• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Are spatial distributions of major elements in soil influenced by human landscapes?

    2018-08-30 09:47:34HuanYuZhengweiHeZemingShiBoKong
    Acta Geochimica 2018年4期

    Huan Yu?Zhengwei He?Zeming Shi?Bo Kong

    Abstract The present study attempted to evaluate the influence of human activity on major elements(Na2O,MgO,Al2O3,SiO2,K2O,CaO,Fe2O3),and to find a method to explore correlations between major elements and human disturbances,according to geospatial theories and methods.The study results indicate that landscapes influence major elements in diverse ways:Al2O3is closely related to road and mine landscapes;strong relationships exist between MgO,Fe2O3,CaO,and SiO2and roads;Na2O,SiO2,and Fe2O3are unrelated to city landscapes;and Na2O is unrelated to road and mine landscapes.

    Keywords Major elements·Spatial distribution·Geographical background·Human landscape·Geographic information system·Remote sensing

    1 Introduction

    The major elements in virgin soil are generally dependent on the lithology of the parent material and the pedological and geochemical processes of soil formation(Mitchell 1960;Hardy and Cornu 2006).Major element concentrations in soils are influenced by natural factors,such as features of the soil parent material,the processes of weathering and biocycling,and wet and dry atmospheric deposition(Cortizas et al.2003).Various solutions and chemical indices have been established and applied to the quantitative evaluation of chemical weathering intensity,most of which are based on major element analyses(Qiu et al.2014).Many studies are based on the assumption that major elements in soil are mainly controlled by natural processes(Taylor and McLennan 1985;Huang and Gong 2001;Zhang 2011;Palma et al.2013).

    However,farming,traveling,mining,industrial production,and human settlements have a critical influence on the geochemical,physical,and biochemical properties of soil,especially on soil elements(Kelepertsis et al.2001;Caravaca et al.2002;Takamatsu et al.2010;Alexakis and Gamvroula 2014;Ye et al.2014).In the past 20 years,major element distribution in soil subjected to various human disturbances has garnered considerable attention.Li and Thornton(2001)investigated the influence of mining and smelting activities on some major elements(Mn,Fe,Al,Ca,and P)in soils.Popovic et al.(2001)studied the leaching behavior of major elements through coal ash transportation in a power plant.Lucho-Constantino et al.(2005)estimated the distribution and accumulation of major elements in agricultural soils that had been irrigated with raw waste waters for about 20 years.A comprehensive chemical characterization of 27 fertilizers of different types used in Spain was conducted by Otero et al.(2005)to identify and characterize sources of contamination based on major,minor,and trace element analysis.Reimann et al.(2012)studied the total concentrations of the major elements(Na2O,MgO,Al2O3,SiO2,K2O,CaO,TiO2,MnO,Fe2O3,and P2O5)in grazing land and agricultural soils,and derived some rules around the influence of human activity on those elements.

    Most past research supports the legitimacy of using quantitative geochemical methods according to mathematical statistics to evaluate the influence of human activity on soil elements(Cuadrado and Perillo 1997;Villaescusa Celaya et al.2000;Cevik et al.2009).Moreover,many studies have demonstrated that element distribution characteristics in soil can be effectively analyzed by geospatial methods(Eze et al.2010;Bai et al.2011;Lin et al.2011;Bastami et al.2012;Nanos and Martín 2012).The objectives of this paper are to(a)evaluate the influence of human activity on spatial distribution characteristics of major elements,and(b)develop a method for exploring the spatial relationships between major elements and influencing factors based on geospatial theories and methods.

    2 Materials and methods

    2.1 Location of study area

    The study region is28°55′–30°27′N and 105°20′–106°22′E,in Chongqing Municipality(Fig.1).We chose this region based on convenience of transportation and for its representative economic status,landscape,ecosystem,and presence of conflict between people and land.

    2.2 Data

    Mine,road,and building landscapes were delineated using remote sensing image interpretation,with buffering regions averaging 2000 m.Land form,stratigraphy,and soil data were obtained through digitizing a thematic map.

    In total,2314 soil samples were gathered at the study area in 2010.Parameters were tested using Geochemical Survey Specifications,conducted by the Chinese Geological Survey.

