• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ore genesis of Badi copper deposit,northwest Yunnan Province,China:evidence from geology, fluid inclusions,and sulfur,hydrogen and oxygen isotopes

    2018-08-30 09:47:32HejunYinJianguoHuangTaoRen
    Acta Geochimica 2018年4期

    Hejun Yin?Jianguo Huang?Tao Ren

    Abstract The Badi copper deposit is located in Shangjiang town,Shangri-La County,Yunnan Province.Tectonically,it belongs to the Sanjiang Block.Vapor–liquid two-phase fluid inclusions,CO2-bearing fluid inclusions,and daughter-bearing inclusions were identified in sulfide-rich quartz veins.Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids:(1)low-temperature,low-salinity fluid;(2)medium-temperature,low salinity CO2-bearing;and(3)high-temperature,Fe-rich,high sulfur fugacity.The δ18O values of chalcopyritebearing quartz ranged from 4.96‰ to 5.86‰,with an average of 5.40‰.The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from-87‰ to-107‰,with an average of-97.86‰.These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water.The δ34S values of chalcopyrite ranged from 13.3‰to 15.5‰,with an average of 14.3‰.Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater.Various fluid inclusions coexisted in the samples;similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system.Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.

    Keywords Badi copper deposit·Fluid inclusion ·Sulfur isotope·Hydrogen and oxygen isotope·Ore genesis

    1 Introduction

    The Sanjiang metallogenic belt is located in the eastern part of the Tethys tectonic domain.The belt underwent tectonic evolution during the Late Paleozoic to Mesozoic Tethys subduction orogeny and the Cenozoic collision orogeny (Wang et al.2009;Liu 1983;Xu et al.2012,2015).The Sanjiang metallogenic belt includes four secondary metallogenic belts:the Dege-Xiangcheng Cu–Pb–Zn–Ag metallogenic belt(DXMB),the Jinsha River-Ailaoshan Au–Cu–Ptmetallogenicbelt(JAMB),the Jomda-Weixi-Lüchun Fe–Cu–Pb–Zn metallogenicbelt(JWMB),and the Changdu-Lanping-Puer Cu–Pb–Zn–Ag metallogenic belt(CLMB).DXMB includes the Zhuoma and Lannitang epithermal copper polymetallic deposit(Liu et al.2016;Gou et al.2010),the Pulang and Xuejiping porphyry copper deposit(Li et al.2011;Leng et al.2012),and the Hongshan and Langdu skarn copper deposit(Zu et al.2015;Jin et al.2013).In JAMB,the representative deposits include the Donggualin gold deposit,the Yangla copper deposit,and the Sanjiacun Pb–Zn deposit(Pan et al.2000).The Laojunshan VHMS massive sulfide Pb–Zn deposit and Zuna SEDEX Ag–Pb–Zn deposit(Feng et al.2011)are the representative deposits in JWMB.CLMB includes the Yulong and Narigongma porphyry copper deposit and the Jinding Pb–Zn deposit(Tang et al.2006).The Badi copper deposit belongs to JAMB.The deposit is a recent prospecting discovery.No relevant article has yet been published about the Badi deposit,and ore-forming conditions,ore-controlling factors, and precipitation mechanisms are still unknown.In this paper,we use fluid inclusion microthermometricdata and Raman spectroscopy,as well as sulfur,oxygen,and hydrogen isotope compositions to constrain the origin,nature,and evolution of ore-forming fluids and then discuss ore-forming mechanisms and ore genesis.

    1.1 Geologic setting

    The Badi copper deposit is located east of the Jinsha River,in southeast of Shangri-La County,Yunnan Province(Fig.1a).Tectonically,it is situated in the Qinghai-Tibet-Yunnan sub block(Hu et al.2005;Shao 1989).The Shigu metamorphic belt is exposed in the Jinsha River geosyncline fold(Ren 1980)and includes the Proterozoic Shigu group and Cambrian to Triassic strata.The Shigu metamorphic belt is connected with the Diancangshan metamorphic rocks in Eryuan County.The belt is bounded by the Jinsha River fault to the west and Shigu-Judian fault to the east.The Paleozoic rocks belong to platform-type clastic,carbonate,and basic volcanic rocks,and the rock sequence is similar to the stratigraphic units of the Yangtze Platform.Therefore,it is generally believed that Shigu metamorphic rock is a part of the crystalline basement of the Yangtze Block(Zhai et al.1993).The Shigu Group,with a thickness of about 10,000 meters,can be divided into the Yangpo,Longba,and Tacheng Formations from bottom to top(Fig.2).According to the plagioclase-amphibolite Sm–Nd isochrone age of 1369.8 to 1343.8 Ma,predecessors determined the Yangpo Formation is Paleoproterozoic(Li 2003;Zhai et al.1990).

