• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    磁性Y-MOF@SiO2@Fe3O4催化劑的制備及其在Aza-Micheal加成反應中的性能

    2018-09-03 03:25:44穆金城季生福
    無機化學學報 2018年9期
    關鍵詞:北京化工大學阿拉爾金城

    穆金城 蔣 賽 季生福*,

    (1北京化工大學化工資源有效利用國家重點實驗室,北京 100029)

    (2塔里木大學兵團南疆化工資源利用工程實驗室,阿拉爾 843300)

    The Aza-Michael reaction is commonly used in organic synthesis to grow carbon chains.Among them the Aza-Michael addition reaction of the nitrogen nucleophiles and the lack of electron-polymer compounds is an important method for formation of CN bond[1-2].The addition of α,β-unsaturated carbonyl compounds is an effective way to synthesize β-aminocarbonyl compounds[3].The β-aminocarbonyl compounds can be further converted to β-amino acids and β-lactam.These compounds can be further synthesized to biological activity of natural products,chiral auxiliaries,antibiotics and drugs.For this reason,this reaction can be applied in the field of fine chemicals and biopharmaceuticals,and has an important application in industrial research.However,the activity of the aromatic amine is lower than that of the aliphatic amine in α,β-unsaturated carbonyl compounds addition reactions.Thus,Aza-Michael reaction of weak amphiphilic aromatic amines is reported less than that of aliphatic amines.Therefore,it is significant to be studied.

    Lewis acid catalysts are often used in the Aza-Michael reaction,such as ionic liquids[4],transition metal salts[5],Pd(N,N′-ppo)Cl2[6],samarium diiodide[7],Zn/InCl3[8],heterocyclic carbenes[9].These catalysts have a number of disadvantages.For example,the use of large amount of catalyst,the recycling and separation of catalysts from solution after reaction are difficult,and their disposal after use would cause environmental pollution.From this point of view,many researchers have converted their focus to heterogeneous catalysts.Mokhtar et al.[10]used Mg-Al hydrotalcites as a heterogeneous reusable catalyst for the synthesis of pyrazolo[1,5-]pyrimidine derivatives.The pure product yield over 90%under the condition of microwave irradiation for 15 min.

    Metal-organic frameworks (MOFs)are a kind of nano porous materials and have the larger surface area.These features give MOFs have great potential for heterogeneous catalysis[11].Some MOFs with Lewis acid sites were used in Lewis acid-catalyzed reactions,such as HKUST-1,MIL-100(Fe,Cr),MIL-101(Fe,Cr),UiO-66,MIL-100(Sc)[12].Nguyen et al.[13]used MOF-199 as an efficient heterogeneous catalyst for the Aza-Michael reaction of benzylamine with ethyl acrylate.Excellent conversions were achieved under mild reaction conditions in the presence of 5%(n/n)catalyst.

    Recently,our group also focuses the Lewis acid catalytic activity of MOFs[14,18-21],especially magnetic MOF@Fe3O4with Lewis acid which is easy to recycle.Currently,the magnetic MOF@Fe3O4is widely used for drug delivery,environmental control,catalysis,sensing and miniaturized device fabrication[15].However,it is difficult to synthesis the MOF@Fe3O4with regular structures.To solve this problem,the Fe3O4are encapsulated into SiO2.It is facilitated the in-situ growth of the MOF material with regular structures for silanol moieties on the SiO2surface greatly contribute to the hydrophilic property of silica[16-17],meanwhile helps to protect Fe3O4from oxidation[14].Therefore,our group prepared a series of magnetic MOF@SiO2@Fe3O4such as the Cu-BTC@SiO2@Fe3O4(BTC is benzene-1,3,5-tricarboxylic acid)catalyst for the Pechmann reaction of 1-naphthol with ethyl acetoacetate[18],the Zn-BTC@SiO2@Fe3O4catalyst for the toluene acylation with p-toluoyl chloride[19],the MOF-5@SiO2@Fe3O4catalyst for the Friedel-Crafts alkylation of toluene with benzyl chloride[20],the MIL-53(Al)@SiO2@Fe3O4catalyst for Friedel-Crafts acylation reaction of 2-methylindole with benzoyl chloride[21],etc.

    Lanthanide organic frameworks(Ln-MOFs)are an important rare earth metal MOF material.Because its crystal has special structure of topology,Ln-MOFs has great potentials in high performance light emitting devices[22-23],magnetic materials[24],catalyst fields[25].Ln-MOFs also exhibit the Lewis acid sites[26]and YMOF has high thermal stability[27].In this work,the magnetic Y-MOF@SiO2@Fe3O4catalysts with different Y-MOF contents were synthesized.The structure of the catalyst was characterized.The performance of the catalyst for the Aza-Micheal addition reaction of aniline with methyl acrylate was evaluated.

