王文瑞,王 帥,張佳明,王 剛
(1.北京科技大學(xué) 機(jī)械工程學(xué)院, 北京 100083; 2.精進(jìn)電動科技股份有限公司, 北京 100016)
航空發(fā)動機(jī)在工作過程中始終處于高溫、高壓、高速旋轉(zhuǎn)和高頻振動的狀態(tài),因此渦輪葉片容易產(chǎn)生各種形式的失效破壞。常見的疲勞失效模式有高周疲勞、低周疲勞、蠕變疲勞、高低周復(fù)合疲勞、熱疲勞等。渦輪葉片疲勞失效在葉片失效模式中占的比率很大,且直接威脅到飛行安全[1-4]。因此,迫切需要對渦輪葉片的動態(tài)應(yīng)力應(yīng)變進(jìn)行分析,加強(qiáng)對渦輪葉片疲勞壽命的研究。
從燃燒室出來的燃?xì)庖砸欢ǖ乃俣萩1軸向地流向?qū)蚱?,在?dǎo)向器葉柵的收斂性通道內(nèi)膨脹加速,壓力、溫度下降,燃?xì)鉄犰蕼p小,轉(zhuǎn)變?yōu)闅怏w的動能,以c2流出導(dǎo)向器,其速度示意圖如圖1(a)。
燃?xì)庖韵鄬λ俣葁1(w1=c2-u)流進(jìn)渦輪,以w2流出渦輪,渦輪葉片通道為收斂型,燃?xì)饬鬟^時又進(jìn)行膨脹,并對渦輪做功,因此燃?xì)獾臏囟?、壓力、絕對速度減小,相對速度則增大。這時,c3=w2+u。其示意圖如圖1(b)所示。燃?xì)饬鬟^工作葉輪時,對它做了功,所以絕對速度減小。將葉輪平均半徑處的進(jìn)、出口速度三角形畫在一起,就成為渦輪基元級速度三角形。如圖1(c)所示。
燃?xì)饬鬟^渦輪葉片的彎曲通道時,一方面膨脹加速,另一方面在渦輪工作葉輪內(nèi)改變運(yùn)動方向。工作葉片受到氣體力的作用,并且葉盆表面的壓力高于葉背表面的壓力,其壓力分布如圖1(d),葉片表面壓力的合力F,可以分解為兩個相互垂直的分力,即周向力Fu和軸向力Fa。葉輪在周向力Fu作用下高速旋轉(zhuǎn)。
燃?xì)鈱ぷ魅~輪所做的功,是由燃?xì)庖徊糠謩幽芎鸵徊糠譄犰兽D(zhuǎn)換而來的。而燃?xì)獾膭幽苡质侨細(xì)庠趯?dǎo)向器中焓降低的結(jié)果。因此就整個渦輪而言,燃?xì)鈱u輪所做的機(jī)械功,歸根到底來自燃?xì)饪傡实臏p小。
(1)
(2)
A點的絕對加速度可以用下式表示
(3)
把旋轉(zhuǎn)坐標(biāo)軸的原點取在轉(zhuǎn)軸上,由此可以求得絕對加速度在整體坐標(biāo)系中三個方向的分量:
(4)
假設(shè)矩陣
(5)
由此,可得葉片上的慣性力為
(6)
在某一個微元體中
(7)
式中:[N]為單元形狀函數(shù)矩陣; {δ}e為單元節(jié)點位移向量。
根據(jù)有限元的方法可以推導(dǎo)出整個轉(zhuǎn)動渦輪葉片的方程為:
(8)
將上面幾式綜合可得有限單元體的運(yùn)動方程為:
(9)
把各個單元集合到一起,就可得到整個葉片的運(yùn)動方程:
(10)
根據(jù)渦輪的設(shè)計參數(shù)和渦輪的工作原理計算確定流動參數(shù),前面根據(jù)經(jīng)驗公式和數(shù)據(jù)確定渦輪葉片各個截面的參數(shù),接著需要選擇合適的型線,并根據(jù)型線確定葉片上點的位置,在利用這些點來生成三維葉片,如圖3。渦輪葉片材料是一種鎳基單晶高溫合金DD6,這種定向高溫合金與傳統(tǒng)的等軸晶合金相比具有非常大的優(yōu)勢,主要表現(xiàn)在消除了高溫下容易斷裂的晶界,表現(xiàn)出很好的高溫結(jié)構(gòu)強(qiáng)度。
將網(wǎng)格導(dǎo)入到CFX軟件進(jìn)行CFD計算,在CFX的前處理模塊進(jìn)行計算的設(shè)置,首先,生成旋轉(zhuǎn)流體域命名為fluid-Rotate,并對旋轉(zhuǎn)流體的性質(zhì)進(jìn)行設(shè)定,定義高溫燃?xì)獾男再|(zhì)為理想氣體,其參數(shù)如表1所示,參考壓力為一個大氣壓,定義旋轉(zhuǎn)流體域的運(yùn)動為繞轉(zhuǎn)軸的旋轉(zhuǎn)運(yùn)動,并定義轉(zhuǎn)速。定義流體的傳熱類型為總能量模型,湍流模型為k-Eplison模型,完成對旋轉(zhuǎn)流體域的屬性設(shè)定。生成靜止流體域并對流體域的性質(zhì)進(jìn)行設(shè)定,靜止流體域的屬性與旋轉(zhuǎn)流體域基本一樣[5-9]。
表1 理想氣體參數(shù)