    Fig.1 a Regional geological map of the Badi region(after Li et al.2013);b geological map of the Badi copper deposit;c the measured geological profile in the Badi mine

    Fig.2 The stratigraphic column figure of the Badi deposit

    1.2 Geology of the Badi deposit

    The strata exposed in the Badi deposit are predominantly upper Proterozoic Shigu Group and can be divided into three sets:Ptsh3-1,Ptsh3-2a,and Ptsh3-2b(Cui et al.2014).Ptsh3-1consists mainly of grayish green to dark gray sericite microcrystalline schist,sericite microcrystalline quartz schist,and sericite phyllite.According to mineral and lithological characteristics,Ptsh3-2a(Fig.1b,c)can be subdivided into three members from bottom to top:a gray to dark sericite microcrystalline schist and quartz microcrystalline schist,with occasional meta-basic rock and quartz lens;the main ore host strata of gray to green sericite quartzite microcrystalline schist,with a partial basalt mezzanine,and with several 0.7 to 8 m layers containing copper-bearing quartz veins;and a dark sericite microcrystalline schist and sericite quartz schist.At the top of Ptsh3-2,copper-bearing quartz occurring as lenses has thickness of 0.79 to 1.97 m.Ptsh3-2bconsists of gray to grayish green quartz microcrystalline schist.The Upper Cambrian Yinchuanggou Formation consists of a medium thickness of light to gray pyrite-bearing dolomite.Due to metamorphism,the strata display various scales of fold structures(Fig.3b–d).The arc-shaped Shigu-Qizong fault passes through the east side of the mine.

    The ore bodies in the Badi copper deposit are mainly hosted in the sericite quartz microcrystalline schist.The near-ore wall rocks are mostly chlorite and silicates,with sulfide-bearing quartz veins.In the mine,one copper mineralization belt(Fig.1b)was found along a NW–SE trend,with a length of more than 3000 m,width of 50 to 80 m,and a maximum thickness of 100 m.In the southeast and northwest sections of the belt,a number of industrial ore bodies have been delineated.The ore bodies have complex shapes and various thicknesses.V1ore body,located between prospecting lines 0 and 1,presents lenticular bedding with the stratum(Fig.1c).The ore body is 100 m long,with thickness of 3 to 5 m.Copper grades vary from 0.12%to 5%,with an average of 3.14%.Copper metal reserve is more than 30,000 t.

    According to mineral assemblage,the ore in the mine was divided into two types:(1)Sericite-sulfide type:mainly composed of chalcopyrite,sericite,chlorite,quartz,and cordierite.The metamorphic mineral assemblage is sericite+chlorite+quartz,which belongs to low green schist facies.A large number of lenticular and gut-shaped quartz and chlorite veins run through the schist;spotty chlorite was also observed in the quartz veins.Chalcopyrite occurs as disseminated veinlets in the quartz veins or along the contact zone between coarse quartz veins and sericites.Little massive chalcopyrite co-exists with pyrite(Fig.3e,f,l).Pyrite occurs as idiomorphic or hypidiomorphic granular crystals.This mineral assemblage contains a lot of malachite(Fig.3a,e,f),which is the secondary copper mineral in the ore.(2)Quartz-sulfide type:the main ore type in the deposit.Mineral association is sericite+quartz,with quartz occurring as veins,lenses(Fig.3d,g,i).The quartz measured in width 2 to 3 m and 10 to 15 m in length.Disseminated,veinlet,and locally spotted chalcopyrite was observed in quartz veins.According to the sequence of mineral precipitation,we present a mineral paragenetic sequence for the Badi copper deposit(Table 1).

