 51国产日韩欧美| 国产午夜福利久久久久久| 69人妻影院| 一区二区三区国产精品乱码| 丰满人妻一区二区三区视频av | 在线观看av片永久免费下载| 午夜精品久久久久久毛片777| 欧美日韩综合久久久久久 | 日本 av在线| 欧美3d第一页| 午夜免费成人在线视频| 精品欧美国产一区二区三| 一级黄色大片毛片| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 色播亚洲综合网| 好看av亚洲va欧美ⅴa在| 亚洲精品国产精品久久久不卡| xxx96com| 久久精品国产清高在天天线| 久久伊人香网站| 在线视频色国产色| 又爽又黄无遮挡网站| 日韩人妻高清精品专区| 精品一区二区三区视频在线 | 69人妻影院| 免费观看精品视频网站| 97超视频在线观看视频| 精品久久久久久久久久久久久| 97碰自拍视频| 亚洲五月天丁香| 在线国产一区二区在线| www.999成人在线观看| 午夜激情欧美在线| 又紧又爽又黄一区二区| 国模一区二区三区四区视频| 一级黄色大片毛片| 中国美女看黄片| 欧美精品啪啪一区二区三区| av视频在线观看入口| 亚洲av中文字字幕乱码综合| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 国产高清视频在线观看网站| 国产综合懂色| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 国产69精品久久久久777片| 精品电影一区二区在线| 51国产日韩欧美| 日韩欧美 国产精品| 禁无遮挡网站| 精品国产超薄肉色丝袜足j| 久久久久国内视频| 女同久久另类99精品国产91| 欧美xxxx黑人xx丫x性爽| 老司机在亚洲福利影院| 亚洲精品影视一区二区三区av| 伊人久久精品亚洲午夜| 女人十人毛片免费观看3o分钟| 亚洲一区二区三区不卡视频| 国产黄色小视频在线观看| 好看av亚洲va欧美ⅴa在| 在线视频色国产色| 久久久精品欧美日韩精品| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 久久香蕉国产精品| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 免费一级毛片在线播放高清视频| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 久久人妻av系列| 欧美午夜高清在线| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件 | 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 国产精品影院久久| 欧美丝袜亚洲另类 | 夜夜看夜夜爽夜夜摸| 99riav亚洲国产免费| 女同久久另类99精品国产91| 国产精华一区二区三区| 动漫黄色视频在线观看| 在线观看日韩欧美| 嫩草影视91久久| netflix在线观看网站| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 麻豆国产97在线/欧美| 美女被艹到高潮喷水动态| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 乱人视频在线观看| 99国产精品一区二区三区| 男女之事视频高清在线观看| 欧美日韩精品网址| 嫁个100分男人电影在线观看| 一个人看的www免费观看视频| 久久久久久久精品吃奶| 精品不卡国产一区二区三区| 男人和女人高潮做爰伦理| 三级国产精品欧美在线观看| 黄色片一级片一级黄色片| 此物有八面人人有两片| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观| 最新在线观看一区二区三区| 色噜噜av男人的天堂激情| 国产成人啪精品午夜网站| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 国产国拍精品亚洲av在线观看 | 久久中文看片网| 国产 一区 欧美 日韩| 97超视频在线观看视频| 国产欧美日韩精品一区二区| 免费无遮挡裸体视频| 亚洲熟妇熟女久久| 在线播放无遮挡| 舔av片在线| 熟妇人妻久久中文字幕3abv| 欧美在线一区亚洲| 在线a可以看的网站| 亚洲五月婷婷丁香| 亚洲成人久久性| 狂野欧美白嫩少妇大欣赏| 女人高潮潮喷娇喘18禁视频| 亚洲av不卡在线观看| 国产主播在线观看一区二区| 黑人欧美特级aaaaaa片| 国产精品三级大全| 欧美乱色亚洲激情| 亚洲五月天丁香| 亚洲国产高清在线一区二区三| 好男人在线观看高清免费视频| 成人av一区二区三区在线看| 亚洲成a人片在线一区二区| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| 九九热线精品视视频播放| 在线播放无遮挡| 日本a在线网址| 99久久九九国产精品国产免费| 成人无遮挡网站| 精品国产亚洲在线| 一进一出抽搐动态| 国产真实伦视频高清在线观看 | 免费在线观看亚洲国产| 成人三级黄色视频| 日韩欧美国产在线观看| 一二三四社区在线视频社区8| 日日摸夜夜添夜夜添小说| 久久香蕉国产精品| 老司机深夜福利视频在线观看| 69av精品久久久久久| 一级黄色大片毛片| 