對計算域的邊界條件進(jìn)行設(shè)定,設(shè)定計算域的進(jìn)口條件為總壓2 830 kPa,溫度1 300 K,出口條件為平均靜壓800 kPa。定義靜止域的壁面條件為靜止的光滑無滑移的壁面,定義旋轉(zhuǎn)域的渦輪壁面為跟隨旋轉(zhuǎn)域一起旋轉(zhuǎn)的光滑無滑移的壁面邊界條件。建立CFD模型如圖4。
在ANSYS Workbench的靜力分析模塊施加離心載荷,先在渦輪軸承孔的內(nèi)表面添加Cylindrical Support約束,以約束渦輪在其他自由度上的運(yùn)動,只允許渦輪有周向的轉(zhuǎn)動,然后,對渦輪的轉(zhuǎn)速進(jìn)行設(shè)定,在Inertial模塊選擇Rotational Velocity對渦輪葉片的轉(zhuǎn)速進(jìn)行設(shè)定,這樣渦輪的離心載荷就被施加到計算模型中,模型計算結(jié)果如圖5所示。
觀察溫度隨轉(zhuǎn)速的變化趨勢,發(fā)現(xiàn)渦輪葉片流固耦合面上最高溫度隨著轉(zhuǎn)速的增大有升高的趨勢,渦輪葉片流固耦合面上最低溫度隨著轉(zhuǎn)速的增大有降低的趨勢。溫度差的增大,必然導(dǎo)致渦輪葉片所受溫度載荷的增大,溫度載荷增大加速了渦輪葉片的疲勞破壞。觀察壓力隨轉(zhuǎn)速的變化趨勢圖,發(fā)現(xiàn)渦輪葉片流固耦合面上最高壓力隨著轉(zhuǎn)速的增大有升高的趨勢,渦輪葉片流固耦合面上最低壓力隨著轉(zhuǎn)速的增大有減小的趨勢。壓力梯度的增大,必然導(dǎo)致渦輪葉片所受應(yīng)力和扭矩的增大,這也會加速渦輪葉片的疲勞破壞。
根據(jù)前面建立的有限元模型,對渦輪葉片動態(tài)環(huán)境下的強(qiáng)度進(jìn)行計算,設(shè)定渦輪葉片的轉(zhuǎn)速為10 000 r/min、20 000 r/min、30 000 r/min、40 000 r/min、50 000 r/min。得到渦輪葉片的總變形云圖、應(yīng)變云圖、應(yīng)力云圖如圖6。
根據(jù)不同工況下的渦輪葉片的數(shù)值模擬結(jié)果,為了更加直觀的看出各種工況下渦輪葉片所受的應(yīng)變、應(yīng)力、變形、溫度、壓力,做出如表1。
表1 各工況下渦輪葉片模擬結(jié)果
在考慮氣動力、熱應(yīng)力以及渦輪葉片自身質(zhì)量帶來的離心力的情況下,在對渦輪葉片動態(tài)環(huán)境下的應(yīng)力分布進(jìn)行分析后,在其分析的結(jié)果后面加入模態(tài)分析模塊,得到工作狀態(tài)下渦輪葉片各階模態(tài)下的固有頻率統(tǒng)計如圖7,其具體的前六階模態(tài)陣型圖如圖8。
利用ANSYS Workbench自帶的疲勞計算模塊Fatigue Tool模塊對渦輪葉片進(jìn)行疲勞壽命分析,疲勞壽命分析是基于線性靜力分析,疲勞分析是在線性靜力分析之后,通過數(shù)值模擬自動執(zhí)行的[10]-[13]。對渦輪葉片進(jìn)行氣熱固耦合之后,添加材料DD6的疲勞材料屬性,即S-N曲線如圖9所示。
輸入了材料DD6的S-N曲線后,需要進(jìn)行一些必要的設(shè)置以完成渦輪葉片的疲勞壽命分析,設(shè)置疲勞強(qiáng)度因子(Fatigue Strength Factor)為0.8,該參數(shù)以區(qū)別實際零件與試件的差異,接著選擇渦輪葉片所受的載荷類型,導(dǎo)入前面編輯的渦輪葉片載荷譜,然后對平均應(yīng)力的影響進(jìn)行修正,包括Morrow修正和SWT修正,修正結(jié)果如圖10和圖11所示。
從壽命分布云圖可以看出,葉片疲勞壽命的最小值發(fā)生在葉片根部的后緣部分,最小值為859小時,葉片壽命的最大值發(fā)生在葉尖的前緣和后緣部位,最大值為1×109小時,葉片壽命的整體分布從葉根到葉尖呈帶狀分布,且逐漸增大。
由于SWT修正公式計算的壽命考慮了高溫對渦輪葉片疲勞的影響,使得利用SWT修正公式計算的渦輪葉片疲勞壽命相對保守,更加符合渦輪葉片的疲勞模式,因此利用SWT計算渦輪葉片的疲勞壽命,選取上述三個關(guān)鍵點進(jìn)行疲勞壽命計算分析,統(tǒng)計如表3。
表3 SWT計算的渦輪葉片疲勞壽命
1) 葉片徑向溫度首先隨著葉高的增加而升高,當(dāng)葉高達(dá)到一定值時,葉片溫度隨著葉高的增加而降低;氣動載荷的變化規(guī)律為隨著葉片徑向高度的增加而變大。葉片Mises等效應(yīng)力隨著葉片徑向半徑的增加而逐漸減小,最大應(yīng)力出現(xiàn)在葉身根部附近。
2) 由于SWT修正公式考慮了溫度對渦輪葉片疲勞壽命的影響,符合渦輪葉片的工作環(huán)境,本文采用SWT修正公式計算出渦輪葉片的疲勞壽命。