    1 Experimental

    1.1 Synthesis of magnetic Y-MOF@SiO2@Fe3O4 catalyst

    The synthesis of magnetic SiO2@Fe3O4support was carried out according to the literatures[21].The SiO2was coated on the surface of magnetic Fe3O4nanoparticles for protecting Fe3O4and preventing it from oxidation[28].The Y-MOF was synthesis according to the procedure described by Liu et al[29].The Y-MOF@SiO2@Fe3O4catalyst was prepared as follows:An amount of SiO2@Fe3O4was dispersed in a mixture of Y(NO3)3·6H2O,Trimesicacid(H3BTC),N,N-dimethylformamide (DMF)and H2O by ultrasonic method.Then the solution was transferred to a Teflon-lined steel autoclave and kept at 100℃for 12 h.After reaction,the formed powder was separated by an externalmagnetand washed severaltimeswith distilled water.Finally,solids were dried at 60℃for 8 h under vacuum.Slightly gray-white solid Y-MOF@SiO2@Fe3O4magnetic catalystwasobtained.The magnetic Y-MOF@SiO2@Fe3O4catalysts with Y-MOF contents of 15.2%,26.1%,33.5%,43.3%and 58.8%(w/w)were named as YM-1,YM-2,YM-3,YM-4 and YM-5,respectively.

    1.2 Characterizations of Y-MOF@SiO2@Fe3O4catalyst

    X-ray diffraction(XRD)patterns of samples were obtained on a Rigaku D/MAX-2500VPC with Cu Kα radiation(λ=0.154 18 nm)at 200 kV and 50 mA with a graphite monochromator and scans between 5°~80°.Transmission electron microscopy (TEM)was performed on a JEOL (JEM 2100)transmission emission microscope operated at 200 kV accelerating voltage.Fourier transform infrared spectroscopy (FT-IR)was carried out on a Bruker Tensor-27 using KBr pellet samples.The magnetic property of the samples was measured using a vibration sample magnetometer(VSM,Laker shore Model 7400)under magnetic fields up to 20 kOe.The N2adsorption-desorption isotherm were measured on an on an ASAP 2020M automatic specific surface area and aperture analyzer.

    1.3 Catalytic evaluation for Aza-Micheal addition reaction

    Aza-Micheal addition reaction was carried out in an Eggplant type flask with a condenser and stirring.A certain amount of aniline,methyl acrylate,the catalysts and n-dodecane were added in the flask and stirred at a certain temperature for specific time intervals.After reaction,the catalyst was separated from the solvent by an external magnet.The supernatant liquid was analyzed by a GC (Beijing Beifen ruili Analytical Instrument Co.,Ltd.,SP-4000A with FID ionization detector).The GC instrument was equipped with a capillary column named as HJ.PONA,50 m×0.2 mm×0.50 μm.The injector temperature was 240℃,and the detector temperature was 250℃.According to the program for GC analysis,the sample was heated from 100℃and was held at the same temperature for 1 min,then from 100 to 240℃at a heating speed of 10℃·min-1,and was held at 240℃ for 10 min.After reaction,the liquid was poured from the flask,the magnetic Y-MOF@SiO2@Fe3O4catalyst was separated by an external magnet and washed several times with ethanol.Finally,the catalysts were activated at 150℃under vacuum.Then the recovered catalyst was added to the flask reactor and used for the next run.The conversion of methyl acrylate(C),the selectivity(S)and the yield(Y)of N-(β-methoxy carbonylethyl)aniline were all calculated with ndodecane as an internal standard.

    2 Results and discussion

    2.1 Structure of Y-MOF@SiO2@Fe3O4catalysts

    XRD patterns of Y-MOF@SiO2@Fe3O4catalysts with different Y-MOF contents,Fe3O4,SiO2@Fe3O4and simulated Y-MOF were shown in Fig.1.The Fe3O4shows strong characteristic diffraction peaks at 30.0°,35.6°,43.4°,57.4°and 62.8°(Fig.1(a)).These peaks are ascribed to the typical cubic spinel structure of Fe3O4and consistent with PDF No.88-0866[30].The XRD patterns of SiO2@Fe3O4shows strong diffraction peaks of Fe3O4(Fig.1(b)).The peak type and peak intensity of Fe3O4do not change significantly,but there is a weak diffusion diffraction peak,which appeared between 15°and 30°,which may be the characteristic diffraction peak of the coated SiO2[31].The XRD pattern of synthesized Y-MOF shows strong diffraction peaks at 6.6°,10.6°,18.3°,19.3°,20.3°,25.3°,26.8°,27.5°

    and 28.16°(Fig.1(h)),and consistent with simulated Y-MOF(Fig.1(i)).It proves that the synthesized MOF is Y-MOF[29,32].The XRD patterns of the magnetic YMOF@SiO2@Fe3O4catalysts with different contents of Y-MOF show(Fig.1(c~g))the characteristic diffraction of Y-MOF.This indicates that the Y-MOF@SiO2@Fe3O4still has a complete structure of Y-MOF[29].With the increase of the Y-MOF content of magnetic Y-MOF@SiO2@Fe3O4catalyst,the Y-MOF characteristic diffraction peak intensity gradually increases,and the diffraction peak intensity of Fe3O4gradually decreases,and no obvious diffraction of SiO2.