    Fig.1 Location of study area in Chongqing,China

    2.3 Methods

    Na2O,MgO,Al2O3,SiO2,K2O,CaO,and Fe2O3spatial distribution were obtained by interpolating soil point samples through spatial analysis(Simanton and Osborn 1980)using ArcGIS software.

    Geochemical anomalies were based on regional geochemical background values and Na2O,MgO,Al2O3,SiO2,K2O,CaO,and Fe2O3spatial distribution data,in terms of the Geochemical Survey Specifications;one example is shown in Fig.2.Through the comprehensive analysis of element spatial distributions and regional geochemical background values,geochemical anomalies were identified according to the Specifications of the Multi-purpose Regional Geochemical Survey,executed by the Chinese Geological Survey.When sampling data had a normal distribution,the ranges of regional background values were identified by arithmetic mean(X)with 2 standard deviations(S):X±2S.When sampling data had a lognormal distribution,the ranges of regional background values were identified by geometric mean(Xg):Xg × Sg±2.Values that went beyond the change range of backgrounds were considered to be geochemical anomalies.The anomalies were applied to explore these element correlations with geographical factors and human landscapes,to explore their influence on major element spatial distributions.

    Fig.2 Distribution of Fe2O3in context of mines,roads,building lands,and rivers

    The human disturbance factors were then analyzed by a distance decay function and regression methods.Distance decay describes the effect of distance on cultural or spatial interactions,with the effect decreasing as distance increases.The spatial distributions of the elements were derived and the spatial relationships between the elements in soils and human landscapes obtained.To illustrate correlations between element anomalies and landscapes of human disturbances scientifically,the Pearson method was used to calculate product moment correlation coefficients between the element anomaly area ratio and the distance to landscapes of human disturbance(Pearson 1895).Correlation coefficients have a value between+1 and-1,where 1 is total positive linear correlation,-1 is total negative linear correlation,and 0 is no linear correlation.

    3 Results and discussion

    3.1 Natural background analysis

    The ratios of Na2O,MgO,Al2O3,SiO2,K2O,CaO,and Fe2O3anomalies in the different soil types,landform types,and geological times were calculated by spatial analysis(Table 1).

    Most of the Al2O3,CaO,K2O,MgO,SiO2,and Fe2O3anomalies were detected in the landforms ofUplifting Folded Low MountainsandEroded or Denuded Hills,which cover more than 97%of this region;more than 74%of the anomalies were detected inYellow SoilandPaddy Soil;and more than 76%were in theLate Triassic–Early Jurassic.Thus,Uplifting Folded Low Mountains,Eroded or Denuded Hills,Yellow Soil,Paddy Soil,andLate Triassic–Early Jurassicwere considered natural backgrounds in further analysis of human disturbance factors.As more than 99%of Na2O anomalies were in theEroded or Denuded Hills,PaddyorPurple Soils,andMiddle Jurassic,these were considered natural background in further analysis of human disturbances for Na2O.

    At the same time,theUplifting Folded Low Mountains,Yellow Soil,andLate Triassic–Early Jurassiconly occupy 8.76%,7.69%,and 11.83%of the entire study area,respectively.This indicates that Al2O3,CaO,K2O,MgO,SiO2,and Fe2O3might have been affected by certain natural or human factors.Whether or not the anomalies were caused by human interference requires further analysis.

    3.2 Human disturbance analysis

    Anomaly distribution data of Al2O3,CaO,K2O,MgO,Na2O,SiO2,and Fe2O3and buffer region spatial data were overlapped to calculate the ratios of anomalies falling in each buffer region;an example is shown in Fig.3.Correlation coefficients between the anomaly area ratio distributions and the distance to human disturbance landscapes were calculated based on the Pearson method(Table 2).

