• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)

    2018-09-03 01:53:48丁為民孫元昊趙思琪熊佳定
    關(guān)鍵詞:耕深調(diào)平平整度

    丁為民,孫元昊,趙思琪,熊佳定

    ?

    犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)

    丁為民,孫元昊,趙思琪,熊佳定

    (1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031;2. 江蘇省智能化農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,南京 210031)

    為了解決犁旋一體機(jī)作業(yè)過程中調(diào)節(jié)機(jī)具問題,設(shè)計(jì)了一種犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng),該系統(tǒng)包括執(zhí)行機(jī)構(gòu)、控制系統(tǒng)、液壓系統(tǒng)。根據(jù)犁旋一體機(jī)自身的特點(diǎn),提出了一種確定調(diào)平角度范圍的方法,并根據(jù)實(shí)際田間作業(yè)情況,運(yùn)用EDEM仿真軟件進(jìn)行田間作業(yè)的虛擬仿真,仿真結(jié)果表明:地表平整度小于2 cm,滿足農(nóng)藝要求。在設(shè)計(jì)和仿真的基礎(chǔ)上,進(jìn)行田間試驗(yàn),將手動(dòng)調(diào)平的犁旋一體機(jī)的作業(yè)情況和自動(dòng)調(diào)平的犁旋一體機(jī)的作業(yè)情況進(jìn)行對(duì)照,分析了作業(yè)過程中機(jī)具的角度變化和作業(yè)后的耕深及其穩(wěn)定性,地表平整度。結(jié)果表明:自動(dòng)調(diào)平犁旋一體機(jī)相對(duì)于手動(dòng)調(diào)平犁旋一體機(jī),在耕深的穩(wěn)定性和耕后地表平整度上有較為明顯的提高,前者耕深穩(wěn)定系數(shù)達(dá)到87.31%,后者為84.76%。前者地表平整度為1.97 cm,后者為2.56 cm。

    農(nóng)業(yè)機(jī)械;控制;設(shè)計(jì);犁旋一體機(jī);自動(dòng)調(diào)平

    0 引 言

    自動(dòng)調(diào)平系統(tǒng)最早應(yīng)用于工業(yè)領(lǐng)域[1-2],近些年來才逐步應(yīng)用于農(nóng)業(yè)領(lǐng)域[3-4]。傳感器性能的不斷提升大大提高了自動(dòng)調(diào)平系統(tǒng)的適應(yīng)性[5-6]。目前國(guó)內(nèi)市場(chǎng)上的大多數(shù)農(nóng)業(yè)機(jī)械仍為傳統(tǒng)的手動(dòng)調(diào)平模式,并不能做到隨著田間情況的變化而調(diào)平。犁旋一體機(jī)是一種把犁翻和旋耕功能結(jié)合在一起的性能良好的秸稈還田機(jī)械,可一次完成翻耕、旋耕,秸稈粉碎還田等多道作業(yè)工序[7-9]。耕后土壤細(xì)碎平整,作物秸稈和留茬直接深埋還田,達(dá)到聯(lián)合整地效果,還可減少機(jī)具下地次數(shù),減少對(duì)土壤的擾動(dòng),有利于爭(zhēng)取農(nóng)時(shí),提高工效[10-11]。相對(duì)于犁耕機(jī)或者旋耕機(jī),犁旋一體機(jī)作為一種復(fù)合機(jī)具具有較大的質(zhì)量,借用拖拉機(jī)的液壓系統(tǒng)進(jìn)行自動(dòng)調(diào)平,會(huì)對(duì)液壓系統(tǒng)造成巨大負(fù)擔(dān),同時(shí)在犁旋機(jī)構(gòu)下調(diào)的過程中,會(huì)出現(xiàn)下降動(dòng)作劇烈的現(xiàn)象。此外,在作業(yè)過程中,由于拖拉機(jī)一側(cè)車輪行進(jìn)在未耕地上,一側(cè)車輪行進(jìn)在已耕地的犁溝里,會(huì)造成拖拉機(jī)的傾斜行走,進(jìn)而導(dǎo)致與拖拉機(jī)通過三點(diǎn)懸掛連接的犁旋一體機(jī)產(chǎn)生傾角,而犁旋一體機(jī)的傾斜作業(yè)會(huì)影響耕后的平整度和耕深等作業(yè)指標(biāo),所以需要手動(dòng)調(diào)平機(jī)具來保證作業(yè)效果。然而田間作業(yè)情況復(fù)雜,需要經(jīng)常進(jìn)行手動(dòng)調(diào)平,不僅費(fèi)時(shí)費(fèi)力而且精度不高,導(dǎo)致犁旋一體機(jī)作業(yè)效果差和作業(yè)效率低。