    Fig.1 XRD patterns of(a)Fe3O4,(b)SiO2@Fe3O4,(c)YM-1,(d)YM-2,(e)YM-3,(f)YM-4,(g)YM-5,(h)as-synthesized Y-MOF and(i)simulated Y-MOF

    The TEM of the samples are shown in Fig.2.The magnetic Y-MOF@SiO2@Fe3O4catalysts have a uniform particle size between 140 and 200 nm.It presents a relatively regular spherical core-shell structure.As the amount of Y-MOF coating increases,the thickness of the shell gradually increases.

    The FT-IR spectra of Y-MOF@SiO2@Fe3O4catalysts withdifferent contents of Y-MOF and the ligands H3BTC are shown in Fig.3.The strong vibration peak at 1 691 and 1 280 cm-1in Fig.3(a)can be ascribed to stretching vibration of C=O bond of COOH in organic ligand H3BTC.The bands appear at 2 500~3 300 cm-1are assigned to the stretching vibrations of O-H bonds of-OH in water[33].The sharp peak at 750~900 cm-1are attributed to the bending vibration of O-H bond[33].Two bands at 1 276 and 1 117 cm-1are assigned to the bending vibration of C-H bond in benzene ring[34].The FT-IR spectrum of Y-MOF@SiO2@Fe3O4has no peak near 1 690 cm-1,indicating that there is no free H3BTC molecule in the sample.The bands that appear at 1 400~1 700 cm-1are assigned to asymmetric stretching vibration (1 608 and 1 507 cm-1)and symmetric stretching vibration (1 445 and 1 417 cm-1)of-COO in organic ligands of Y-MOF[35],and the band which appears at 570 cm-1is assigned to vibration of Y-O bond[29].

    Fig.2 TEM images of(a)Fe3O4,(b)SiO2@Fe3O4(c)YM-3,(d)YM-4 and(e)YM-5

    Fig.3 FT-IR spectra of(a)H3BTC,(b)YM-1,(c)YM-2,(d)YM-3,(e)YM-4,(f)YM-5 and(g)Y-MOF

    Fig.4 VSM of(a)Fe3O4,(b)SiO2@Fe3O4,(c)YM-1,(d)YM-2,(e)YM-3,(f)YM-4 and(g)YM-5

    VSM analysis of the samples are shown in Fig.4.The magnetization saturation of Fe3O4is 81.9 emu·g-1,and the magnetization saturation of SiO2@Fe3O4is 77.0 emu·g-1,lower than that of Fe3O4.This behavior is mainly due to the encapsulated SiO2layer on the surface of Fe3O4particles.The magnetization saturation of all the magnetic Y-MOF@SiO2@Fe3O4catalysts with superparamagnetism is lower than that of SiO2@Fe3O4.The magnetization saturation decreases gradually with the increase of Y-MOF content in the catalyst.Due to the gradual increase of the thickness of the shell with the increase of the amount of Y-MOF coating,the magnetization saturation decreases gradually.This is consistent with the results of the work of Jiang et al[21].The magnetization saturation of YM-1,YM-2,YM-3,YM-4 and YM-5 is 57.7,41.4,33.65,24.7 and 13.4 emu·g-1,respectively.Although the magnetization of YM-5 is minimal,rapid separation is still possible under an external magnetic field.

    The N2adsorption-desorption isotherm of the samples had been shown in Table 1.The BET surface area (SBET)of Y-MOF was 592 m2·g-1.With further encapsulation of different contents of Y-MOF,the surface areas of the as-synthesized catalysts were decreased.The BET surface area of Y-MOF@SiO2@Fe3O4with different contents of Y-MOF was from 141 to 389 m2·g-1.It can be seen that the pore size distribution(D)was mainly between 1.1 and 1.2 nm.

    Table 1 BET surface area(SBET)and pores data(D)of the samples

    2.2 Performance of the catalysts for Aza-Micheal addition reaction

    Scheme 1 is Aza-Michael reaction equation using the aniline and methyl acrylate as reactants over the Y-MOF@SiO2@Fe3O4catalyst.

