• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈦摻雜鈣鈦礦制備高效率鈣鈦礦太陽能電池

    2018-09-03 03:25:30張宇豪鄭永進吳立爽諸躍進
    無機化學學報 2018年9期
    關(guān)鍵詞:寧波大學理學院工程系

    田 輝 熊 啟 劉 鵬 張 京 韓 磊 張宇豪 鄭永進 吳立爽 諸躍進

    (寧波大學理學院,微電子科學與工程系,寧波 315211)

    In the pastseveralyears,organic-inorganic perovskite solar cells have become one of the most studied cells for their high efficiency,low fabrication cost and easy solution process[1-5].The core component is the perovskite layer in n-i-p type perovskite solar cells(PSCs),whose properties are quite important for efficient charge transport.As the light absorption layer,perovskite layer generates electron/hole carriers,which are separated and driven to corresponding n and p sides under the effect of built-in internal electrical field.Then,they pass through electron/hole transport layer(ETL/HTL)to converging in electrode[6-7].There are two types of defects in perovskite layer:(1)Deep level intrinsic defects which result in the recombination and trap states in perovskite lattice[8-9];(2)Owing to polycrystalline structure of perovskite,a large amount of defects appear in the poly crystal perovskite grain boundary during solution-based prep-aration processes[8].The large number of trap states nevertheless induce charge carrier recombination and limit the PCE in thin-film solar cells unless they can be further reduced[10].Moreover,the trap states cast awful impact on hysteresis properties,leading to stability concerns over the devices[11].Thus,lowering the charge recombination via reducing defects states in the perovskite polycrystalline thin film is crucial for continued progress in device performance.

    Up to now,three reported methods are certified to solve defect problem produced in the perovskite layer.Firstly,adding functional molecules to act on the grain boundary can effectively passivate the trap states.Insulating polymers,ionic liquid and the semiconducting molecule fullerene are reported to form chemical interactions with the surface atoms thus passivate the trap states[12-13].Secondly,adding an interface layerabove perovskite layereffectively illuminates the surface trap states and reduce the interface recombination[14-15].Thirdly,the extrinsic metal ions(alkali metal ions K+,Na+,Zn2+)are added in the perovskite films to effectively influence the crystallinity and passivate the trap states[16-18].

    In this work,we report a method to improve properties with Ti4+doping in perovskite precursor solution to passivate defect in perovskite.Once investigating the effect of Ti4+,it is found that most of Ti4+was distributed in the polycrystalline perovskite grain boundary.Further research shows size of perovskite grain changed subtly.The bandgap of doped perovskite unchanged after Ti4+doping.And the photoluminescence and carrier transport are obviously enhanced,indicating the trap states are effectively reduced.With optimum content of Ti4+concentration doped in perovskite precursor solution,the efficiency(17.4%)of PSCs demonstrated significant improvement contrast with conventional device(14.0%).Higher efficiency suggests it is an effective method via doping engineering with Ti4+.

    1 Experimental

    1.1 Fabrication of perovskite solar cell device

    The original PSCs are composed of FTO layer/TiO2blocking layer/CH3NH3PbI3(MAPbI3)layer/spiro-OMeTAD/Ag.The pure perovskite precursor solution was prepared by directly mixing CH3NH3I3and PbI2with nCH3NH3I3∶nPbI2=1∶1 in dimethylformamide(DMF).The pure CH3NH3PbI3is a conventional contrast sample.TiCl4ethyl alcohol solution (1 mol·L-1)is added to perovskite precursor solution.Different volume of TiCl4solution is add to make a series of doped perovskite precursor solution with different molar ratios(x%,x=0,0.05,0.1,0.2 and 0.5)of Ti to Pb.Ti4+-x%represents with different concentrations of Ti4+doped the samples.The 60 nm thick TiO2compact layer was synthesized in air via sol-gel method and deposited on the etched and cleaned FTO glass.Titaniumビisopropoxide was added to the mixed solution of isopropanol alcohol,diethanolamine and deionized water then the sol was left stirring for 1 h before using.The deposited TiO2film was annealed in oven for 30 min at 450℃[19].Next,the compact TiO2layer was treated with 0.04 mol·L-1TiCl4at 70 ℃ for 30 min and sintered in oven for 30 min at 500℃.

    Perovskite layerwasdeposited on the TiO2blocking layer by spinning coating the perovskite precursor solution at 2 800 r·min-1for 30 s and treated by anti-solvent chlorobenzene(CB).Then,the substrate was carefully baked on the hot plate to form uniform perovskite film by slow annealing.The hole transport layer was prepared by spinning coating hole transport material (HTM)solution at 3 000 r·min-1for 30 s.HTM solution consists of 60 mmol·L-12,2′,7,7′-tetrakis(N,N-di-p-methox-yphenylamine)-9,9′-spirobifluorene(spiro-MeOTAD)in chlorobenzene with added 80%(n/n)4-tert-butylpyridine(tBP)and 30%(n/n)of lithium bis(trifluoromethanesulfony)imide(Li-TFSI)[20].Then,substrate would be oxidized in dry air for 6 h.Lastly,approximately 100 nm of Ag electrode were evaporated on the HTM with ultrahigh vacuum.