    3.2.1 City landscape

    The Al2O3,CaO,K2O,and MgO anomaly area distributions of cities continually fluctuated with distance for all landform,soil,and geological formation types,and the regularities were vague,indicating an infirm relationship.However,Al2O3returned a high coefficient and a lowPvalue forEroded or Denuded HillsandPaddy Soil;CaO returned a high coefficient and a lowPvalue for all four of these natural background factors;K2O returend a high coefficient and a lowPvalue forEroded or Denuded Hills,Paddy Soil,andLate Triassic–Early Jurassic;MgO returned a high coefficient and a lowPvalue forEroded or Denuded HillsandLate Triassic–Early Jurassic.Collectively these results preclude confirmation of correlations between the city landscapes and Al2O3,CaO,K2O,and MgO.

    Similarly,the distributions of Na2O,SiO2,and Fe2O3anomalies also continually fluctuated with distance from landform,soil,and geological formation types,and with vague regularities.However,correlation coefficients of Na2O were all below 0.33 andPvalues all above 0.52,indicating a weak relationship and suggesting that Na2O was not affected by city landscapes.Low correlation coefficients and highPvalues of SiO2and Fe2O3also reflect a weak relationship and demonstrate that city landscape does not affect SiO2and Fe2O3.Previous work demonstrated that trace elements presented significantly higher concentrations in urban soils than in control soils,with the highest concentrations correlating with land use type;major elements did not show a similar phenomenon(Khalil et al.2013).

    3.2.2 Road landscape

    Al2O3,MgO,Fe2O3,CaO,and SiO2anomalies constantly decreased with distance from roads across landform,soil,and geological formation types,which is consistent with the rule that effects of disturbance decrease further from roads.Moreover,both Al2O3and Fe2O3showed a high coefficient and a lowPvalue for all the landform,soil,and geological formation types(Table 2);the correlation coefficients of MgO were all above 0.96 and theirPvalues below 0.05 for all the natural backgrounds,indicating a strong relationship and demonstrating that Al2O3,MgO,and Fe2O3were affected by roads.Similarly,the correlation coefficients of CaO and SiO2were all above 0.93 forall the natural backgrounds.The close relationship between Al,Ca,and Mg with roads is supported by previous work(Rybak 2015);these elements originate mainly from windblown road dust(Szczepaniak and Biziuk 2003)or are emitted by traffic(Zechmeister et al.2006).Furthermore,it has been proven that Al and Fe often originate from the wear of metallic vehicle parts and from road dust resuspension in urban areas(Vukovi?et al.2013).In addition,Ca and Fe are considered the most mobile elements and affected by a variety of natural and human factors(Gregorauskiene and Kadunas 2006).

    Table 1 The proportions of the anomaly area falling in different geographical backgrounds

    Fig.3 Distributions of Fe2O3 anomalies at different distances to roads under main geographical backgrounds

    The distribution of K2O anomalies continually fluctuated with distance inYellow Soil,indicating an infirm relationship.However,the correlation coefficients of K2O were all above 0.89 and theirPvalues below 0.05 for all the landform,soil,and geological formation types.Thus,correlations between the road landscape and K2O were unable to be clearly confirmed.

    Na2O anomalies also continually fluctuated with increasing distance for all the landform,soil,and geological formation types and the regularities were vague,indicating another infirm relationship.Low correlationcoefficients or highPvalues of Na2O were observed,indicating an infirm relationship and demonstrating that Na2O was not affected by the road landscape.

    Table 2 Pearson correlation coefficients between distance to human disturbance landscapes and area ratio distributions of the anomalies

    3.2.3 Mine landscape

    Al2O3anomaly distributions constantly decreased with distance from mines across landform,soil,and geological formation types,which is consistent with the rule that disturbance decreases further from mines.In addition,correlation coefficients of Al2O3were all above 0.94 and theirPvalues below 0.01 for all the landform,soil,and geological formation types(Table 2),indicating a firm relationship and demonstrating that Al2O3was influenced by mine landscapes.A strong correlation between Al and mine landscapes or mining activity has been established by several previous studies(Li and Thornton 2001;Santos et al.2015;Valente et al.2016).