    After some test of the catalytic performance for Aza-Michael addition reaction were conducted.In this part,the effect of catalysts and reaction time,the reaction temperature,the values of ncatalyst/nmethylacrylateand naniline/nmethylacrylate,and the recovery and reuse times on catalytic performance over YM-4 catalyst were investigated.The results of the catalytic performance over YMOF@SiO2@Fe3O4with different Y-MOF contents are shown in Fig.5.It can be seen that the conversion of methyl acrylate increased with the increase in reaction time.Within 3.0 h,the conversion rate increased rapidly.When the reaction time was more than 3.0 h,the conversion rate increased slowly and the conversion reached the highest value at 12 h.In the absence of the addition of the catalyst,it was observed that the reaction did not occur and the conversion was 0.Using Y-MOF@SiO2@Fe3O4as catalyst,the conversion ofAza-Michealreaction increased with the increase of Y-MOF content.When YM-5 was used as catalyst,the conversion of methyl acrylate was the highest and the conversion was 80.7%at 12 h.However,the conversion of YM-4 was 77.5%lower than that of YM-5,but the difference was very small.Therefore,in this paper,the YM-4 catalyst was chosen and used for catalyst activity evaluation.However,the time over 10 h,the rate of conversion increased become slowly.So,the best reaction time was 10 h.

    Scheme 1 Aza-Michael addition reaction equation of aromatic amines to α,β-unsaturated compounds

    Fig.5 Catalytic performance of(a)YM-1,(b)YM-2,(c)YM-3,(d)YM-4 and(e)YM-5 at different times

    Table 2 Effect of ncatalyst/nmethyl acrylateon catalytic performance

    The results of the catalytic performance over the YM-4 catalyst on different ncatalyst/nmethylacrylateare shown in Table 2.When the ncatalyst/nmethylacrylatewas below 0.18,the conversion of methyl acrylate and the yield of product increased with the increase of ncatalyst/nmethylacrylate.When the ncatalyst/nmethylacrylatewas 0.18,the conversion of methyl acrylate was 86.1%,and the yield of product was 86.0%.When the ncatalyst/nmethylacrylatewas increased to 0.22,the conversion and yield were the highest and reached 88.2%and 88.0%,respectively.Thus,the ncatalyst/nmethylacrylate=0.18 can meet the current reaction requirement.When the ncatalyst/nmethylacrylatefurther increased,the conversion and yield were not significantly improved.Thus,the optimum the ncatalyst/nmethylacrylatewas 0.18.

    The results of the catalytic performance over the YM-4 catalyst at different reaction temperatures are shown in Table 3.The reaction temperature had a great effect on the Aza-Micheal addition reaction of aniline and methyl acrylate.When the reaction temperature was 50℃,the conversion of methyl acrylateand the yield of the product were low,because the reaction proceeded very slowly at lower temperatures.The conversion of methyl acrylate and the yield of the product increased with increasing temperature.When the reaction temperature was 80℃,the conversion and yield were the highest and have reached 86.1%and 86.0%,respectively.After the reaction temperature was beyond 80℃,the conversion of methyl acrylate and the yield of the product began to decline significantly.It is speculated that the reason may be that an excessively high temperature is not conducive to the stabilization of the skeletal structure of the YMOFs in the magnetic composite catalyst.Therefore,the most suitable reaction temperature was 80℃.

    Table 3 Catalytic performance at different reaction temperatures

    The results of the catalytic performance on the molar ratios of aniline to methyl acrylate over the YM-4 catalyst are shown in Table 4.When naniline/nmethylacrylatewas 1.0,the conversion of methyl acrylate and the yield of the product were lower,and merely achieved 63.2%and 63.0%,respectively.When naniline/nmethylacrylatewas below 2.5,the conversion of methyl acrylate and the yield of the product was proportional to the molar ratio of aniline to methyl acrylate.When naniline/nmethylacrylatewas 2.5,the conversion of methyl acrylate and the yield of the product were high,and reached 88.3%and 88.1%,respectively.When the amount of aniline was increased,the conversion of methyl acrylate and the yield of the product decreased with the increase of aniline to methyl acrylatemolar ratio.This may be due to the excessive amount ofaniline reduced the concentration of methyl acrylate during the reaction.Aniline can be used as a solvent.The selectivity of the product was less affected by the molar ratios of aniline to methyl acrylate and was maintained in the range of 98.9%to 99.8%.Thus,the optimum molar ratio between aniline and methyl acrylate is naniline/nmethylacrylatewas 2.5.

    Table 4 Effect of molar ratio between aniline and methyl acrylate on catalytic performance

    Fig.6 Reusability of the Y-MOF@SiO2@Fe3O4catalysts

    The reusability of Y-MOF@SiO2@Fe3O4catalyst are shown in Fig.6.After reuse five times,the conversion of methyl acrylate reaction was reduced from 88.3% to 75.2%,and the yield of product was reduced from 88.1%to 74.5%,while the selectivity of product remained at 99.8%~99.2%.It was indicated that the catalyst has a good reusability performance.We speculate that the decline of catalytic performance is mainly due to the loss of the catalyst and the longterm high-temperature drying leading to the destruction of its skeleton structure.