    1.2 Characterization of the devices

    X-ray diffraction patterns(XRD)of the Ti4+doped perovskite films based on FTO glass were acquired by a Bruker instrument(D8 advance,made in Germany)using Cu radiation(λ=0.154 06 nm,applied voltage of 40 kV and current of 800 mA)at scan rate of 4°·min-1and range of 10°~50°for crystal structure and size.The surface morphologies and element analysis of the perovskite films (FTO glass/perovskite layer)were observed by a scanning electron microscope(SEM,Hitachi,SU-70,Japan)with energy dispersive X-ray spectroscopy (EDX).The optical absorption spectrum of the perovskite films based on glass was tested by UV-TR spectrophotometer(Agilent Cary 5000,USA).Steady-state photoluminescence(PL)of the perovskite films was measured by fluorescence spectrophotometer(Agilent,USA)with 532 nm light to excite the two groups of substrates that were respectively based on glass/perovskite and FTO glass/perovskite.Timeresolved PL spectra (excited at 450 nm;monitored at 750 nm)were recorded on Horiba fluorescence spectrometer.The binding energies of the perovskite elements were analyzed by X-ray photoelectron spectroscopy(XPS,Shimadzu,Japan)using Al Kα radiation.Currentvoltage (J-V)characteristics were measured by the equipment consisting of a Keithley 4200 semiconductor analyzer and a sunlight simulator(Newport solar simulator 3A,AM1.5,100 mW·cm-2)requiring to be adjusted with a piece of standard silicon reference cell.The electrochemicalimpedance spectroscopy(EIS)of perovskite solar cells were measured with an electrochemical workstation(Zennium,Germany).

    2 Results and discussion

    2.1 Crystalline and surface morphology of CH3NH3PbI3

    The crystallinity and continuity of the perovskite film are key factors for charge dissociation and charge transmission in device.The XRD patterns of perovskite film with different concentration of Ti4+on FTO glass is shown in Fig.1a,which indicates the change of crystallinity and half-peak width.In Fig.1a,the peaks at 14.06°,28.40°and 43.30°are respectively assigned to the(110),(220)and(330)planes of CH3NH3PbI3[21].The doped Ti4+has ionic radius of 0.064 nm,far smaller than the Pb2+of 0.119 nm.Moreover,Ti has 4 valence electrons to coordinate while Pb has 2 valence electrons to coordinate in CH3NH3PbI3.Therefore,great discrepancy of ionic size and valence states indicates that Ti4+is hardly to substitute the Pb2+in CH3NH3PbI3.The XRD patterns show the perovskite peak position almost does not shift with doping concentration increasing,which illuminates Ti4+does not change the crystalline lattice and therefore Ti4+is not substitutional impurity in the perovskite crystalline.Furthermore,it is noticed that the peak intensity is higher with Ti4+-0.05%and Ti4+-0.1%doped perovskite,compared with the pure one.It means that the crystallinity of doped perovskite is better than that of the pure perovskite.Gradually increasing the Ti4+amount,the XRD peak intensity decreased further,which means the crystallinity of perovskite based on Ti4+with 0.2%~0.5%is worse than of the pure perovskite film.The average size of perovskite grain is circulated according to half-peak width of the perovskite (110)diffraction peaks site based on the Scherrer equation as following:

    Fig.1 (a)XRD patterns of Ti4+doped perovskite film,the inset is the enlarged(110)diffraction peaks;(b)UV-Vis absorption spectra of perovskite films on glass with and without Ti4+,the insert is the enlarged spectra of(b)

    Table 1 Peak position,half-peak width and the calculated grain size of(110)plane

    D=kλ/(βcosθ)where D is the crystalline size,λ is the wavelength of X-ray radiation(0.154 nm),k is the constant taken as 0.89,β is the half-peak width,θ is the peak site of the perovskite(110)diffraction peaks in XRD patterns.As shown In Table 1,the size of perovskite grain gradually decreases with the concentration of Ti4+increasing,which reveals Ti4+as dopant diminishes the size of perovskite grain.

    The optic band gap change was detected.In UVIR spectra of the perovskite films upon cleaned glass(Fig.1b),the absorption of Ti4+-0.1%doped perovskite is the highest of the films,which is ascribed to the high quality and the compactness of the film.The absorption onset and the band edge near 800 nm are enlarged to check the bandgap of the perovskite.It is obvious that the absorption onset has no obvious change with Ti4+doping,which reveals that Ti4+ions have no effect on bandgap,and further verifies Ti4+does not substitute Pb2+to form perovskite structure to modify the energy band gap.