    The distributions of CaO anomalies continually fluctuated with distance inEroded or Denuded HillsandYellow Soil;K2O anomalies continually fluctuated with distance in Paddy Soil;MgO anomalies continually fluctuated with distance inEroded or Denuded Hills,Fe2O3anomalies continually fluctuated with distance inYellow SoilandLate Triassic–Early Jurassic,all indicating infirm relationships.The correlation coefficients of CaO,K2O,and Fe2O3were all above 0.89 and theirPvalues below 0.05 for all the landform,soil,and geological formation types.Thecorrelation coefficients of MgO were all above 0.94 and theirPvalues below 0.01 for all the landform,soil,and geological formation types.Duly,correlations between the mine landscapes and CaO,K2O,Fe2O3,and MgO were unable to be clearly confirmed.

    The distribution of Na2O anomalies continually fluctuated with distance across landform,soil,and geological formation types,and the regularities were vague,indicating another infirm relationship.The correlation coefficients of Na2O were all below 0.23 and thePvalues all above 0.62,demonstrating that Na2O was not disturbed by the mine landscape.

    The spatial distribution of SiO2anomalies continually fluctuated with distance inUplifting Folded Low Mountains,Eroded or Denuded Hills,Yellow Soil,andPaddy Soil—an infirm relationship.SiO2returned a high coefficient and a lowPvalue inUplifting Folded Low Mountains,Yellow SoilandLate Triassic–Early Jurassicbut a highPvalue inEroded or Denuded HillsandPaddy Soil.Thus,correlations between the mine landscape and SiO2were unable to be clearly confirmed.

    A table showing the relationships of the different landscapes and major element distributions in soil is shown in Table 3.

    4 Conclusions

    Element anomalies are primarily produced by geographical influences or disturbances involving human activities.On the premise of the natural background analysis,the correlations between Na2O,MgO,Al2O3,SiO2,K2O,CaO,and Fe2O3anomalies and human disturbance landscapes,i.e.,cities,roads,and mines,were explored to show that major elements are influenced by different landscapes in diverse ways.Al2O3had a strong correlation with road and mine landscapes;MgO,Fe2O3,CaO,and SiO2had a strong correlation with road landscapes that affected these elements significantly;Na2O,SiO2,and Fe2O3had a weak relationship with city landscapes;Na2O had a weak relationship with road and mine landscapes.

    This study proves that a response mechanism exploration of major element migration and human disturbance landscape using geospatial theories and methods is practical.However,correlations between Al2O3,CaO,K2O,and MgO and city landscapes;correlations between K2O and road landscapes;and correlations between CaO,K2O,MgO,SiO2,and Fe2O3and mine landscapes could not be determined through the present methods,and will require further work.

    AcknowledgementsThis study was supported by the Youth Science Foundation(Grant Nos.41101174 and 41301094),the Lead Strategic Project of the Chinese Academy of Sciences (GrantNo.XDB03030507),the Hundred Young Talents Program of the Institute of Mountain Hazards and Environment(Grant No.SDSQB-2015-02)and the Open Fund for Key Laboratory of Geoscience Spatial Information Technology of Ministry of Land and Resources(Grant No.KLGSIT2016-01).We felt grateful to Southeast Sichuan Geological Team for offering us the experimental data.