操出白浆在线播放| 97人妻精品一区二区三区麻豆| 日本三级黄在线观看| 亚洲18禁久久av| 午夜日韩欧美国产| 91久久精品国产一区二区成人 | 国产午夜精品久久久久久一区二区三区 | 人人妻人人看人人澡| 日本免费a在线| 国语自产精品视频在线第100页| 免费电影在线观看免费观看| 免费搜索国产男女视频| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 日本与韩国留学比较| 亚洲久久久久久中文字幕| 欧美黄色片欧美黄色片| 欧美高清成人免费视频www| 观看美女的网站| 亚洲精品一卡2卡三卡4卡5卡| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 亚洲欧美精品综合久久99| 国产精品一及| 在线国产一区二区在线| 男女视频在线观看网站免费| 老汉色∧v一级毛片| 欧美色欧美亚洲另类二区| 3wmmmm亚洲av在线观看| 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 国模一区二区三区四区视频| 在线观看av片永久免费下载| 色av中文字幕| 美女高潮喷水抽搐中文字幕| 在线观看舔阴道视频| 欧美黑人巨大hd| 三级国产精品欧美在线观看| 亚洲欧美激情综合另类| 日本 av在线| 脱女人内裤的视频| 香蕉丝袜av| 精品不卡国产一区二区三区| 少妇人妻精品综合一区二区 | 亚洲,欧美精品.| a级一级毛片免费在线观看| 日本免费a在线| 国产亚洲精品久久久久久毛片| 女警被强在线播放| 男女下面进入的视频免费午夜| 午夜精品一区二区三区免费看| 欧美性感艳星| 变态另类成人亚洲欧美熟女| 热99re8久久精品国产| 最新中文字幕久久久久| 成人一区二区视频在线观看| 岛国在线免费视频观看| 我的老师免费观看完整版| 两人在一起打扑克的视频| 国产精品av视频在线免费观看| 免费人成在线观看视频色| 一个人免费在线观看电影| 亚洲成人免费电影在线观看| 国产视频内射| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 国产高清有码在线观看视频| av在线蜜桃| 国产精品久久久久久久久免 | 精品久久久久久久毛片微露脸| 日韩精品中文字幕看吧| 蜜桃久久精品国产亚洲av| 老汉色av国产亚洲站长工具| 亚洲欧美日韩东京热| 久久午夜亚洲精品久久| 亚洲精品日韩av片在线观看 | 色噜噜av男人的天堂激情| 怎么达到女性高潮| 岛国在线免费视频观看| 一进一出抽搐gif免费好疼| 99久国产av精品| 天堂动漫精品| 在线十欧美十亚洲十日本专区| 国产精品嫩草影院av在线观看 | 欧美乱色亚洲激情| 久久九九热精品免费| 无遮挡黄片免费观看| 国产精品一区二区免费欧美| 亚洲av一区综合| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 一区二区三区国产精品乱码| 欧美zozozo另类| 老汉色∧v一级毛片| 国产视频一区二区在线看| 午夜免费激情av| 国产精品久久久久久人妻精品电影| 精品99又大又爽又粗少妇毛片 | 亚洲人成电影免费在线| 午夜日韩欧美国产| 亚洲av成人av| 男女那种视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲不卡免费看| 日韩欧美国产一区二区入口| 高清毛片免费观看视频网站| 久久亚洲精品不卡| 国产成人影院久久av| 欧美乱码精品一区二区三区| 十八禁网站免费在线| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看| 99久国产av精品| 亚洲自拍偷在线| e午夜精品久久久久久久| 国产极品精品免费视频能看的| 18禁美女被吸乳视频| 亚洲午夜理论影院| 成人特级av手机在线观看| 天堂网av新在线| 亚洲18禁久久av| 99久久成人亚洲精品观看| avwww免费| 欧美一级毛片孕妇| 亚洲国产精品999在线| 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 国产亚洲av嫩草精品影院| 国产视频一区二区在线看| 十八禁人妻一区二区| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 又黄又粗又硬又大视频| 极品教师在线免费播放| 看黄色毛片网站| 成年女人永久免费观看视频| 欧美性猛交黑人性爽| 最新美女视频免费是黄的| 在线视频色国产色| 在线看三级毛片| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 女警被强在线播放| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 变态另类成人亚洲欧美熟女| 国模一区二区三区四区视频| 国产精品一区二区三区四区免费观看 | svipshipincom国产片| 国产免费av片在线观看野外av| 久久伊人香网站| 热99在线观看视频| 成人18禁在线播放| 久久久成人免费电影| 精品人妻一区二区三区麻豆 | 人人妻人人澡欧美一区二区| 99热6这里只有精品| 波多野结衣高清无吗| 很黄的视频免费| 精品人妻1区二区| 国产日本99.免费观看| 国产真实伦视频高清在线观看 |