    2 Sampling and analytical methods

    The samples for fluid inclusion microthermometric study are sulfide-rich quartz veins from drill core between prospecting lines 0 and 1.More than 20 doubly polished thin sections were prepared for optical observation;12 representative samples were chosen for laser Raman spectroscopic and microthermometric analyses.Microthermometric measurements were carried out using a Linkam THMS600 heating-freezing stage with a temperature range from-195 to+600°C at the State Key Laboratory for Mineral Deposit Research,Nanjing University.The accuracy of the measured temperatures was approximately ±0.2°C during both cooling and heating from 100 to 600 °C.The salinities of NaCl–H2O inclusions were calculated using the final melting temperatures of ice(Lu et al.2004;Bodnar 1993;Liu and Shen 1999;Davis et al.1990);those of CO2-bearing fluid inclusions were calculated using the melting temperatures of clathrate(Collins 1979;Bodnar 1989).The compositions of single fluid inclusions were identified by a Renishaw RM2000 Raman microprobe equipped with an Ar ion laser with a surface power of 5 mW for exciting the radiation(514.5 nm).

    The samples for sulfur isotope analyses were taken from both surface exposures and a drill core in the Badi deposit.Five samples(LB81 to LF003)were separated from quartzsulfide type ore;others were separated from sericite-sulfide type ore.Sulfide grains were carefully hand-picked under a binocular microscope after the samples had been crushed,cleaned,and sieved to 40 to 60 mesh,resulting in a separate of 99%pure sulfides,using a Finnigan MAT251EM mass spectrometer at the Analytical Laboratory of the Beijing Research Institute of Uranium Geology.Sulfur isotope ratios are reported as δ34S relative to the Canyon Diablo Troilite(CDT).Precision for sulfur isotopic analysis was better than± 0.2‰;specific methods for sulfur isotope analysis followed the description by Liu et al.(2013).

    Fig.3 a Malachite in the mine;b,c small folds of the Badi deposit;d interbedded quartz vein;e,f,disseminated chalcopyrite texture and malachite aggregation;g disseminated chalcopyrite in the quartz vein;h the pyrite veins in the schist;i film-like chalcopyrite on the quartz surface;j spotted chalcopyrite in drilling core;k,l chalcopyrite,pyrite under the microscope

    Five samples of quartz-sulfide type ore(LB018 to LB022)and two samples of sericite-sulfide type ore were prepared for hydrogen and oxygen isotope analysis.Oxygen isotopic compositions of the quartz,and hydrogen isotopic compositions of water in fluid inclusions of quartz were determined using a MAT 253EM mass spectrometer at the Analytical Laboratory of the Beijing Research Institute of Uranium Geology.Oxygen gas was generated from the samples by quantitative reaction with BrF5in externally heated nickel vessels.Hydrogen in the extracted water from the fluid inclusions within quartz separates was replaced by zinc at about 600°C and released for mass spectrometry.The δ18O values of quartz and δD values of water were reported relative to Vienna standard mean ocean water(V-SMOW);analytical precision was better than ± 0.2‰ for δ18O values of quartz,and ± 2‰ for δD values of water.Detailed analytical procedures followed those described by Liu et al.(2013).

    3 Analytical results

    3.1 Fluid inclusion petrography and microthermometry

    Samples collected from sulfide-bearing quartz veins were used for fluid inclusion study.According to the phase typesand filling characteristics of the fluid inclusions at room temperature and the phase transition in the cooling process,the fluid inclusions can be divided into the following types:

    I-type vapor–liquid two-phase fluid inclusionsThis type is most abundant in ore-bearing quartz veins.These fluid inclusions occur as clusters or isolated,with diverse shapes,generally from 5 to 10 μm in size.According to the liquid/vapor phase volume ratios,they were further divided into two subtypes.

    Ia-type liquid-rich fluid inclusions(Fig.4a)are usually isolated or clustered.Few co-exist with II-type fluid inclusions.Homogenization temperatures were from 116.4 to 322.0°C,mainly concentrated in range of 163.1 to 214.3°C.Ice-melting temperatures were -10.7 to-0.20°C(Fig.6),with corresponding salinities from 0.35 wt%to 14.67 wt%NaCl equivalent(Fig.7).