    劉林[12]設(shè)計(jì)了拖拉機(jī)耕作機(jī)具的全自動(dòng)調(diào)平系統(tǒng),針對(duì)農(nóng)田作業(yè)時(shí)復(fù)雜環(huán)境對(duì)傾角傳感器數(shù)據(jù)采集影響大的問題,采用了濾波算法及溫度補(bǔ)償算法降低振動(dòng)噪聲及環(huán)境溫度對(duì)數(shù)據(jù)采集真實(shí)性的影響,并通過田間試驗(yàn)驗(yàn)證了系統(tǒng)的可行性和可靠性。胡煉等[13]采用傳感器技術(shù)和控制技術(shù)設(shè)計(jì)一種適用于農(nóng)機(jī)具的自動(dòng)調(diào)平控制系統(tǒng),實(shí)現(xiàn)了農(nóng)機(jī)具水平控制,并通過三軸多功能轉(zhuǎn)臺(tái)試驗(yàn)和田間試驗(yàn)對(duì)系統(tǒng)進(jìn)行分析,試驗(yàn)表明該系統(tǒng)可以提高控制的精度。周浩等[14]將自動(dòng)調(diào)平系統(tǒng)應(yīng)用于旋耕機(jī)上,實(shí)現(xiàn)了旋耕機(jī)的自動(dòng)調(diào)平控制,始終保持旋耕機(jī)構(gòu)在用戶期望角度(0°)附近作業(yè)。奉山森等[15]設(shè)計(jì)農(nóng)藥噴灑機(jī)械調(diào)平控制系統(tǒng),利用傾角傳感器測(cè)量農(nóng)藥噴灑機(jī)的傾角,通過單片機(jī)STC89C51控制驅(qū)動(dòng)電路,驅(qū)動(dòng)三位四通電磁換向閥換向,通過液壓油缸的伸縮,最終完成水平姿態(tài)的控制。由此可見,自動(dòng)調(diào)平系統(tǒng)在農(nóng)業(yè)領(lǐng)域有著較為廣泛的應(yīng)用[16-20]。本文以在江蘇地區(qū)推廣使用的犁旋一體機(jī)為基礎(chǔ),設(shè)計(jì)了一套犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng),以滿足作業(yè)過程中調(diào)整的需要。設(shè)計(jì)過程中,重點(diǎn)考慮復(fù)式機(jī)具自身質(zhì)量較大引發(fā)的調(diào)節(jié)問題,以及調(diào)平角度范圍的確定,以期為復(fù)式作業(yè)機(jī)具的自動(dòng)調(diào)平系統(tǒng)研究提供參考。

    1 自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)

    1.1 整機(jī)工作原理

    自動(dòng)調(diào)平系統(tǒng)包括液壓系統(tǒng)、控制系統(tǒng)和執(zhí)行機(jī)構(gòu),系統(tǒng)整體設(shè)計(jì)如圖1所示。裝有自動(dòng)調(diào)平系統(tǒng)的犁旋一體機(jī)在田間進(jìn)行犁旋作業(yè)時(shí),安裝在犁旋機(jī)架上的傾角傳感器會(huì)實(shí)時(shí)測(cè)量犁旋一體機(jī)的傾斜角度,控制系統(tǒng)按照預(yù)設(shè)的角度范圍對(duì)實(shí)時(shí)輸入的角度值進(jìn)行判斷,當(dāng)角度超出預(yù)設(shè)范圍時(shí),控制電磁換向閥改變液壓油流向,從而實(shí)現(xiàn)調(diào)平油缸的伸出與收縮,達(dá)到調(diào)平犁旋一體機(jī)目的。直到角度調(diào)節(jié)到預(yù)設(shè)角度范圍內(nèi)再開始下個(gè)周期的調(diào)節(jié),實(shí)現(xiàn)犁旋一體機(jī)自動(dòng)調(diào)平閉環(huán)控制,保持機(jī)具處于期望的預(yù)設(shè)角度范圍內(nèi)。

    1.拖拉機(jī) 2.鏵式犁 3.旋耕機(jī) 4.傾角傳感器 5.拉桿 6.液壓缸 7.節(jié)流閥 8.控制箱 9.液壓油箱 10.電磁閥 11.控制器 12.操作盒

    1.2 液壓系統(tǒng)

    自動(dòng)調(diào)平系統(tǒng)的液壓系統(tǒng)主要包括調(diào)平油缸、三位四通電磁比例換向閥、液壓油管、液壓油箱和節(jié)流閥等。頻繁的調(diào)節(jié)以及犁旋一體機(jī)自身較大的質(zhì)量會(huì)對(duì)拖拉機(jī)自身液壓系統(tǒng)的負(fù)擔(dān),故設(shè)計(jì)了獨(dú)立于拖拉機(jī)的液壓系統(tǒng),液壓系統(tǒng)油路設(shè)計(jì)圖如圖2,由油箱、液壓泵、分流閥、電磁比例換向閥、調(diào)平油缸、溢流閥組成。根據(jù)《機(jī)械設(shè)計(jì)手冊(cè)》對(duì)液壓系統(tǒng)的各部分元件進(jìn)行選型和參數(shù)計(jì)算。農(nóng)業(yè)機(jī)械的液壓系統(tǒng)的工作液壓范圍為7~21 MPa,本設(shè)計(jì)選取的液壓為10 MPa。選用齒輪泵作為液壓泵,選用直動(dòng)式溢流閥保護(hù)系統(tǒng)在正常的范圍內(nèi)工作,選用M型電磁比例換向閥用于控制調(diào)平油缸的伸縮,選用單向節(jié)流閥用于控制液壓油的流速。

    1.油箱 2.液壓泵 3.分流閥 4.電磁比例換向閥 5.調(diào)平油缸 6.溢流閥

    用單側(cè)調(diào)平油缸進(jìn)行調(diào)節(jié),根據(jù)犁旋一體機(jī)的作業(yè)方式,左側(cè)車輪行進(jìn)在未耕地上,將調(diào)平油缸置于拖拉機(jī)的左側(cè)。同時(shí),針對(duì)其較大的質(zhì)量會(huì)造成機(jī)具在下調(diào)過程中下降幅度過猛的問題,在調(diào)平油缸的下出油口加入節(jié)流閥以穩(wěn)定液壓流量,保證機(jī)具平穩(wěn)下降。