    2.2 Exploration distribution of Ti4+in perovskite

    The top view morphologies of perovskite films were observed by SEM.As is shown in Fig.2(a~c),the size of perovskite grain becomes smaller and more uniform with Ti4+-0.1%and Ti4+-0.2%modification(Fig.2(b,c))than of the pure perovskite grain in Fig.2a,which may be helpful to form continuous film and produce better contact between perovskite layer and HTL[22].

    Fig.2 SEM images of Ti4+with(a)0,(b)0.1%and(c)0.2%perovskite film;(d)Surface morphology exposed under SEM-EDS;SEM-mapping of(e)Pb2+and(f)Ti4+

    The element distribution of perovskite films is further researched.In Fig.2d,polycrystal perovskite film structure and the pinholes between the grain boundaries can be observed under SEM-EDS mapping mode.The SEM-mapping of Ti4+-0.1%perovskite film shows the distribute condition of Pb and Ti in polycrystallineperovskite film (Fig.2(e,f)).In-situ mapping oflead indicatesthatPb isuniformly distributed inside the perovskite films (Fig.2e).By contrast,Ti is intensively distributed at the grain boundaries of polycrystalline perovskite as indicates by the yellow circles in Fig.2f.The above results demonstrate that Ti4+ions are mostly distributed at grain boundary of polycrystalline perovskite as additive.By this way,controlling proper Ti4+dopant might lead to the defect of grain boundary passivated,which alleviates the tendency of non-radiative recombination to carriers by trap states in the grain boundary of polycrystalline perovskite. Meanwhile, controlling proper Ti4+dopant not only diminishes the size of polycrystalline perovskite grain to homogenize the scale of perovskite grain,it also promotes high quality crystallinity of perovskite to be favorable for charge transport.

    When Ti4+is formed at the grain boundary of perovskite films,it does not change the perovskite crystalline lattice structure for not substituting the Pb position.However,Ti4+will interact with the atoms in the perovskite material.Fig.3(a,b)indicates the XPS core level spectra of Pb4f and I3d,respectively.It is clear that the peak positions of Pb4f and I3d moves to lower binding energy when Ti-0.1% is doped in.Because the Ti will also interact with I,the binding energy of Pb is reduced.On the other hand,Cl is introduced in the system which might also interact with Pb,thus the binding energy of I is also reduced.The scheme of the Ti doping position is indicated in Fig.3c,which also indicates the interaction of Ti with the atoms in MAPbI3.

    Fig.3 XPS core level spectra of(a)Pb4f;and(b)I3d;(c)Schema of Ti4+formed at the grain boundary(left),the enlarged grains and the Ti4+interaction with I-in the film

    2.3 Charge transport properties of CH3NH3PbI3

    To investigate the trap states and charge transport properties in Ti4+doped perovskite materials,the PL spectra of perovskite film on glass and on FTO are investigated.Fig.4a is the steady state PL spectra of perovskite films on glass substrates.Obviously,the peak site of emission light does not change which accounts for Ti4+doping did not influence the bandgap.Furthermore,it is found that the peak intensity of Ti4+-0.05%,Ti4+-0.1%doped perovskite significantly rises compared to the conventional sample.The phenomenon suggests few Ti4+-doped perovskite film effectively restrains the recombination from carriers and trap states,which is benefit for the charge transport.It is demonstrated that grain boundary modification weakens non-radiative recombination[23],which influences luminescence yields and power conversion efficiency[24-26].Knowing that Ti4+ions does not directly affect lattice,it just affects the grain size and grain boundary,therefore,it is the Ti4+passivates the trap states at the perovskite grain boundary.However,the PL peak intensity gradually declines with further increasing the dopantdensity which is due to the decreased crystalline property indicated by XRD in Fig.1a.Fig.4b is the PL of perovskite films deposited on FTO substrates.Clearly,peak intensity decreased with enhancing the dopantcontent,which powerfully explains traces of Ti4+ions intensify the ability of carrier extraction from the perovskite to the FTO.By analyzing the PL spectra,it is found that the best concentration is Ti4+-0.1%,with the lowest recombination and highest charge transport property.Therefore,when Ti4+-0.1%ions are doped in perovskite film,it effectively reduces trap states density,block nonradiative recombination and lead to effective charge transport between perovskite layer and ETL/HTL.