    国产日韩欧美亚洲二区| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 男女边摸边吃奶| 成人午夜精彩视频在线观看| 大片免费播放器 马上看| 亚洲av男天堂| 三级国产精品欧美在线观看| 国产色爽女视频免费观看| 成年人午夜在线观看视频| 免费av中文字幕在线| 久热久热在线精品观看| 中国国产av一级| 亚洲在久久综合| 新久久久久国产一级毛片| 一级毛片aaaaaa免费看小| 欧美激情国产日韩精品一区| 在线天堂最新版资源| 亚洲av中文av极速乱| 婷婷色综合大香蕉| 天美传媒精品一区二区| 亚洲国产精品成人久久小说| 久久久久久久国产电影| 日韩熟女老妇一区二区性免费视频| 久久99一区二区三区| 街头女战士在线观看网站| 欧美最新免费一区二区三区| 亚洲,欧美,日韩| 精品国产一区二区三区久久久樱花| 成人毛片a级毛片在线播放| 欧美日韩精品成人综合77777| 中国三级夫妇交换| 一级毛片电影观看| a级毛色黄片| 亚洲国产色片| 中文字幕免费在线视频6| 精品视频人人做人人爽| 黑丝袜美女国产一区| 国产国语露脸激情在线看| 久久久国产一区二区| 视频中文字幕在线观看| 国产 精品1| 国产乱来视频区| 少妇 在线观看| h视频一区二区三区| 黄色配什么色好看| 18在线观看网站| 亚洲怡红院男人天堂| 伦理电影免费视频| 性色avwww在线观看| 九九爱精品视频在线观看| 久久婷婷青草| 全区人妻精品视频| 69精品国产乱码久久久| 男女国产视频网站| 91在线精品国自产拍蜜月| 免费观看的影片在线观看| 青春草国产在线视频| 97在线人人人人妻| 男女免费视频国产| 国产 一区精品| 免费大片18禁| 蜜桃国产av成人99| 亚洲精品国产av蜜桃| 午夜福利,免费看| 免费高清在线观看视频在线观看| 一边亲一边摸免费视频| a级毛片黄视频| 自线自在国产av| 国产成人午夜福利电影在线观看| 免费高清在线观看日韩| 大香蕉久久成人网| 一级a做视频免费观看| 制服人妻中文乱码| 一本一本综合久久| 国产精品蜜桃在线观看| 尾随美女入室| 男女啪啪激烈高潮av片| av福利片在线| 亚洲成人手机| 国产在线一区二区三区精| 欧美激情 高清一区二区三区| 精品熟女少妇av免费看| 少妇人妻 视频| 又大又黄又爽视频免费| 人人妻人人添人人爽欧美一区卜| 狂野欧美激情性bbbbbb| 亚洲三级黄色毛片| 久久女婷五月综合色啪小说| 又大又黄又爽视频免费| 国产综合精华液| 老司机影院成人| 嘟嘟电影网在线观看| 久久精品国产a三级三级三级| 午夜免费男女啪啪视频观看| 人成视频在线观看免费观看| 国产一区二区在线观看av| 亚洲国产av影院在线观看| 亚洲一级一片aⅴ在线观看| 色吧在线观看| 多毛熟女@视频| 一区二区三区免费毛片| 国产精品99久久99久久久不卡 | 精品久久久精品久久久| 18禁动态无遮挡网站| 中文字幕久久专区| 国产在线免费精品| 亚洲色图 男人天堂 中文字幕 | 汤姆久久久久久久影院中文字幕| 最近最新中文字幕免费大全7| xxxhd国产人妻xxx| 最近的中文字幕免费完整| 中文字幕免费在线视频6| 色网站视频免费| 国产一区二区三区av在线| 日韩av免费高清视频| 国产在视频线精品| 免费黄网站久久成人精品| 国产不卡av网站在线观看| 亚洲精品日韩av片在线观看| 国产精品国产三级国产av玫瑰| 一区二区三区四区激情视频| 久热久热在线精品观看| 免费大片黄手机在线观看| 免费观看在线日韩| 日韩大片免费观看网站| 国产在线一区二区三区精| 亚洲国产精品999| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 狠狠精品人妻久久久久久综合| 91精品一卡2卡3卡4卡| 黄色配什么色好看| 只有这里有精品99| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的| 精品亚洲成国产av| 亚洲国产日韩一区二区| 国产极品粉嫩免费观看在线 | 在线亚洲精品国产二区图片欧美 | 国产成人91sexporn| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 成人免费观看视频高清| 欧美日韩在线观看h| 免费av中文字幕在线| 美女视频免费永久观看网站| a级片在线免费高清观看视频| 22中文网久久字幕| av播播在线观看一区| 99久久综合免费| 久热久热在线精品观看| 欧美激情极品国产一区二区三区 | 天天操日日干夜夜撸| 欧美国产精品一级二级三级| 中文乱码字字幕精品一区二区三区| 久久久a久久爽久久v久久| 女性生殖器流出的白浆| 亚洲伊人久久精品综合| 欧美少妇被猛烈插入视频| 