    1.3 自動(dòng)調(diào)平控制系統(tǒng)

    自動(dòng)調(diào)平控制系統(tǒng)主要由傾角傳感器和調(diào)平控制器組成。傾角傳感器采用單軸加速度傳感器,調(diào)平控制器由控制電路、穩(wěn)壓電路和操作盒組成。其中,傾角傳感器和操作盒均通過數(shù)據(jù)線與控制電路相連,采用RS485協(xié)議進(jìn)行通訊,控制原理圖如圖3所示。傾角傳感器采集的傾角信號(hào)經(jīng)過A/D轉(zhuǎn)換后得到一組十六進(jìn)制的傾角數(shù)據(jù),如AA 04 A1 FF 1F 67 ED,其中前三位為校驗(yàn)位,第四位為符號(hào)位,第五位為角度的數(shù)據(jù)位,六七位為終止位,傳輸?shù)娇刂破髦修D(zhuǎn)換碼制為十進(jìn)制,再采用卡爾曼算法[21-23]對(duì)噪聲進(jìn)行濾波處理,通過對(duì)傾角傳感器傳來的傾角數(shù)據(jù)進(jìn)行判斷,再將判斷的結(jié)果反饋給執(zhí)行機(jī)構(gòu)和液壓系統(tǒng),控制電磁換向閥改變液壓油流向,從而控制調(diào)平油缸伸出與收縮,實(shí)現(xiàn)調(diào)節(jié)目標(biāo)。

    圖3 自動(dòng)調(diào)平控制原理圖

    控制電路的電源由拖拉機(jī)蓄電池提供,單片機(jī)I/O口直接控制液壓系統(tǒng)中的電磁換向閥,實(shí)現(xiàn)對(duì)液壓油流向及過閥流量的控制,具體過程為:經(jīng)過控制器處理過的信號(hào)分別從單片機(jī)的P 0.0,P 0.1,P 0.2,P 0.3口輸出。其中P 0.0和P 0.1輸出的脈寬調(diào)制信號(hào)控制流經(jīng)比例閥電磁鐵3YA和4YA的電流大小,P 0.2和P 0.3輸出信號(hào)控制電磁閥1YA和2YA的通斷,改變液壓油方向。加入保護(hù)電路,則是保證調(diào)平系統(tǒng)能夠在環(huán)境復(fù)雜的田間作業(yè)環(huán)境中正常運(yùn)行。控制器與液壓油箱、電磁換向閥作為整體置于控制箱內(nèi),懸掛于拖拉機(jī)駕駛室后。操作盒可實(shí)現(xiàn)自動(dòng)和手動(dòng)模式的切換,在田間轉(zhuǎn)向或者停止作業(yè)時(shí)可切換到手動(dòng)模式。

    田間作業(yè)的環(huán)境較為復(fù)雜,從自動(dòng)調(diào)平系統(tǒng)應(yīng)用于其他農(nóng)業(yè)機(jī)械的實(shí)際情況來看,將調(diào)平角度設(shè)置為0°,會(huì)導(dǎo)致機(jī)具調(diào)節(jié)過于頻繁,進(jìn)而會(huì)減少液壓系統(tǒng)的使用壽命。本文結(jié)合犁旋一體機(jī)自身的特點(diǎn),按照農(nóng)藝和保護(hù)性耕作的要求[24],提出了一種確定調(diào)平角度的方法。犁旋一體機(jī)的旋耕深度要大于犁耕深度,因此作業(yè)深度主要由犁耕部分決定。以拖拉機(jī)前進(jìn)方向作為前方,規(guī)定右高左低產(chǎn)生的角度為負(fù)角度,反之為正角度。圖4為角度范圍選取模型簡(jiǎn)圖。

    管網(wǎng)運(yùn)行:GIS地理信息系統(tǒng)、GPA巡線系統(tǒng)、管網(wǎng)監(jiān)測(cè)系統(tǒng)、水力模型系統(tǒng)、DMA分區(qū)管理系統(tǒng)、產(chǎn)銷差系統(tǒng)等;

    注:θ為犁旋一體機(jī)可調(diào)整的角度,cm;h1為最左側(cè)犁的耕深,cm;h2為最左側(cè)犁距地面的垂直高度,cm;H0為犁體的垂直高度,cm;L為犁耕的幅度,cm。

    角度范圍的選取:以最右邊的犁為參照,確定角度上下限的方法:①當(dāng)最右邊達(dá)到最大耕深,最左邊的耕深能滿足耕深要求的最小值時(shí),為調(diào)節(jié)角度的上限;②當(dāng)最右邊達(dá)到最小耕深,最左邊的耕深能滿足耕深要求的最大值時(shí),為調(diào)節(jié)角度的下限。角度與最左側(cè)犁的耕深1和最左側(cè)犁距地面的垂直高度2的關(guān)系如下

    經(jīng)過化簡(jiǎn)求解得

    1.4 執(zhí)行機(jī)構(gòu)

    執(zhí)行機(jī)構(gòu)主要包括前置犁耕機(jī)構(gòu)、后置旋耕機(jī)構(gòu)、減速箱、旋耕機(jī)架、犁耕機(jī)架等機(jī)構(gòu)組成。懸掛機(jī)架的前端通過三點(diǎn)懸掛與拖拉機(jī)掛接,傾角傳感器固定在犁旋機(jī)架上,通過數(shù)據(jù)線與控制器相連。犁耕部分采用四鏵犁,調(diào)平油缸一端與拖拉機(jī)后懸掛鉸接,一端與犁旋機(jī)架鉸接,旋耕部分的旋耕刀采用彎刀設(shè)計(jì),按照雙頭螺旋線方式的排列,旋耕刀旋轉(zhuǎn)方向相反,升角相同,采用中央傳動(dòng)方式傳動(dòng)和反轉(zhuǎn)作業(yè)方式作業(yè)。