    To further investigate the charge transport process with and without Ti4+doped perovskite film,the time-resolved PL(TR-PL)measurements of perovskite films on TiO2substrate were carried out.The PL decay curves obey a bi-exponential decay function with a fast decay process and a slow decay process through curves fitting in Fig.4c.In general,the fast decay process derives from photo-excited carriers trapped by the defect or sharply transporting to electron/hole interlayer,however,the slow decay process displays the irradiative decay process[27-28].And the related parameters of TR-PL decay of the sample with and without Ti4+are shown in Table 2.Clearly,the Ti-0.1%doped perovskite curve is higher than the undoped one during the fast decay process,which means reduction of non-radiative recombination process;nevertheless,the Ti-0.1%doped perovskite curve decays more rapidly than original curve during the slow decay process,which means stronger ability of extraction carrier.The phenomenon explains passivated perovskite has less defect states and better charge extraction to the electrode[29].The average lifetime is 75.49 ns for pure sample,while the average lifetime is 38.43 ns for Ti4+-0.1%sample.This clearly indicates the faster PL quenching is obtained in sample with Ti4+-0.1%(Fig.4c).These TR-PL results also point out the 0.1%Ti4+dopant in perovskite is convenient for charge transport and weakening the recombination of carriers(Table 2).

    Fig.4 Steady state PL spectra of perovskite film on glass(a)and on FTO(b);(c)Time-resolved PL(TR-PL)spectra of perovskite film on TiO2layer

    Table 2 Fitting parameters of TR-PL decay curves to perovskite on TiO2layer

    2.4 Performance of the solar cell devices

    The performances with different Ti4+contents in perovskite were measured to seek for optimum Ti4+concentration,and the detailed photovoltaic parameters were displayed in Table 3 and Fig.5(a,b).Fig.5c is the J-V curves of different Ti4+contents doped devices.The pure PSCs shows JSC=21.4 mA·cm-2,VOC=1.09 V,FF=0.611,and Eff=14.0% (Effis the efficiency).Ti4+-0.1%acquires maximum JSCof 22.3 mA·cm-2.The FF gradually improves when the content in perovskite of Ti4+increase,and FF achieves the highest value of 72.4%with Ti4+-0.1%.Then,FF reduces once Ti4+is over 0.1%.Finally,the best perfor-mance is 17.4% with Ti4+-0.1% in PSCs.Theeffici-ency distribution is provided in supporting information(Fig.S1)and the average values are approximate 14.0%and 17.4%.

    To investigate the recombination process of the devices with grain boundary passivation,the Nyquistplots were obtained.In Fig.5d,the Nyquist plots of the devices were measured in the dark with bias voltage of-1.1 V.There are two semicircles in each Nyquist plot:the left one is related to the charge transport resistance(Rct),which is mainly ascribed to charge extraction and separation at the interface between HTL or ETL and the perovskite layer.The right one is related to the photo carrier recombination resistance(Rrec)in the PSCs system;the starting point′s real part represents the series resistance(Rs)of the solar cells.The relevant equivalent circuit is shown in the insert in Fig.5b[30-31].At applied reverse bias,it demonstrates the devices with Ti4+-0.1%has larger recombination resistance of 220 Ω,much higher than 180 Ω of the undoped device,which indicates the recombination is effectively reduced by Ti4+modification.Furthermore,the Rsis reduced to 18 Ω with Ti4+doped device compared with 29 Ω of the undoped one.It is ascribed to the better crystallinity and more compactness of Ti4+doped perovskite films reduce the contact resistance of the device.

    Table 3 Photovoltaic parameters of planar PSCs with different Ti4+contents

    Fig.5 Variation of VOC,FF(a)and Jsc,Eff(b)with Ti4+content;(c)J-V characteristics of device with different degree of Ti4+in the perovskite layer;(d)Nyquist pot of the device with and without Ti4+(measured at-1.1 V in the dark)

    The variation of photovoltaic parameters coincides with the analysis about device(Fig.5(c,d)).It is easy to know JSCdepends on the density of trap states,because they have a great compact on carrier recombination.With Ti4+-0.1%doped in perovskite,the grain boundary trap states are effectively removed by Ti4+and the device shows large recombination resistance and series resistance is effectively reduced.These merits increasing the rate of carrier transport from perovskite layerto electrodes.FF isalso correlated with the density of trap states and interface contact[32].Because of the fewer trap states,carriers are more apt to transfer to electrodes,which means the device has good FF (FF of Ti4+-0.1%has effectively improved from 61.1% to 72.4%).Duo to these parameters being enhanced,efficiencyofdevices exhibits better performances with Ti4+-0.1%.Experiments proof small dopants about Ti4+ions will contribute to higher photovoltaic parameters as a result of defect passivation.But devices with more dopants(Ti4+with 0.2%~0.5%)exhibit awful performance on account of more defects,which has bad effect on performances of devices.

    3 Conclusions

    In this work,photovoltaic properties get improved with small dopant content of Ti4+in MAPbI3perovskite films.At the same time,the XRD analysis and SEM-mapping indicates the Ti4+is most likely to accumulate at the grain boundary.The steady PL and TR-PL importantly support more powerful ability about carrier transport after Ti4+doping.The Nyquist plots indicate the Ti4+doping effectively reduce the interface recombination and improve the charge transport in the device.Therefore,the grain boundary defect states is effectively reduced by Ti4+modification.Therefore,the device with optimal Ti4+content shows excellent JSC,VOCand FF.Ti-0.1%shows the highest efficiency(17.4%)with doped device under 1sun(AM1.5).