    Ib-type vapor-rich fluid inclusions(Fig.4b)These are rare;only three fluid inclusions of this type were found.At room temperature,vapor and liquid phases existed.Their shapes are flat oval,with vapor/liquid volume ratios at or above 2:1,and size of 5 to 10 μm.These inclusions were observed to coexist with Ia-type inclusions.At temperatures of 193 to 457°C(Fig.5),they homogenized to one phase.Ice-melting temperatures were-6.9 to-4.8°C(Fig.6);calculated salinities ranged from 7.59 wt%to 10.35 wt%NaCl equivalent(Fig.7).One fluid inclusion homogenized to the vapor phase,with a higher homogenization temperature. The other two inclusions homogenized to the liquid phase,with a lower homogenization temperature.

    II-type CO2-bearing fluid inclusionsAccording to the phase at room temperature,these were further divided into two subtypes:

    IIa-type CO2-bearing two-phase inclusions(Fig.4c)These inclusions were two-phase at room temperature,mostly present as flat ovals,5 to 15 μm.Vapor/liquid ratios were greater than 2:1.When cooling to about-0.4°C,these fluid inclusions formed new bubbles in the CO2phase and the original VCO2changed to LCO2+VCO2.At the same time, the inclusions transformed from two-phase(LH2O+VCO2) to three-phase (LH2O+LCO2+VCO2).Their homogenization temperatures were 211.7 to 269.0°C(Fig.5),with salinities of 0.53 to 0.71 wt%NaCl equivalent(Fig.7).

    IIb-typeCO2-richthree-phaseinclusions(LH2O+LCO2+VCO2);(Fig.3d)presented three phases at room temperature.All of these inclusions were independent in sulfide quartz,with a size of 5 to 10 μm.Eutectic temperatures were between-59.3 and-56.7°C,indicating the existence of vapor content other than CO2.

    Fig.4 a Liquid-rich fluid inclusions;b vapor-rich fluid inclusions;c inclusions with a single CO2bubble at room temperature and an aqueous phase;d inclusions with CO2liquid and vapor phase;e fluid inclusions contain one pyrite daughter mineral;f speculate that the daughter mineral is chalcopyrite;Op:opaque daughter mineral

    Fig.5 Frequency histogram of total homogenization temperatures(°C;burst temperature is excluded)

    Temperatures of CO2clathrate samples varied from 3.0 to 8.4 °C(n=10),mainly concentrated at 5.0 to 8.0 °C;corresponding salinities varied from 3.15 wt%to 11.89 wt%NaCl equivalent(Fig.7),concentrated at 3.15 wt%to 4.62 wt% NaCl equivalent.There were two methods of homogenization for IIb-type fluid inclusions:(1)homogenization to the vapor phase;partial homogenization temperatures were 18.7 to 25.8°C and (2)homogenization to the liquid phase;partial homogenization temperatures were 21.5 to 30.4°C.These inclusions had a f i nal homogenization temperature range of 156.6 to 296.3 °C,concentrated at 193.4 to 296.3 °C(Table 2).

    III-typedaughtermineral-bearing fluidinclusions(Fig.4e,f)had vapor,liquid,and solid phases and generally irregular morphology,with a size of 5 to 20 μm.Daughter minerals in these inclusion samples were all opaque,and cubic or triangular.The ice melt temperatures were-9.7 to-2.8°C(Fig.6),with salinity of 4.55 wt%to 13.62 wt%NaCl equivalent(Fig.7).In heating,the bubble usually disappeared first,then the inclusions burst at a temperature varying from 307.6 to 491.3°C(Table 2).

    Fig.6 Frequency histogram of ice-melting temperature(°C)

    3.2 Laser Raman spectroscopic analyses

    Fig.7 Frequency histogram of salinities(wt%NaCl eq.)