    2 EDEM虛擬仿真試驗(yàn)

    土壤是一種具有特殊內(nèi)部黏結(jié)特性,且具有離散特點(diǎn)的特殊物質(zhì)[25]。在工作過程中,由于土壤間及土壤與工作部件間的碰撞、夾持運(yùn)動(dòng)較復(fù)雜,無法完全通過理論研究分析因素間的相互作用[26-27]。近些年隨著計(jì)算機(jī)技術(shù)的發(fā)展,離散元分析法成為一種重要分析手段,被越來越多的應(yīng)用在農(nóng)業(yè)機(jī)械作業(yè)上[28]。為研究顆粒群體的運(yùn)動(dòng)規(guī)律,本文運(yùn)用EDEM離散元分析軟件,對(duì)帶有自動(dòng)調(diào)平系統(tǒng)的犁旋一體機(jī)進(jìn)行仿真,以耕后地表平整度作為仿真指標(biāo),考察自動(dòng)調(diào)平系統(tǒng)的作業(yè)性能。

    2.1 EDEM仿真過程

    為了更加真實(shí)的還原真實(shí)土壤特性,在創(chuàng)建土壤顆粒模型時(shí),考慮同一田塊土壤一致性[29]。根據(jù)江蘇省土壤實(shí)際情況,設(shè)置土壤粒徑從1~40 mm 不等,并且在田間程正態(tài)分布,為了模擬土壤顆粒的不規(guī)則性,土壤顆粒設(shè)計(jì)為不規(guī)則團(tuán)球狀,土壤的基本參數(shù)如表1所示。

    表1 EDEM仿真土壤參數(shù)

    將事先建好的犁旋一體機(jī)模型的導(dǎo)入EDEM,設(shè)置其材料為45鋼,根據(jù)實(shí)際作業(yè)情況,設(shè)置機(jī)具前進(jìn)速度為1 m/s,轉(zhuǎn)速為240 r/min,耕深上限設(shè)置為25 cm,下限設(shè)置為15 cm。設(shè)置土槽寬度與機(jī)器作業(yè)幅寬相等為1.4 m,長(zhǎng)度為20 m。在保證仿真連續(xù)性的前提下,設(shè)定固定時(shí)間步長(zhǎng)8.68×10-6,總時(shí)間為20 s,其中機(jī)器田間作業(yè)時(shí)間為15 s,網(wǎng)格單元尺寸為6 mm,為最小顆粒半徑的3倍。設(shè)置完成后,對(duì)犁旋一體機(jī)進(jìn)行田間作業(yè)仿真,犁旋一體機(jī)模型如圖5所示。

    圖5 犁旋一體機(jī)EDEM模型

    2.2 EDEM仿真結(jié)果

    根據(jù)地表平整度考察標(biāo)準(zhǔn),仿真結(jié)束后截取模擬田塊橫截面,選取2條水平線,其中一條是與地表最高點(diǎn)平齊的水平基準(zhǔn)線,另一條與之平行為地表最低點(diǎn)的水平線,按照平整度的計(jì)算公式求出之地表平整度小于2 cm。仿真結(jié)果表明犁旋一體機(jī)耕后地表平整度能夠滿足農(nóng)藝要求。

    3 田間試驗(yàn)

    3.1 試驗(yàn)設(shè)計(jì)

    試驗(yàn)于2017年11月3日在南通市通州區(qū)四安鎮(zhèn)蔣家橋村進(jìn)行,試驗(yàn)田為水旱輪作田,前茬作物為水稻,長(zhǎng)60 m,寬55 m,土壤平均含水率為22.3%,平均堅(jiān)實(shí)度為153.7 N/cm2。試驗(yàn)機(jī)具為犁旋一體機(jī)(上海農(nóng)業(yè)機(jī)械研究所生產(chǎn)),犁耕深度16~20 cm,旋耕深度8~10 cm,牽引拖拉機(jī)為DF1204。采用2臺(tái)HN-QJ02A傾角傳感器(南通惠能信息科技發(fā)展有限公司)分別測(cè)量拖拉機(jī)車身和耕整機(jī)的傾斜角度。還采用了4臺(tái)E61-DTU-1W無線傳輸模塊(成都億佰特電子科技有限公司),2臺(tái)為一組,其中一臺(tái)為發(fā)送端,一臺(tái)為接收端,分別傳送兩臺(tái)傳感器所采集的傾角數(shù)據(jù)。此外,還有秒表,直尺(15 cm,0.1 cm),卷尺(50 m,0.01 m),筆記本電腦等設(shè)備。圖6為犁旋一體機(jī)的作業(yè)過程。

    圖6 犁旋一體機(jī)作業(yè)過程

    作業(yè)共有8個(gè)行程,編號(hào)為1,2,3,…,6,7,8。作業(yè)的平均速度為1.28 m/s。分別采集每個(gè)行程在30 m的行進(jìn)過程中拖拉機(jī)的傾角和犁旋機(jī)具的傾角。試驗(yàn)前先對(duì)傳感器進(jìn)行誤差校正,確保測(cè)量的準(zhǔn)確度。圖7為耕作行程示意圖。