国产精品99久久99久久久不卡 | 精品人妻熟女毛片av久久网站| 亚洲精品亚洲一区二区| 黄片播放在线免费| 晚上一个人看的免费电影| 久久av网站| 日韩av在线免费看完整版不卡| 国产男女内射视频| 色视频在线一区二区三区| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 国产精品偷伦视频观看了| 黑人猛操日本美女一级片| 大香蕉97超碰在线| 涩涩av久久男人的天堂| 99视频精品全部免费 在线| 成人国产麻豆网| 女人精品久久久久毛片| 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| www.av在线官网国产| 午夜av观看不卡| 国产成人91sexporn| 青青草视频在线视频观看| 亚洲精品第二区| 欧美97在线视频| 亚洲欧美精品自产自拍| 日韩av不卡免费在线播放| 色哟哟·www| 一级毛片我不卡| 99久久人妻综合| 亚洲人成77777在线视频| 亚洲国产av影院在线观看| 国模一区二区三区四区视频| av在线老鸭窝| 亚洲天堂av无毛| 免费大片18禁| 一本久久精品| 久久精品国产亚洲av涩爱| 国产精品成人在线| 国产免费视频播放在线视频| 纯流量卡能插随身wifi吗| 国产伦理片在线播放av一区| 69精品国产乱码久久久| 亚洲av免费高清在线观看| 亚洲欧美色中文字幕在线| 大话2 男鬼变身卡| 久久久精品94久久精品| 99久久人妻综合| 一级毛片黄色毛片免费观看视频| √禁漫天堂资源中文www| 午夜激情av网站| 国产精品99久久久久久久久| 日韩精品有码人妻一区| 最后的刺客免费高清国语| 新久久久久国产一级毛片| 夜夜看夜夜爽夜夜摸| 最黄视频免费看| 国产精品一区www在线观看| 考比视频在线观看| 汤姆久久久久久久影院中文字幕| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| 少妇熟女欧美另类| 国产在线一区二区三区精| 欧美激情 高清一区二区三区| 日日摸夜夜添夜夜添av毛片| 国产在线免费精品| 制服丝袜香蕉在线| 亚洲精品,欧美精品| 国产成人免费观看mmmm| 国产欧美另类精品又又久久亚洲欧美| 亚洲美女视频黄频| 亚洲一级一片aⅴ在线观看| 欧美另类一区| 高清不卡的av网站| 亚洲精品日本国产第一区| 欧美亚洲日本最大视频资源| 大又大粗又爽又黄少妇毛片口| 新久久久久国产一级毛片| 国产精品国产av在线观看| 免费av不卡在线播放| 九草在线视频观看| 满18在线观看网站| 欧美精品一区二区免费开放| 亚洲精品色激情综合| 亚洲欧美日韩卡通动漫| 五月天丁香电影| 如何舔出高潮| 卡戴珊不雅视频在线播放| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 97超碰精品成人国产| 国产男女超爽视频在线观看| 精品熟女少妇av免费看| 免费观看av网站的网址| 国产 一区精品| 人人妻人人添人人爽欧美一区卜| 久久韩国三级中文字幕| 水蜜桃什么品种好| 18禁观看日本| 99re6热这里在线精品视频| 纵有疾风起免费观看全集完整版| 欧美bdsm另类| 国产高清国产精品国产三级| 日韩免费高清中文字幕av| 丰满饥渴人妻一区二区三| 黄色欧美视频在线观看| 亚洲国产日韩一区二区| 在线看a的网站| 免费播放大片免费观看视频在线观看| 成人影院久久| 黄色视频在线播放观看不卡| 一级爰片在线观看| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 99re6热这里在线精品视频| 国产伦精品一区二区三区视频9| 最后的刺客免费高清国语| 日本欧美视频一区| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 最近2019中文字幕mv第一页| 精品少妇黑人巨大在线播放| 人人妻人人澡人人看| 最近手机中文字幕大全| h视频一区二区三区| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 久久久欧美国产精品| 久久免费观看电影| 成人国语在线视频| 国精品久久久久久国模美| 热re99久久精品国产66热6| 国产日韩欧美在线精品| 免费看光身美女| 91精品一卡2卡3卡4卡| 91精品三级在线观看| 国产精品久久久久久久电影| 亚洲色图 男人天堂 中文字幕 | 高清欧美精品videossex| 纯流量卡能插随身wifi吗| 亚洲国产毛片av蜜桃av| 国产精品99久久久久久久久| 边亲边吃奶的免费视频| 日本免费在线观看一区| 女性生殖器流出的白浆| 国产熟女欧美一区二区| 国产伦精品一区二区三区视频9| 黄色怎么调成土黄色| 99久久人妻综合| 