    3 Conclusions

    The Y-MOF was uniformly coated on the surface of magnetic SiO2@Fe3O4nanospheres through in-situ method to form a core-shell magnetic Y-MOF@SiO2@Fe3O4catalyst with a controlled particle size ranging from 140 to 200 nm.The magnetization saturation of the magnetic Y-MOF@SiO2@Fe3O4catalysts with different Y-MOF contents was between 13.4~57.7 emu·g-1.After reaction the magnetic catalyst can be quickly separated by the external magnetic field.In Aza-Micheal addition reaction of aniline and methyl acrylate,the Y-MOF@SiO2@Fe3O4catalysts exhibited a good catalytic performance.Under the reaction conditions:the naniline/nmethylacrylatewas 0.18,naniline/nmethylacrylatewas 2.5,reaction temperature was 80℃,reaction time was 10 h,the conversion of methyl acrylate was 88.3%and the selectivity of N-(β-methoxycarbonylethyl)aniline was 99.8%over the 43.3%(w/w)Y-MOF@SiO2@Fe3O4catalyst.After reaction,the catalyst can be separated by the external magnetic field and reused five times still has high conversion and selectivity.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (Grant No.21573015,21173018).

    猜你喜歡
    北京化工大學阿拉爾金城
    金城所致 金石為開
    金城謎朦
    金城化學(江蘇)有限公司
    不死的慈善家
    北京化工大學流體密封技術研究中心
    機電工程(2021年3期)2021-03-25 01:23:48
    北京化工大學流體密封技術研究中心
    機電工程(2021年2期)2021-02-25 03:35:16
    北京化工大學學報(社會科學版)采編系統(tǒng)正式啟用公告
    北京化工大學學報(社會科學版)采編系統(tǒng)正式啟用公告
    金城造紙廠研制成功以草代木的新型紙
    蘭臺世界(2017年4期)2017-03-08 08:13:26
    阿拉爾地區(qū)機采棉種植關鍵措施
    亚洲精品,欧美精品| 一级毛片我不卡| 麻豆乱淫一区二区| 中文字幕久久专区| 国产免费一级a男人的天堂| 亚洲综合色惰| 亚洲高清免费不卡视频| 国产深夜福利视频在线观看| 国产精品一区二区三区四区免费观看| 欧美日韩在线观看h| 国产精品欧美亚洲77777| 男人和女人高潮做爰伦理| 亚洲国产精品国产精品| 日本免费在线观看一区| 成人国产av品久久久| 青青草视频在线视频观看| 国产黄色视频一区二区在线观看| 亚洲精华国产精华液的使用体验| 男人舔奶头视频| 男女边吃奶边做爰视频| 青春草国产在线视频| 日韩欧美一区视频在线观看 | 亚洲精品日本国产第一区| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 亚洲综合色惰| 女性被躁到高潮视频| 一个人免费看片子| 中文天堂在线官网| 激情五月婷婷亚洲| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 亚洲av成人精品一二三区| 亚洲欧洲日产国产| 国产免费一区二区三区四区乱码| 精品亚洲成国产av| 国产精品一区二区性色av| 99久久精品热视频| 日本欧美国产在线视频| 一级爰片在线观看| 国产成人精品久久久久久| 一本色道久久久久久精品综合| 国产在视频线精品| 乱码一卡2卡4卡精品| av天堂中文字幕网| 国产成人精品婷婷| 亚洲欧美日韩另类电影网站| 国产毛片在线视频| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 欧美 日韩 精品 国产| 在线精品无人区一区二区三| 国产黄色免费在线视频| 各种免费的搞黄视频| 欧美少妇被猛烈插入视频| 日本av手机在线免费观看| 五月天丁香电影| 欧美精品高潮呻吟av久久| 中文字幕人妻丝袜制服| 免费久久久久久久精品成人欧美视频 | 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 一二三四中文在线观看免费高清| av在线老鸭窝| 成年美女黄网站色视频大全免费 | 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| a级毛片在线看网站| 