    注:1~5為自動(dòng)調(diào)平模式的作業(yè)行程,6~8為手動(dòng)調(diào)平模式的作業(yè)行程。

    3.2 耕深及平整度的測(cè)量

    3.2.1 耕深的測(cè)量

    沿機(jī)組前進(jìn)方向,每隔5 m,在行程的左中右處各取一個(gè)點(diǎn),每個(gè)行程測(cè)5組,共測(cè)量15個(gè)點(diǎn),用耕深尺測(cè)量每個(gè)測(cè)量點(diǎn)處的耕深,自動(dòng)調(diào)平和手動(dòng)調(diào)平模式下各測(cè)3個(gè)行程。

    3.2.2 平整度的測(cè)量

    沿垂直于機(jī)組前進(jìn)方向,在地表最高點(diǎn)取水平基準(zhǔn)線,每隔5 m,在行程的左中右處各取一個(gè)點(diǎn),每個(gè)行程測(cè)5組,用直尺測(cè)量各點(diǎn)處的耕深,自動(dòng)和手動(dòng)調(diào)平模式下各測(cè)3個(gè)行程。

    3.3 試驗(yàn)結(jié)果與分析

    試驗(yàn)主要測(cè)試了自動(dòng)調(diào)平的系統(tǒng)性能以及犁旋一體機(jī)的機(jī)械性能。其中系統(tǒng)性能通過采集到的傾角數(shù)據(jù)進(jìn)行處理分析,機(jī)械性能通過耕深和耕后地表平整度進(jìn)行評(píng)價(jià)。

    3.3.1 耕 深

    自動(dòng)調(diào)平模式下取行程2,3,4的耕深,手動(dòng)模式下取行程6,7,8的耕深,各行程的耕深及耕深穩(wěn)定性如表2所示。

    通過對(duì)表2的數(shù)據(jù)比較可知:2種模式下的耕深基本相同,但是自動(dòng)模式下的耕深穩(wěn)定系數(shù)(87.31%)要比手動(dòng)調(diào)平模式下的耕深穩(wěn)定系數(shù)(84.76%)高2.55個(gè)百分點(diǎn)。自動(dòng)模式下的左中右3個(gè)點(diǎn)的平均耕深要比手動(dòng)模式下的平均耕深高度差要小,手動(dòng)模式下左中右三點(diǎn)的平均耕深差距比較大。2種模式下都表現(xiàn)出左側(cè)的平均耕深大于右側(cè)的平均耕深。從耕深標(biāo)準(zhǔn)差來看,手動(dòng)調(diào)平模式下的標(biāo)準(zhǔn)差比較穩(wěn)定,而自動(dòng)模式下的標(biāo)準(zhǔn)差會(huì)隨著耕作的進(jìn)行而逐漸增大。

    表2 耕深性能分析

    3.3.2 平整度

    平整度行程的選取與耕深的相同,通過均方根計(jì)算。數(shù)值越大代表地表高度越高,反之代表地表高度越低。

    通過表3對(duì)比發(fā)現(xiàn),自動(dòng)模式下的平均地表平整度(1.97 cm)要優(yōu)于手動(dòng)模式下的平均地表平整度(2.56 cm),這說明自動(dòng)模式下的作業(yè)效果要好于手動(dòng)模式,加入自動(dòng)調(diào)平系統(tǒng)具有實(shí)際效果。

    表3 耕作后的地表平整度

    3.4 自動(dòng)調(diào)平系統(tǒng)性能分析

    試驗(yàn)過程中采集了8個(gè)行程的傾角數(shù)據(jù),圖8為自動(dòng)和手動(dòng)模式下拖拉機(jī)與犁旋一體機(jī)的傾角變化圖。自動(dòng)模式下,選取行程2、3、4的傾角變化,如圖8a、8b與8c所示,手動(dòng)模式下,犁旋一體機(jī)的傾角基本是隨同拖拉機(jī)的傾角變化而變化,因此只取行程8的傾角變化,如圖8d所示。圖中8a為自動(dòng)模式下犁旋一體機(jī)試驗(yàn)過程中行程2的實(shí)時(shí)傾角,試驗(yàn)過程中拖拉機(jī)的傾斜角度不斷變化,犁旋一體機(jī)的傾斜角度基本保持在設(shè)定的角度范圍內(nèi)(?0.75°~1.5°),均方根誤差分別為0.75°,0.66°,0.93°。圖8d為手動(dòng)模式下犁旋一體機(jī)試驗(yàn)過程中的實(shí)時(shí)傾角,試驗(yàn)過程中拖拉機(jī)的傾角和機(jī)具的傾角變化趨勢(shì)基本相同,拖拉機(jī)與機(jī)具初始安裝誤差角度為0.53°。由此可看出,自動(dòng)模式要優(yōu)于手動(dòng)模式的作業(yè)質(zhì)量。

    注:圖8d中拖拉機(jī)與犁旋一體機(jī)的位置相對(duì)固定,因此二者角度的變化趨勢(shì)基本一致。

    4 結(jié) 論

    本文設(shè)計(jì)了犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng),根據(jù)農(nóng)藝和保護(hù)性耕作的要求,確定了一種調(diào)平角度范圍的確定方法,并根據(jù)此方法,實(shí)現(xiàn)了犁旋一體機(jī)的自動(dòng)調(diào)平控制,基本保持在預(yù)設(shè)的角度范圍內(nèi)。

    在田間進(jìn)行了犁旋作業(yè)試驗(yàn)。結(jié)果表明:耕深方面,自動(dòng)模式下的耕深穩(wěn)定系數(shù)(87.31%)要比手動(dòng)調(diào)平模式下的耕深穩(wěn)定系數(shù)(84.76%)高2.55個(gè)百分點(diǎn)。地表平整度方面,自動(dòng)模式下的平整度(1.97 cm)也要優(yōu)于手動(dòng)模式下的平整度(2.56 cm)。以上2個(gè)指標(biāo)可以表明,帶有自動(dòng)調(diào)平系統(tǒng)的犁旋一體機(jī)完全可以滿足整地需要,并且能夠達(dá)到農(nóng)藝要求。

    [1] 羅錫文,廖娟,鄒湘軍,等. 信息技術(shù)提升農(nóng)業(yè)機(jī)械化水平[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):1-14.