久久热精品热| 久久99热这里只频精品6学生| 简卡轻食公司| 少妇被粗大的猛进出69影院 | av黄色大香蕉| 亚洲中文av在线| 男女边吃奶边做爰视频| 国产一级毛片在线| 亚洲国产精品一区二区三区在线| 日韩不卡一区二区三区视频在线| 一区二区三区免费毛片| 免费人成在线观看视频色| 国产黄频视频在线观看| 高清欧美精品videossex| 91精品一卡2卡3卡4卡| xxx大片免费视频| 国产69精品久久久久777片| 五月开心婷婷网| 亚洲内射少妇av| 婷婷色av中文字幕| 久久久久久久久久久免费av| 在线观看免费高清a一片| 美女中出高潮动态图| 国产一区二区三区av在线| 春色校园在线视频观看| 人妻一区二区av| 在线观看国产h片| 国产精品国产av在线观看| 午夜久久久在线观看| 国产亚洲av片在线观看秒播厂| 精品久久久久久久久亚洲| 日本黄色片子视频| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 亚洲激情五月婷婷啪啪| 青春草国产在线视频| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 2022亚洲国产成人精品| 麻豆精品久久久久久蜜桃| 亚洲精品亚洲一区二区| 国产视频内射| 亚洲天堂av无毛| 成人二区视频| av免费观看日本| 国产69精品久久久久777片| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 成人毛片60女人毛片免费| 久久久久网色| 中文天堂在线官网| 亚洲精品第二区| 国产黄色免费在线视频| 日本黄色片子视频| 69精品国产乱码久久久| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 久久精品久久久久久噜噜老黄| 18禁观看日本| 女人精品久久久久毛片| 久久国产精品男人的天堂亚洲 | 美女内射精品一级片tv| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 国产成人精品一,二区| 中文欧美无线码| 嘟嘟电影网在线观看| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 黑人巨大精品欧美一区二区蜜桃 | 秋霞在线观看毛片| 成人免费观看视频高清| 一本久久精品| 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 波野结衣二区三区在线| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 高清av免费在线| 亚洲av在线观看美女高潮| 波野结衣二区三区在线| 最黄视频免费看| 高清毛片免费看| 亚洲精品,欧美精品| 午夜福利影视在线免费观看| 又黄又爽又刺激的免费视频.| 亚洲精品,欧美精品| 国精品久久久久久国模美| 蜜桃久久精品国产亚洲av| 国产伦理片在线播放av一区| 黄片无遮挡物在线观看| 美女xxoo啪啪120秒动态图| 青春草国产在线视频| videosex国产| 搡老乐熟女国产| 成人综合一区亚洲| 精品一区二区免费观看| 一级黄片播放器| 18在线观看网站| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜制服| 午夜激情久久久久久久| 飞空精品影院首页| 大香蕉久久成人网| 51国产日韩欧美| av网站免费在线观看视频| 高清欧美精品videossex| 黄色一级大片看看| 一级二级三级毛片免费看| 伊人久久国产一区二区| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 亚洲成色77777| 伦理电影免费视频| 一个人看视频在线观看www免费| 国产精品免费大片| 国产成人精品一,二区| 精品国产乱码久久久久久小说| 国产乱人偷精品视频| 制服诱惑二区| 韩国av在线不卡| 永久免费av网站大全| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜制服| av国产久精品久网站免费入址| 国产成人freesex在线| av天堂久久9| 在线观看免费视频网站a站| 精品午夜福利在线看| 国产日韩欧美在线精品| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产鲁丝片午夜精品| 亚洲精品视频女| 亚洲成人一二三区av| 日韩av在线免费看完整版不卡| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 精品久久久久久电影网| av不卡在线播放| 国产又色又爽无遮挡免| 