一级a做视频免费观看| 亚洲国产精品成人久久小说| 久久av网站| 欧美日韩在线观看h| 亚洲精品久久午夜乱码| 内地一区二区视频在线| 老司机影院毛片| 亚洲av男天堂| 丝袜脚勾引网站| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| videos熟女内射| 亚洲电影在线观看av| 97超视频在线观看视频| 少妇 在线观看| 尾随美女入室| 亚洲精品日韩av片在线观看| 欧美日韩国产mv在线观看视频| 一个人免费看片子| 国产精品国产三级专区第一集| 成人18禁高潮啪啪吃奶动态图 | 又爽又黄a免费视频| 国产av码专区亚洲av| 十分钟在线观看高清视频www | 久久女婷五月综合色啪小说| 十分钟在线观看高清视频www | 少妇的逼好多水| 2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 黄色一级大片看看| 国产成人91sexporn| 伦精品一区二区三区| 男女边摸边吃奶| 成人18禁高潮啪啪吃奶动态图 | 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲精品一区蜜桃| 22中文网久久字幕| 亚洲国产精品一区三区| 97在线人人人人妻| 婷婷色麻豆天堂久久| 少妇裸体淫交视频免费看高清| 晚上一个人看的免费电影| 久久久久久久久久久免费av| 日本猛色少妇xxxxx猛交久久| 一级黄片播放器| 久久久久久久久久成人| 我的女老师完整版在线观看| 韩国av在线不卡| 国产探花极品一区二区| 97超视频在线观看视频| 韩国av在线不卡| 久久鲁丝午夜福利片| www.色视频.com| 99久国产av精品国产电影| 久久久精品免费免费高清| 日产精品乱码卡一卡2卡三| 久久精品久久精品一区二区三区| 中文在线观看免费www的网站| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 久久精品久久久久久久性| 少妇高潮的动态图| 午夜久久久在线观看| 国产 精品1| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 简卡轻食公司| 九草在线视频观看| 少妇的逼好多水| 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 免费看光身美女| 国产精品无大码| videossex国产| 美女中出高潮动态图| 午夜日本视频在线| 王馨瑶露胸无遮挡在线观看| 熟女av电影| 人人澡人人妻人| 丝瓜视频免费看黄片| 天堂中文最新版在线下载| 久久久国产一区二区| 免费在线观看成人毛片| 国产白丝娇喘喷水9色精品| 大码成人一级视频| 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 免费观看性生交大片5| 丁香六月天网| 如日韩欧美国产精品一区二区三区 | 多毛熟女@视频| 一级av片app| 99视频精品全部免费 在线| 午夜91福利影院| 在线观看一区二区三区激情| 少妇人妻一区二区三区视频| 日韩亚洲欧美综合| 尾随美女入室| 一级片'在线观看视频| 韩国高清视频一区二区三区| 免费观看av网站的网址| 高清不卡的av网站| 国产午夜精品一二区理论片| 少妇人妻 视频| 国产片特级美女逼逼视频| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 久久人人爽人人片av| 五月开心婷婷网| 桃花免费在线播放| 国产精品国产三级国产专区5o| h日本视频在线播放| 日韩av免费高清视频| 超碰97精品在线观看| 在线天堂最新版资源| 日韩强制内射视频| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片 | av黄色大香蕉| 国产黄色免费在线视频| 亚洲av免费高清在线观看| 亚洲国产精品999| 桃花免费在线播放| 国产无遮挡羞羞视频在线观看| 九九在线视频观看精品| 校园人妻丝袜中文字幕| 精品视频人人做人人爽| 国产成人91sexporn| 秋霞在线观看毛片| 成人毛片60女人毛片免费| 嫩草影院新地址| 日本欧美视频一区| 日韩精品有码人妻一区| 国产美女午夜福利| 免费观看在线日韩| 美女福利国产在线| 久久毛片免费看一区二区三区| 99久久精品热视频| 丝袜在线中文字幕| 这个男人来自地球电影免费观看 | 丝袜喷水一区| 精品国产乱码久久久久久小说| 亚洲精品日本国产第一区| 国产一区二区三区综合在线观看 | 国产一区二区在线观看av| 午夜激情福利司机影院| 人妻夜夜爽99麻豆av| av在线播放精品| 一级毛片aaaaaa免费看小| 精品国产露脸久久av麻豆| 午夜激情久久久久久久| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 偷拍熟女少妇极品色| 亚洲国产欧美日韩在线播放 | 插阴视频在线观看视频| 亚洲人成网站在线观看播放| 久久久久视频综合| 国产深夜福利视频在线观看| av免费观看日本| 国产淫片久久久久久久久| 免费大片黄手机在线观看| 免费久久久久久久精品成人欧美视频 | 五月玫瑰六月丁香| 日日啪夜夜爽| 欧美bdsm另类| 妹子高潮喷水视频| 国产黄色免费在线视频| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 草草在线视频免费看| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 