    Luo Xiwen, Liao Juan, Zou Xiangjun, et al. Information technology upgrading the level of agricultural mechanization[J]. Transactions of theChinese Society of Agricultural Engineering (Transactions ofthe CSAE), 2016, 32(20): 1-14. (in Chinese with Englishabstract)

    [2] 孫江宏,何世鳳,潘尚鋒. 一種新型自動(dòng)調(diào)平平臺(tái)結(jié)構(gòu)與控制系統(tǒng)設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造,2015,53(7):11-15.

    Sun Jianghong, He Shifeng, Pan Shangfeng. Design of a new type of automatic leveling platform structure and control system[J]. Mechanical Design and Manufacturing, 2015, 53(7): 11-15. (in Chinese with Englishabstract).

    [3] 王凡勛. 自動(dòng)控制技術(shù)在農(nóng)業(yè)機(jī)械中的應(yīng)用研究[J]. 山西農(nóng)經(jīng),2017,35(22):54. Wang Fanxun. Research on the application of automatic control technology in agricultural machinery[J]. Shanxi Nongjing, 2017, 35(22): 54. (in Chinese with Englishabstract)

    [4] 趙敏鵬. 自動(dòng)控制技術(shù)在農(nóng)業(yè)機(jī)械設(shè)計(jì)及發(fā)展中的應(yīng)用[J]. 農(nóng)業(yè)工程,2017,7(6):37-39.

    Zhao Minpeng. Application of automatic control technology in the design and development of agricultural machinery[J]. Agricultural Engineering, 2017, 7(6): 37-39. (in Chinese with Englishabstract)

    [5] 劉恩朋,楊占才,李燕杰,等. 歐美傳感器發(fā)展趨勢(shì)[J]. 測(cè)控技術(shù),2014,33(11):1-4.

    Liu Enpeng, Yang Zhancai, Li Yanjie, et al. Development trend of sensors in Europe and America[J]. Measurement and Control Technology, 2014, 33(11): 1-4. (in Chinese with Englishabstract).

    [6] 何剛,高國(guó)偉,潘宏生,等. 反正弦法傾角傳感器溫度補(bǔ)償研究[J]. 傳感器與微系統(tǒng),2016,35(5):13-15.

    He Gang, Gao Guowei, Pan Hongsheng, et al. Study on temperature compensation of anti-sinusoidal dip sensor[J]. Sensor and Microsystem, 2016, 35(5): 13-15. (in Chinese with Englishabstract)

    [7] 黃永. 稻秸稈犁翻旋耕還田復(fù)式作業(yè)技術(shù)試驗(yàn)分析[J]. 江蘇農(nóng)機(jī)化,2017,33(5):35-36.

    Huang Yong. Experimental analysis on the technology of compound operation of rice straw plough turning back to field[J]. Jiangsu Agricultural Mechanization, 2017,33(5): 35-36. (in Chinese with Englishabstract)

    [8] 張長(zhǎng)林,盧少穎,秦建國(guó). 犁旋一體機(jī)秸稈機(jī)械化還田作業(yè)試驗(yàn)研究[J]. 農(nóng)業(yè)與技術(shù),2016,36(24):66.

    Zhang Changlin, Lu Shaoying, Qin Jianguo. Experimental study on the mechanized returning of plowed-spinning one-body machine straw to field[J]. Agriculture and Technology, 2016, 36(24): 66. (in Chinese with Englishabstract)

    [9] 沈丹波,繆明,丁煒. 稻麥秸稈犁翻旋耕復(fù)式作業(yè)耕整機(jī)的研制[J].農(nóng)業(yè)裝備技術(shù),2014,40(4):14-16.

    Shen Danbo, Miao Ming, Ding Wei. Research and development of rice and wheat straw ploughing and rotary tillage ploughing machine[J]. Agricultural Equipment Technology, 2014, 40(4): 14-16. (in Chinese with Englishabstract).

    [10] 秦寬,丁為民,方志超,等. 復(fù)式耕整機(jī)耕深與耕寬穩(wěn)定性分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):1-8.

    Qin Kuan, Ding Weimin, Fang Zhichao, et al. Stability analysis and test of ploughing depth and ploughing width of compound ploughing machine[J]. Transactions of theChinese Society of Agricultural (Transactions ofthe CSAE), 2016, 32(9): 1-8. (in Chinese with Englishabstract)

    [11] 秦寬,丁為民,方志超,等. 犁翻旋耕復(fù)式作業(yè)耕整機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):7-16.

    Qin Kuan, Ding Weimin, Fang Zhichao, et al. Design and test of ploughing and rotary ploughing ploughing machine[J]. Transactions of theChinese Society of Agricultural (Transactions ofthe CSAE), 2016, 32(16): 7-16. (in Chinese with Englishabstract)

    [12] 劉林. 基于拖拉機(jī)三點(diǎn)懸掛耕作機(jī)具調(diào)平系統(tǒng)研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2014.