    Acknowledgments:This work was supported by the National Natural Science Foundation of China(Grant No.11374168,11547033),Natural Science Foundation of Zhejiang Province(Grant No.LY18F040004),Scientific Research Foundation for the Returned Overseas Chinese Scholars and the K.C.Wong Magna Fund in Ningbo University,China.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    寧波大學理學院工程系
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    《寧波大學學報(理工版)》征稿簡則
    《寧波大學學報(教育科學版)》稿約
    A Personal Tragedy The professionalism of Stevens
    長江叢刊(2018年13期)2018-05-16 06:42:58
    Research on College Education Based on VR Technology
    西安航空學院專業(yè)介紹
    ———理學院
    電子信息工程系
    機電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    久久久久久九九精品二区国产| 日本三级黄在线观看| 人妻久久中文字幕网| 香蕉久久夜色| 成人国产一区最新在线观看| 久久久久久大精品| 欧美成人一区二区免费高清观看| 99久久成人亚洲精品观看| 欧美日韩瑟瑟在线播放| 一级a爱片免费观看的视频| 噜噜噜噜噜久久久久久91| 黄片大片在线免费观看| av女优亚洲男人天堂| 国产亚洲欧美98| 婷婷丁香在线五月| 蜜桃亚洲精品一区二区三区| 亚洲国产精品久久男人天堂| 怎么达到女性高潮| 99久久精品一区二区三区| 国产探花极品一区二区| 在线观看av片永久免费下载| 国产一区二区在线av高清观看| 99国产精品一区二区蜜桃av| 天天躁日日操中文字幕| 国产精品,欧美在线| 精品国产三级普通话版| 黄片小视频在线播放| 久久久久久国产a免费观看| 精品久久久久久久末码| xxx96com| 午夜福利高清视频| 国产国拍精品亚洲av在线观看 | 一级黄片播放器| 久久久久国内视频| 99久久精品国产亚洲精品| 国产激情欧美一区二区| 夜夜看夜夜爽夜夜摸| 国产av在哪里看| 国产爱豆传媒在线观看| 欧美日本亚洲视频在线播放| www日本黄色视频网| 婷婷六月久久综合丁香| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全免费视频| 国产淫片久久久久久久久 | 真人做人爱边吃奶动态| 最好的美女福利视频网| 国产精品爽爽va在线观看网站| 在线观看免费午夜福利视频| 亚洲国产日韩欧美精品在线观看 | 亚洲av不卡在线观看| 国产熟女xx| 亚洲 国产 在线| 日本精品一区二区三区蜜桃| 精品一区二区三区视频在线 | 欧美一区二区亚洲| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 夜夜躁狠狠躁天天躁| 999久久久精品免费观看国产| 国产精品,欧美在线| 国产成人影院久久av| 日韩欧美国产在线观看| 亚洲一区二区三区不卡视频| 熟女电影av网| 日本成人三级电影网站| 成年女人看的毛片在线观看| 两个人的视频大全免费| 日本与韩国留学比较| 黄片小视频在线播放| 日本免费a在线| tocl精华| 日韩欧美在线乱码| 久久精品国产自在天天线| 69av精品久久久久久| 熟女少妇亚洲综合色aaa.| 国产精品一区二区三区四区免费观看 | 在线免费观看的www视频| 美女cb高潮喷水在线观看| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 亚洲av电影在线进入| 国内精品久久久久久久电影| 国产精品一区二区三区四区免费观看 | 热99re8久久精品国产| 小蜜桃在线观看免费完整版高清| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 久久人妻av系列| 日本黄大片高清| 九色成人免费人妻av| 操出白浆在线播放| 色综合婷婷激情| 色在线成人网| 岛国在线免费视频观看| 最近最新中文字幕大全电影3| 成人特级黄色片久久久久久久| 深夜精品福利| 女警被强在线播放| 亚洲最大成人中文| 美女黄网站色视频| 无人区码免费观看不卡| 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 高清毛片免费观看视频网站| 啦啦啦韩国在线观看视频| 日韩人妻高清精品专区| 69人妻影院| 亚洲国产中文字幕在线视频| 日本黄大片高清| 久久精品综合一区二区三区| 