9色porny在线观看| 亚洲丝袜综合中文字幕| 亚州av有码| 欧美日韩亚洲高清精品| 一区二区三区精品91| 高清欧美精品videossex| 人妻制服诱惑在线中文字幕| 一级毛片久久久久久久久女| 久久国产精品男人的天堂亚洲 | 欧美日韩在线观看h| av女优亚洲男人天堂| 国产男女超爽视频在线观看| 久久6这里有精品| 另类亚洲欧美激情| 大片电影免费在线观看免费| 丝袜喷水一区| 美女国产视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 日韩人妻高清精品专区| 日韩亚洲欧美综合| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 另类亚洲欧美激情| √禁漫天堂资源中文www| 中文在线观看免费www的网站| 国产熟女午夜一区二区三区 | a级一级毛片免费在线观看| 色吧在线观看| 日日啪夜夜爽| 日韩制服骚丝袜av| 国产爽快片一区二区三区| 日本与韩国留学比较| 五月天丁香电影| 成人亚洲欧美一区二区av| 视频中文字幕在线观看| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 久久毛片免费看一区二区三区| 国产精品人妻久久久影院| 亚洲不卡免费看| 日本av免费视频播放| 水蜜桃什么品种好| 男的添女的下面高潮视频| 午夜福利影视在线免费观看| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 在线精品无人区一区二区三| 在线观看美女被高潮喷水网站| 在线观看免费视频网站a站| 中国三级夫妇交换| 精品亚洲成国产av| 最近最新中文字幕免费大全7| 99热这里只有精品一区| av福利片在线| 久久久久久久大尺度免费视频| 国产极品天堂在线| 韩国av在线不卡| 91久久精品电影网| 久久久久网色| 大话2 男鬼变身卡| 一级毛片我不卡| 国产黄片美女视频| 美女内射精品一级片tv| 色94色欧美一区二区| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡 | 波野结衣二区三区在线| 男男h啪啪无遮挡| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 国产精品不卡视频一区二区| 日韩强制内射视频| 欧美老熟妇乱子伦牲交| 久久综合国产亚洲精品| 色5月婷婷丁香| 国产亚洲最大av| 日韩电影二区| 午夜久久久在线观看| 国产色婷婷99| 2018国产大陆天天弄谢| 久久狼人影院| 色哟哟·www| 欧美一级a爱片免费观看看| 七月丁香在线播放| 国产一区有黄有色的免费视频| 美女国产视频在线观看| 观看免费一级毛片| 亚洲精品乱久久久久久| 日韩视频在线欧美| 午夜久久久在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 久久久久精品久久久久真实原创| 蜜桃久久精品国产亚洲av| 亚洲天堂av无毛| 超碰97精品在线观看| av播播在线观看一区| 麻豆精品久久久久久蜜桃| 一级,二级,三级黄色视频| 乱系列少妇在线播放| 久久99一区二区三区| 日韩欧美精品免费久久| 欧美三级亚洲精品| 曰老女人黄片| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 免费观看av网站的网址| 成年人午夜在线观看视频| 制服丝袜香蕉在线| 乱系列少妇在线播放| 欧美精品一区二区大全| 国产精品99久久99久久久不卡 | 久久久久人妻精品一区果冻| 人人妻人人爽人人添夜夜欢视频 | 午夜视频国产福利| 久久影院123| 欧美高清成人免费视频www| 欧美另类一区| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 少妇被粗大的猛进出69影院 | av播播在线观看一区| 性色av一级| 如日韩欧美国产精品一区二区三区 | av女优亚洲男人天堂| 日韩欧美 国产精品| 久久久久网色| 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 免费观看a级毛片全部| 中文字幕制服av| 久久精品国产自在天天线| 中文字幕免费在线视频6| 如日韩欧美国产精品一区二区三区 | 中文乱码字字幕精品一区二区三区| 成年美女黄网站色视频大全免费 | 久久婷婷青草| 在线观看国产h片| 97超碰精品成人国产| 美女xxoo啪啪120秒动态图| 久久亚洲国产成人精品v| 美女xxoo啪啪120秒动态图| 亚洲,欧美,日韩| 欧美日韩视频高清一区二区三区二| 十八禁高潮呻吟视频 | 少妇的逼水好多| 欧美精品国产亚洲| 久久毛片免费看一区二区三区| 啦啦啦在线观看免费高清www| 女的被弄到高潮叫床怎么办| 成人黄色视频免费在线看| 女的被弄到高潮叫床怎么办| 欧美精品人与动牲交sv欧美| 中文字幕精品免费在线观看视频 | 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| 日韩熟女老妇一区二区性免费视频| 大片免费播放器 马上看| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 在线看a的网站| 五月天丁香电影| 日韩人妻高清精品专区| 免费看av在线观看网站| 日韩精品有码人妻一区| 精品亚洲成a人片在线观看| 国产精品国产三级国产av玫瑰| 99久久人妻综合| 日本vs欧美在线观看视频 | 