    Liu Lin. Research on Leveling System Based on Tractor Three Point Suspension Farming Equipment[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese with Englishabstract)

    [13] 胡煉,林朝興,羅錫文,等.農(nóng)機(jī)具自動(dòng)調(diào)平控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):15-20.

    Hu Lian, Lin Chaoxing, Luo Xiwen, et al. Design and test of automatic leveling control system of agricultural machinery[J]. Transactions of theChinese Society of Agricultural (Transactions ofthe CSAE), 2015, 31(8): 15-20. (in Chinese with Englishabstract)

    [14] 周浩,胡煉,羅錫文,等. 旋耕機(jī)自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(增刊1):117-123.

    Zhou Hao, Hu Lian, Luo Xiwen, et al. Rotary automatic leveling system design and test[J]. Transactions of the Chinese Society for AgriculturalMachinery, 2016, 47(Supp.1): 117-123. (in Chinese with Englishabstract)

    [15] 奉山森,張燕,樊軍慶,等. 基于單片機(jī)的農(nóng)藥噴灑機(jī)械自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2014,36(11):104-107.

    Feng Shansen, Zhang Yan, Fan Junqing, et al. Design of automatic leveling system for pesticide spraying machinery based on single-chip microcomputer[J]. Agricultural Mechanization Research, 2014, 36(11): 104-107. (in Chinese with Englishabstract).

    [16] 章鐵成. 基于模糊PID的旋耕機(jī)組水平控制系統(tǒng)設(shè)計(jì)[D]. 杭州:浙江理工大學(xué),2017.

    Zhang Tiecheng. Design of Horizontal Control System for Rotary Tiller Group based on Fuzzy PID[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese with Englishabstract)

    [17] 萬松,陳子林,展鵬程,等. 基于傳感技術(shù)的水田旋耕機(jī)平地系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,35(4):129-135.

    Wan Song, Chen Zilin, Zhan Pengcheng, et al. Design and test of horizontal system of rotary tiller in paddy field based on sensing technology[J]. Journal of Central China Agricultural University, 2016, 35(4): 129-135. (in Chinese with Englishabstract)

    [18] 樊桂菊,王永振,張曉輝,等. 果園升降平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):38-46.

    Fan Guiju, Wang Yongzhen, Zhang Xiaohui, et al. Design and test of automatic leveling control system for orchard lifting platform[J]. Transactions of theChinese Society of Agricultural(Transactions ofthe CSAE), 2017, 33(11): 38-46. (in Chinese with Englishabstract).

    [19] 劉凱. 覆帶式山地作業(yè)機(jī)及其自動(dòng)調(diào)平系統(tǒng)的研究[D]. 北京:北京林業(yè)大學(xué),2013. Liu Kai. Research on the Overlying Mountain Operating Machine and Its Automatic Leveling System[D]. Beijing: Beijing Forestry University, 2013. (in Chinese with Englishabstract)

    [20] 王佳文,楊自棟. 自動(dòng)調(diào)平噴桿式噴藥機(jī)設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2016,38(7):162-166.

    Wang Jiawen, Yang Zidong. Design and experimental study of automatic leveling spray rod type spray machine[J]. Agricultural Mechanization Research, 2016, 38(7): 162-166. (in Chinese with Englishabstract).

    [21] Kalman R E. A new approach to linear filtering and prediction problems[J]. Transaction of the ASME Journal of Basic Engineering, 1960, 82(3): 35-45.

    [22] Zarchan P, Musoff H. Fundamentals of Kalman Filtering: A Practical Approach[M]. Reston: American Institute of Aeronautics and Astronautics, 2009.

    [23] Brookner E. Tracking and Kalman Filtering Made Easy[M]. Hoboken: John Wiley & Sons, 1998.

    [24] 農(nóng)業(yè)部農(nóng)業(yè)機(jī)械化管理司. 中國(guó)保護(hù)性耕作[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2008.

    [25] 胡國(guó)明. 顆粒系統(tǒng)的離散元素法分析仿真[M]. 武漢:武漢理工大學(xué)出版社,2010.

    [26] Li J, Webb C, Pandiella S S, Campbell G M. Discrete particlemotion on sieves-a numerical study using the DEM simulation[J].Powder Technology, 2003(133): 190-202.

    [27] Paul W Cleary, Mark L Sawley. DEM modeling of industrialgranular flows: 3D case studies and the effect of particleshape on hopper discharge[J]. Applied Mathematical Modeling,2002, 26(6): 89-111.

    [28] 王憲良,胡紅,王慶杰,等. 基于離散元的土壤模型參數(shù)標(biāo)定方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(12):78-85.

    Wang Xianliang, Hu Hong, Wang Qingjie, et al. Parameter calibration method of soil model based on discrete element[J]. Transactions of the Chinese Society for AgriculturalMachinery, 2017, 48(12): 78-85. (in Chinese with Englishabstract).

    [29] 方會(huì)敏,姬長(zhǎng)英,F(xiàn)arman Ali Chandio,等. 基于離散元法的旋耕過程土壤運(yùn)動(dòng)行為分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016, 47(3):22-28.

    Fang Huimin, Ji Changying, Farman Ali Chandio, et al. Analysis of soil movement behavior during rotary tillage based on discrete element method[J]. Transactions of the Chinese Society for AgriculturalMachinery, 2016, 47(3): 22-28. (in Chinese with Englishabstract)

    [30] 全國(guó)農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會(huì). 鏵式犁:GB/T 14225-2008[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2009.