国产精品久久久久久久久免 | 一区二区三区高清视频在线| 免费大片18禁| 欧美大码av| 亚洲一区二区三区色噜噜| 中文字幕人妻丝袜一区二区| 少妇人妻精品综合一区二区 | 99久久精品一区二区三区| 中文亚洲av片在线观看爽| 久久国产乱子伦精品免费另类| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 免费看光身美女| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 午夜福利在线观看吧| 九色国产91popny在线| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 性欧美人与动物交配| 国产精品99久久99久久久不卡| 岛国视频午夜一区免费看| av女优亚洲男人天堂| 搡老熟女国产l中国老女人| 国产不卡一卡二| 国产成人影院久久av| 国产激情欧美一区二区| 午夜a级毛片| 亚洲五月婷婷丁香| 欧美乱色亚洲激情| 亚洲av免费在线观看| 1024手机看黄色片| 韩国av一区二区三区四区| 在线观看一区二区三区| 成人av在线播放网站| 亚洲国产日韩欧美精品在线观看 | 日韩大尺度精品在线看网址| 成人三级黄色视频| 亚洲精品久久国产高清桃花| 亚洲午夜理论影院| 丰满人妻一区二区三区视频av | 中文亚洲av片在线观看爽| 免费在线观看亚洲国产| 免费av不卡在线播放| www.999成人在线观看| 非洲黑人性xxxx精品又粗又长| 岛国在线观看网站| 少妇的逼好多水| 成年免费大片在线观看| 999久久久精品免费观看国产| 久久久久久大精品| 国产av一区在线观看免费| 亚洲成人久久性| 国内毛片毛片毛片毛片毛片| 国产成人a区在线观看| 此物有八面人人有两片| 欧美在线一区亚洲| 少妇的逼水好多| av国产免费在线观看| 日本一二三区视频观看| 日本熟妇午夜| 国产一区二区激情短视频| 国产单亲对白刺激| 身体一侧抽搐| 老鸭窝网址在线观看| 国内精品久久久久精免费| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 国产熟女xx| 精品国产美女av久久久久小说| 国产麻豆成人av免费视频| 日韩精品中文字幕看吧| 综合色av麻豆| 国产精品一区二区免费欧美| av国产免费在线观看| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 国产私拍福利视频在线观看| 亚洲精品456在线播放app | 成人国产综合亚洲| 淫秽高清视频在线观看| xxx96com| 午夜a级毛片| 精品熟女少妇八av免费久了| 免费人成在线观看视频色| 麻豆久久精品国产亚洲av| 欧美av亚洲av综合av国产av| www.999成人在线观看| 欧美乱妇无乱码| 制服人妻中文乱码| 三级男女做爰猛烈吃奶摸视频| 久久婷婷人人爽人人干人人爱| 啪啪无遮挡十八禁网站| 熟女少妇亚洲综合色aaa.| 手机成人av网站| 亚洲美女视频黄频| 中亚洲国语对白在线视频| 亚洲不卡免费看| 国产黄片美女视频| 色综合亚洲欧美另类图片| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆 | 午夜免费激情av| 久久精品国产综合久久久| 一进一出好大好爽视频| 91麻豆av在线| 神马国产精品三级电影在线观看| 日韩亚洲欧美综合| 黄色成人免费大全| 亚洲七黄色美女视频| 免费观看精品视频网站| 久久这里只有精品中国| 老司机午夜福利在线观看视频| 国产午夜福利久久久久久| 日本a在线网址| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 两个人的视频大全免费| 嫩草影院入口| 少妇熟女aⅴ在线视频| 长腿黑丝高跟| 国产综合懂色| 国内揄拍国产精品人妻在线| 国产精品亚洲av一区麻豆| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 人人妻人人看人人澡| 久久久久久久久大av| 国产亚洲欧美98| 国产99白浆流出| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 深夜精品福利| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久99热这里只有精品18| 国内精品久久久久久久电影| 动漫黄色视频在线观看| 中国美女看黄片| 国产精品亚洲美女久久久| АⅤ资源中文在线天堂| 观看免费一级毛片| 丰满的人妻完整版| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 免费观看的影片在线观看| 欧美精品啪啪一区二区三区| 在线观看美女被高潮喷水网站 | 无限看片的www在线观看| 长腿黑丝高跟| 淫妇啪啪啪对白视频| 久久精品夜夜夜夜夜久久蜜豆| 99久久精品国产亚洲精品| 国产99白浆流出| 天天躁日日操中文字幕| 久久久久国产精品人妻aⅴ院| 90打野战视频偷拍视频| av专区在线播放| 午夜免费观看网址| 国产久久久一区二区三区| 最好的美女福利视频网| 