国产精品免费大片| 久久毛片免费看一区二区三区| 搡老乐熟女国产| 国产伦在线观看视频一区| 亚洲欧洲精品一区二区精品久久久 | 观看免费一级毛片| 国产亚洲午夜精品一区二区久久| kizo精华| 国产成人免费无遮挡视频| 欧美区成人在线视频| 热99国产精品久久久久久7| 久久久久久久久久久久大奶| 建设人人有责人人尽责人人享有的| 亚洲精品日韩av片在线观看| 极品少妇高潮喷水抽搐| 国产男女内射视频| 午夜福利,免费看| 高清不卡的av网站| 久久人妻熟女aⅴ| 熟女人妻精品中文字幕| 午夜av观看不卡| 国产91av在线免费观看| 亚洲精品色激情综合| 人妻 亚洲 视频| 国产高清国产精品国产三级| 国产成人精品福利久久| 一本久久精品| 男女啪啪激烈高潮av片| 欧美 日韩 精品 国产| 亚洲综合色惰| 久热这里只有精品99| 青青草视频在线视频观看| 女性生殖器流出的白浆| 五月天丁香电影| 最新的欧美精品一区二区| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美视频一区| 亚洲国产精品一区三区| av福利片在线观看| 下体分泌物呈黄色| 午夜av观看不卡| 日日啪夜夜爽| 黑人猛操日本美女一级片| 99国产精品免费福利视频| av线在线观看网站| 最近最新中文字幕免费大全7| 免费人成在线观看视频色| 青春草亚洲视频在线观看| 看免费成人av毛片| 高清欧美精品videossex| 亚洲精品乱码久久久久久按摩| 热re99久久精品国产66热6| 精品国产一区二区久久| 精品视频人人做人人爽| 亚洲精品久久午夜乱码| 欧美三级亚洲精品| 国产中年淑女户外野战色| 亚洲天堂av无毛| 日本91视频免费播放| 男女国产视频网站| 看十八女毛片水多多多| 在线 av 中文字幕| 亚洲精品日韩av片在线观看| tube8黄色片| 国产精品一区二区在线不卡| 国产精品一区二区在线观看99| 男人和女人高潮做爰伦理| 只有这里有精品99| 中文字幕人妻熟人妻熟丝袜美| 夫妻午夜视频| 伦理电影大哥的女人| 一本一本综合久久| 午夜av观看不卡| 日本91视频免费播放| 日韩强制内射视频| 夫妻性生交免费视频一级片| 精品人妻熟女av久视频| 国产一区二区在线观看日韩| 精品一区二区三卡| 久久青草综合色| 精品熟女少妇av免费看| 丰满饥渴人妻一区二区三| 色婷婷av一区二区三区视频| 午夜视频国产福利| 热re99久久国产66热| 中文天堂在线官网| 久久久久久久国产电影| 九色成人免费人妻av| 日本黄色日本黄色录像| 日韩亚洲欧美综合| 国产熟女午夜一区二区三区 | 午夜福利在线观看免费完整高清在| 狂野欧美激情性bbbbbb| 国产精品秋霞免费鲁丝片| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡 | 国产探花极品一区二区| 国产精品熟女久久久久浪| 国产真实伦视频高清在线观看| 老女人水多毛片| 成人漫画全彩无遮挡| 成人亚洲欧美一区二区av| 国产中年淑女户外野战色| 日本wwww免费看| 少妇的逼水好多| 亚洲高清免费不卡视频| freevideosex欧美| 高清在线视频一区二区三区| 狂野欧美激情性xxxx在线观看| 久久国产精品大桥未久av | 亚洲国产av新网站| 少妇的逼水好多| 好男人视频免费观看在线| 亚洲一区二区三区欧美精品| 伊人久久国产一区二区| 搡老乐熟女国产| 最近中文字幕2019免费版| 人妻系列 视频| 色婷婷av一区二区三区视频| 久久亚洲国产成人精品v| 亚洲综合精品二区| av播播在线观看一区| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 日本黄大片高清| 国产精品久久久久久久久免| 高清av免费在线| 国产精品.久久久| 欧美精品亚洲一区二区| 国产伦精品一区二区三区视频9| 另类亚洲欧美激情| 一本久久精品| 午夜av观看不卡| 久久狼人影院| 99久久综合免费| 免费高清在线观看视频在线观看| 国产色爽女视频免费观看| 精品少妇久久久久久888优播| 国产免费一级a男人的天堂| 中文字幕免费在线视频6| 欧美另类一区| 人体艺术视频欧美日本| 啦啦啦啦在线视频资源| 久久人人爽人人爽人人片va| 久久久久久久久久久免费av| 免费在线观看成人毛片| 黑人高潮一二区| 久久鲁丝午夜福利片| 国产美女午夜福利| 七月丁香在线播放| 99re6热这里在线精品视频| 精品久久久精品久久久| 少妇人妻一区二区三区视频| 国产淫语在线视频| av卡一久久| freevideosex欧美| 国产精品麻豆人妻色哟哟久久| 午夜免费鲁丝| 久久热精品热| 精品亚洲成国产av| 一区二区三区四区激情视频| a级毛片在线看网站| 精品亚洲成a人片在线观看| 黄色怎么调成土黄色| 欧美精品一区二区大全| 97在线人人人人妻| 校园人妻丝袜中文字幕| 在线观看av片永久免费下载| 精品亚洲乱码少妇综合久久| 国产综合精华液| 91久久精品电影网| 极品少妇高潮喷水抽搐| 久久青草综合色| 亚洲精品自拍成人| 欧美精品高潮呻吟av久久| 久久 成人 亚洲| 婷婷色麻豆天堂久久| 亚洲av成人精品一区久久| 少妇猛男粗大的猛烈进出视频| 免费高清在线观看视频在线观看| 久久国产精品男人的天堂亚洲 | 国产黄片视频在线免费观看| 日韩人妻高清精品专区| 丝袜喷水一区| 卡戴珊不雅视频在线播放| av在线观看视频网站免费| 欧美97在线视频| 久久午夜福利片| 欧美精品一区二区免费开放| 午夜免费观看性视频| 亚洲va在线va天堂va国产| 欧美bdsm另类| 亚洲无线观看免费|