    [31] 全國(guó)農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會(huì). 旋耕機(jī):GB/T 5668-2018[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2018.

    Design and test of automatic leveling system of plough rotary machine

    Ding Weimin, Sun Yuanhao,Zhao Siqi, Xiong Jiading

    (1210031,; 2.210031,)

    In order to solve the problem of equipment adjusting in the operation of plough rotary tiller, an automatic leveling system of plough rotary machine is designed, which includes executive mechanism, automatic leveling control module, hydraulic system and tilt sensing module. The plough rotary machine is a kind of well-behaved machine on tillage and straw returning, which combines the function of plough turning and rotary tillage. It can be used to carry out multiple work processes such as plough turning, rotary tillage and burying ground straw into soil. The soil is finely ground after ploughing, and the crop stalks and stubble are directly buried in the fields to achieve the soil preparation effect. It can also reduce the number of operations of going into soil for the machine, reduce the compaction of the soil, and improve the efficiency of farming. In the process of work, one side of tractor wheel drives on the balk, the other side drives on the cultivated furrows, causing tractor to incline to walk, and then leading to a certain inclination in horizontal direction of the plough rotary machine connected with the tractor through the three-point suspension mechanism. However, the tilting of plough rotary machine will affect the flatness and depth of the plow, so it is necessary to continuously adjust the equipment to ensure the work effect. Due to the complexity of field work condition, it needs to adjust frequently on the first 2 work routes and every route caused by the unstable work of the hydraulic system in each field. It not only is time-consuming but also has not high precision, which results in poor performance and low efficiency of work. In order to solve the problem of frequent adjustment of the plough rotary machine during work of plough, combining the characteristics of the plough rotary machine, a method to determine the angle range of leveling is put forward. The plough rotary machine as a compound tillage machine has great quality. It will cause great burden to the hydraulic system of the tractor by automatic leveling. At the same time, the downward motion will appear more severe during the downgrading process of the plough rotary mechanism. Therefore, a set of independent hydraulic system is designed in this paper. According to the actual field work situation, the soil model is established by using EDEM (enhanced discrete element method) simulation software, and the virtual simulation of field operation is carried out. The simulation results show that the surface roughness is less than 2 cm and meets the agronomic requirements. On the basis of design and simulation, field experiments were carried out to compare the operation of manual leveling plough rotary machine and the operation of automatic leveling plough rotary machine. The content of the test includes the system performance and mechanical performance of automatic leveling. The system performance is obtained by analyzing the change of the inclination angle of the tractor. The mechanical performance is obtained by analyzing ploughing depth, its stability and surface roughness after the operation. The results show that the automatic leveling plough rotary machine has a marked improvement in the stability of ploughing and surface evenness after tillage compared with the manual leveling plough rotary machine. The stability coefficient of the former tillage depth is 87.31% and the latter is 84.76%. The surface roughness of the former is 1.97 cm and the latter is 2.56 cm. It can provide reference for the design of automatic leveling system for compound agricultural machinery.

    agricultural machinery; control; design; plough rotary machine; automatic leveling

    2018-03-29

    2018-06-30

    國(guó)家科技支撐計(jì)劃項(xiàng)目資助(2013BAD08B04)

    丁為民,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械化裝備研究。Email:wmding@njau.edu.cn

    10.11975/j.issn.1002-6819.2018.17.004

    S222.4

    A

    1002-6819(2018)-17-0025-07

    丁為民,孫元昊,趙思琪,熊佳定. 犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):25-31.doi:10.11975/j.issn.1002-6819.2018.17.004 http://www.tcsae.org

    Ding Weimin, Sun Yuanhao, Zhao Siqi, Xiong Jiading. Design and test of automatic leveling system of plough rotary machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 25-31. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.004 http://www.tcsae.org

    猜你喜歡
    耕深調(diào)平平整度
    拖拉機(jī)多重模糊PID變論域耕深調(diào)節(jié)研究
    李學(xué)軍運(yùn)用調(diào)平歸源法治療慢性萎縮性胃炎經(jīng)驗(yàn)
    基于卡爾曼濾波融合算法的深松耕深檢測(cè)裝置研究
    皮帶自移機(jī)尾自動(dòng)調(diào)平策略研究
    懸掛式深松機(jī)耕深監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與試驗(yàn)
    瀝青混凝土路面平整度的探索
    探討道路施工中如何提高瀝青路面的平整度
    林用二自由度自動(dòng)調(diào)平平臺(tái)的研究
    森林工程(2018年4期)2018-08-04 03:23:38
    橋面施工中平整度的控制
    江西建材(2018年1期)2018-04-04 05:26:16
    線性擬合與Kalman預(yù)測(cè)法修正耕深測(cè)量誤差
    厦门市| 台中市| 凤阳县| 晋宁县| 西丰县| 科技| 松原市| 齐河县| 马山县| 马公市| 博湖县| 五原县| 宁远县| 云安县| 岳普湖县| 平安县| 红河县| 阿拉善盟| 苗栗县| 吴堡县| 乌拉特后旗| 盱眙县| 柳林县| 隆德县| 饶平县| 蒙山县| 石泉县| 三都| 曲靖市| 家居| 娄底市| 湘阴县| 屏山县| 绥宁县| 金溪县| 温泉县| 宜黄县| 剑阁县| 临汾市| 华容县| 阿城市|