街头女战士在线观看网站| 黄色怎么调成土黄色| 热re99久久精品国产66热6| 97超碰精品成人国产| 少妇人妻 视频| 能在线免费看毛片的网站| 欧美激情国产日韩精品一区| 中文字幕最新亚洲高清| 午夜免费男女啪啪视频观看| 少妇的逼好多水| 日韩一区二区三区影片| 日韩中字成人| 在线亚洲精品国产二区图片欧美 | 91久久精品国产一区二区三区| 丝袜喷水一区| 精品久久久久久久久亚洲| 老女人水多毛片| 国产国语露脸激情在线看| 飞空精品影院首页| 这个男人来自地球电影免费观看 | 久久久久网色| 男女免费视频国产| a级毛片黄视频| 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 纵有疾风起免费观看全集完整版| 免费日韩欧美在线观看| 欧美精品一区二区大全| 国内精品宾馆在线| a级毛片在线看网站| 亚洲欧美一区二区三区国产| 久久热精品热| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 三级国产精品片| 国产永久视频网站| 精品一区二区三区视频在线| 成年人免费黄色播放视频| 国产亚洲精品久久久com| 高清午夜精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 91精品三级在线观看| xxxhd国产人妻xxx| 亚洲精品美女久久av网站| 国产成人91sexporn| 一级毛片aaaaaa免费看小| 国产精品三级大全| 男人添女人高潮全过程视频| 七月丁香在线播放| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 免费看av在线观看网站| 免费观看a级毛片全部| 丝袜在线中文字幕| 观看av在线不卡| 超碰97精品在线观看| 国产极品粉嫩免费观看在线 | 99re6热这里在线精品视频| 欧美+日韩+精品| 国产精品免费大片| 蜜桃久久精品国产亚洲av| 交换朋友夫妻互换小说| 91在线精品国自产拍蜜月| 天天影视国产精品| 欧美日韩在线观看h| 少妇 在线观看| 日韩av在线免费看完整版不卡| 一本色道久久久久久精品综合| 欧美精品人与动牲交sv欧美| 久久久久网色| 成年美女黄网站色视频大全免费 | 一边摸一边做爽爽视频免费| 观看av在线不卡| 乱人伦中国视频| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| 精品熟女少妇av免费看| 国产亚洲最大av| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 免费观看的影片在线观看| 伦理电影大哥的女人| 亚洲色图综合在线观看| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 国产精品三级大全| 大又大粗又爽又黄少妇毛片口| 精品久久久久久电影网| 中文字幕制服av| 最黄视频免费看| 午夜福利视频在线观看免费| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 欧美3d第一页| 久久久久视频综合| 久久久久久久久久成人| 大香蕉97超碰在线| 69精品国产乱码久久久| 久久婷婷青草| 国产成人a∨麻豆精品| 一级,二级,三级黄色视频| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 精品国产露脸久久av麻豆| 青春草国产在线视频| 一级毛片 在线播放| 高清视频免费观看一区二区| 亚洲四区av| 国产熟女午夜一区二区三区 | 欧美另类一区| .国产精品久久| 韩国av在线不卡| 日韩大片免费观看网站| 国产精品99久久久久久久久| 国内精品宾馆在线| 国产一区二区在线观看日韩| 亚洲精品久久成人aⅴ小说 | 国产伦理片在线播放av一区| 婷婷色综合www| 亚洲色图 男人天堂 中文字幕 | 十八禁网站网址无遮挡| 五月天丁香电影| av福利片在线| 国产av一区二区精品久久| videossex国产| 在线观看免费日韩欧美大片 | 久久综合国产亚洲精品| 午夜福利在线观看免费完整高清在| 婷婷色av中文字幕| 大片电影免费在线观看免费| videosex国产| 青春草国产在线视频| 久久人人爽人人爽人人片va| 久久女婷五月综合色啪小说| 人妻系列 视频| 爱豆传媒免费全集在线观看| 黄色配什么色好看| 亚洲欧美一区二区三区国产| www.色视频.com| 在线精品无人区一区二区三| av女优亚洲男人天堂| 亚洲欧洲国产日韩| 赤兔流量卡办理| 亚洲四区av| 日本wwww免费看| 亚洲无线观看免费| 国产片特级美女逼逼视频| 亚洲国产av影院在线观看| 国产伦理片在线播放av一区| 下体分泌物呈黄色|