国内精品久久久久久久电影| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频| 国语自产精品视频在线第100页| 欧美黑人欧美精品刺激| 国产97色在线日韩免费| 亚洲 国产 在线| 69av精品久久久久久| 99久久成人亚洲精品观看| 人人妻人人澡欧美一区二区| 国产中年淑女户外野战色| 精品国产超薄肉色丝袜足j| 亚洲国产精品成人综合色| 中文资源天堂在线| 嫩草影院精品99| 免费人成在线观看视频色| 国产私拍福利视频在线观看| av黄色大香蕉| 一进一出好大好爽视频| 尤物成人国产欧美一区二区三区| 黄色女人牲交| svipshipincom国产片| 精品久久久久久,| 美女 人体艺术 gogo| 亚洲中文字幕一区二区三区有码在线看| 欧美黑人巨大hd| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 中文字幕av在线有码专区| 一二三四社区在线视频社区8| 精品人妻一区二区三区麻豆 | 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久性| 免费观看的影片在线观看| 在线观看66精品国产| 成人午夜高清在线视频| 久久久久国内视频| 在线a可以看的网站| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 欧美日韩中文字幕国产精品一区二区三区| 脱女人内裤的视频| 哪里可以看免费的av片| 日韩大尺度精品在线看网址| 久久久久久久久久黄片| 男女那种视频在线观看| 亚洲,欧美精品.| 尤物成人国产欧美一区二区三区| 欧美午夜高清在线| 国产精品永久免费网站| 国产一区二区在线观看日韩 | 日本免费一区二区三区高清不卡| 日韩有码中文字幕| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 91字幕亚洲| 最近最新中文字幕大全免费视频| 国产探花极品一区二区| 国产亚洲欧美在线一区二区| 午夜视频国产福利| 久久久久久大精品| 欧美日本视频| 超碰av人人做人人爽久久 | 老汉色av国产亚洲站长工具| 啦啦啦韩国在线观看视频| 99精品欧美一区二区三区四区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | www.999成人在线观看| 久久人妻av系列| 国产私拍福利视频在线观看| 99热这里只有是精品50| 国产成年人精品一区二区| 午夜久久久久精精品| 国产伦精品一区二区三区视频9 | 丁香欧美五月| 一卡2卡三卡四卡精品乱码亚洲| 日韩成人在线观看一区二区三区| 99久国产av精品| 一级a爱片免费观看的视频| 国产成人欧美在线观看| 午夜福利18| 亚洲精品久久国产高清桃花| 亚洲国产欧美网| 精品久久久久久,| 黄片大片在线免费观看| 国产精品野战在线观看| 国产不卡一卡二| 精品熟女少妇八av免费久了| 欧美不卡视频在线免费观看| 亚洲国产欧美人成| 国产精品久久电影中文字幕| 日韩人妻高清精品专区| 亚洲五月天丁香| 中文资源天堂在线| 久久中文看片网| e午夜精品久久久久久久| 动漫黄色视频在线观看| 亚洲欧美日韩卡通动漫| 波多野结衣巨乳人妻| 国产精品久久久人人做人人爽| 久久久久性生活片| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 亚洲欧美日韩高清在线视频| 国产精品香港三级国产av潘金莲| 欧美丝袜亚洲另类 | 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品综合一区在线观看| 超碰av人人做人人爽久久 | 90打野战视频偷拍视频| 亚洲无线观看免费| 亚洲欧美一区二区三区黑人| 精品福利观看| 男人的好看免费观看在线视频| 成人特级黄色片久久久久久久| 给我免费播放毛片高清在线观看| av在线蜜桃| 久99久视频精品免费| 日本免费一区二区三区高清不卡| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 亚洲av电影不卡..在线观看| 久久精品国产清高在天天线| 久久久精品大字幕| 久久久久久久午夜电影| 欧美日本视频| 99国产精品一区二区蜜桃av| 熟女电影av网| 久99久视频精品免费| 波多野结衣高清无吗| 两人在一起打扑克的视频| 国产真实伦视频高清在线观看 | aaaaa片日本免费| 亚洲美女黄片视频| 99热这里只有精品一区| 99热只有精品国产| 国产av麻豆久久久久久久| 一个人免费在线观看的高清视频| 内射极品少妇av片p| 丝袜美腿在线中文| 亚洲中文字幕日韩| 国产美女午夜福利| 亚洲国产精品sss在线观看| 校园春色视频在线观看| 丰满人妻一区二区三区视频av | 亚洲激情在线av| 男女那种视频在线观看| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 亚洲av免费高清在线观看| 国产爱豆传媒在线观看| 国产成人福利小说| 日日啪夜夜爽| 国产亚洲91精品色在线| 国产欧美日韩精品一区二区| 国产综合精华液| 白带黄色成豆腐渣| 国产亚洲精品久久久com| 午夜福利高清视频| 成人二区视频| 久久久久久久久大av| 黄色欧美视频在线观看| 国产精品精品国产色婷婷| 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| 亚洲精品日韩在线中文字幕| 晚上一个人看的免费电影| 亚洲国产精品专区欧美| av专区在线播放| 欧美一区二区亚洲| .国产精品久久| 精品欧美国产一区二区三| 日韩一本色道免费dvd| 欧美3d第一页| 日日撸夜夜添| 国产午夜精品一二区理论片| 国产av国产精品国产| 插逼视频在线观看| 久久精品夜色国产| 少妇丰满av| 免费黄频网站在线观看国产| 国产精品爽爽va在线观看网站| 国产一区二区三区综合在线观看 | 久久6这里有精品| 大陆偷拍与自拍| 人妻少妇偷人精品九色| 91av网一区二区| 精品久久久久久久久久久久久| 亚洲av成人av| 国产伦理片在线播放av一区| 一区二区三区免费毛片| 久久久久久九九精品二区国产| 嫩草影院新地址| 插逼视频在线观看| 秋霞在线观看毛片| 亚洲欧洲国产日韩| 免费观看精品视频网站| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| 国产人妻一区二区三区在| 少妇人妻一区二区三区视频| 国产乱人偷精品视频| 久久久国产一区二区| 伦精品一区二区三区| 成人无遮挡网站| 欧美精品一区二区大全| 成人二区视频| 黑人高潮一二区| kizo精华| 亚洲国产最新在线播放| 亚洲精品视频女| 精品久久久久久成人av| 久久久国产一区二区| 国产成人一区二区在线| 一本久久精品| av在线观看视频网站免费| 亚洲图色成人| 丰满乱子伦码专区| 国产黄片美女视频| 国产成人aa在线观看| 看非洲黑人一级黄片| 午夜精品一区二区三区免费看| 偷拍熟女少妇极品色| 国产老妇女一区| 午夜激情福利司机影院| 婷婷六月久久综合丁香| 成人午夜精彩视频在线观看| 搡老妇女老女人老熟妇| 成年女人看的毛片在线观看| 久久精品久久久久久久性| 日日撸夜夜添| 欧美日本视频| 一本久久精品| 亚洲欧美精品专区久久| 十八禁国产超污无遮挡网站| 听说在线观看完整版免费高清| 国产男女超爽视频在线观看| 秋霞在线观看毛片| 99热网站在线观看| 免费av观看视频| 欧美日韩国产mv在线观看视频 | 精品一区二区三区人妻视频| 美女高潮的动态| 国产精品国产三级国产av玫瑰| 中文资源天堂在线| 婷婷色综合www| av播播在线观看一区| av黄色大香蕉| 一级二级三级毛片免费看| 国产老妇女一区| 青春草国产在线视频| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 夜夜爽夜夜爽视频| 久久6这里有精品| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 亚洲精品久久久久久婷婷小说| 建设人人有责人人尽责人人享有的 | 2022亚洲国产成人精品| 天堂俺去俺来也www色官网 | 观看美女的网站| 天天一区二区日本电影三级| 日韩av在线大香蕉| 国产精品.久久久| videossex国产| 欧美xxⅹ黑人| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 97人妻精品一区二区三区麻豆| 欧美极品一区二区三区四区| 亚洲av男天堂| 日韩视频在线欧美| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看| 日本爱情动作片www.在线观看| 网址你懂的国产日韩在线| 亚洲综合精品二区| 纵有疾风起免费观看全集完整版 | 特级一级黄色大片| 久久97久久精品| 欧美日韩综合久久久久久| 丰满少妇做爰视频| 精品国产露脸久久av麻豆 | 十八禁国产超污无遮挡网站| 日韩av免费高清视频| 少妇的逼水好多| 视频中文字幕在线观看| 久久久久久久久久久免费av| 最近手机中文字幕大全| av网站免费在线观看视频 | 精品国产一区二区三区久久久樱花 | 别揉我奶头 嗯啊视频| 久久久久久久久久黄片| 80岁老熟妇乱子伦牲交| 一夜夜www| 色网站视频免费| 国产精品久久久久久精品电影小说 | 国产片特级美女逼逼视频| 日韩av在线免费看完整版不卡| 女人被狂操c到高潮| 亚洲怡红院男人天堂| 国产成人a区在线观看| 一级毛片电影观看| 日本熟妇午夜| av国产久精品久网站免费入址| 午夜福利在线观看免费完整高清在| 国产人妻一区二区三区在| 自拍偷自拍亚洲精品老妇| 免费黄网站久久成人精品| 国产欧美另类精品又又久久亚洲欧美| 欧美变态另类bdsm刘玥| 亚洲精品久久午夜乱码| 波野结衣二区三区在线| 成年人午夜在线观看视频 | 日日干狠狠操夜夜爽| 熟女电影av网| 97精品久久久久久久久久精品| 精华霜和精华液先用哪个| 观看免费一级毛片| 91久久精品国产一区二区三区| www.av在线官网国产| 禁无遮挡网站| 亚洲真实伦在线观看| 亚洲美女搞黄在线观看| 国产国拍精品亚洲av在线观看| 伦精品一区二区三区| 能在线免费看毛片的网站| 日韩人妻高清精品专区|