    The Raman results show that the liquid phase of the I-type f l uid inclusions was H2O,and the vapor phase(Fig.8a,b)had mainly H2O(3473.2 cm-1)and a small amount of CO2(1386.3,1284 cm-1).The vapor phase of IIa-type inclusions(Fig.8c,d)contained mainly H2O and CO2,with a small amount of CH4(2922.8 cm-1)locally.The vapor phase of the IIb-type fluid inclusions(Fig.8e)was mainly CO2,with a small amount of CH4(2913 cm-1)and N2(2328.2 cm-1).In III-type multiphase inclusions(Fig.8f),the cubical opaque daughter mineral was identified as pyrite(354 and 356 cm-1).The round and triangular opaque mineral particles could be chalcopyrite,but the particles were too small to show the characteristic Raman spectra.In this study,calcite minerals(1087 cm-1)were also identified in the multiphase inclusion(Fig.8f).

    3.3 Sulfur isotopes

    Chalcopyrite is the main sulfide in the Badi copper deposit.δ34S values of the chalcopyrite had a narrow range of 13.3‰ to 15.5‰.Sulfur isotope values of five chalcopyrite samples separated from quartz-sulfide type ore were between 13.9‰ and 14.9‰,with an average of 13.92‰.Sulfur isotope values of five chalcopyrite samples separated from sericite-sulfide type ore were between 14.4‰and 15.5‰,with an average of 13.92‰.

    3.4 Oxygen and hydrogen isotopes

    δD values of water in fluid inclusions ranged from-87‰to-107‰;δ18O values of quartz were 14.4‰ to 15.3‰(Table 3).According to the oxygen isotope fractionation equation of mineral–water systems—1000lnαquartz-wa-ter=3.38 × 106/T2-3.40(Clayton et al.1972)—and the formation temperatures inferred from homogenization temperatures of fluid inclusions,δ18O values of the ore forming fluids were calculated to vary from 4.96‰to 5.86‰.

    4 Discussion

    4.1 Characteristics of the ore-forming fluids

    In this study,we obtained homogenization temperature and salinity data from 26 vapor–liquid two-phase fluid inclusions,14 CO2-bearing fluid inclusions(including three phase and two-phase)and nine daughter mineral-bearing fluid inclusions.The ore-forming fluids of the Badi deposit plot in three different fields in the homogenization temperature(Th)versus salinity diagram(Fig.9):

    Table 2 Summary of microthermometric data on fluid inclusions of the Badi copper deposit

    Fig.8 Raman spectra of fluid inclusions.a CO2and H2O in the vapor phase of Ia type;b CO2and H2O in the vapor phase of Ib type;c,d CO2,H2O and CH4in the vapor phase of IIa type;e CO2,H2O,CH4,N2 in the vapor phase of IIb type;f FeS and calcite daughter minerals from III type

    (1) H2O–NaCl fluids.These were divided into two subtypes.Low temperature ore-forming fluid with homogenization temperatures concentrated from 150 to 220°C and salinities from 0.35 wt% to 14.67 wt%NaCl equivalent.These data mainly concentrated in the C region of Fig.9,a lowtemperature,low to middle salinity fluid.Fluid with homogenization temperatures from 254 to 322°C and salinities from 0.53 wt%to 8.00 wt%NaCl equivalent was defined as mid-temperature H2O–NaCl fluid in this paper.

    (2) CO2-bearing ore-forming fluids.These correspond to IIb-type and distributed in the B region of Fig.9.Homogenization temperatures varied from 156.6 to 296.3°C, and salinities from 3.15 wt%to 11.89 wt%NaCl equivalent.

    (3) Ore-forming fluids of high Fe content and high sulfur fugacity. This type of fluid inclusion had homogenization temperatures of 307.6 to 491.3°C,and salinities of 4.55 wt%to 13.62 wt% NaCl equivalent,distributed near the critical curve.The fluid inclusions contained daughter pyrite.In Fig.9 these data mainly distributed in the A region.

    4.2 Origin and depositional mechanism of the oreforming materials

    Chalcopyrite is most abundant sulfide in the Badi deposit.δ34S values of the chalcopyrite were 13.3‰ to 15.5‰(Table 3).This suggests an uniform sulfur source in the Badi deposit.The δ34S of sulfide can represent the δ34ΣS composition of the ore-forming fluid under the condition of low oxygen fugacity(Reed and Palandri 2006;Ohmoto 1972).The δ34ΣS of hydrothermal fluids of the Badi deposit are approximately equal to the δ34S values ofchalcopyrite (Fig.10),a value consistent with the Proterozoic seawater sulfur isotope value(10‰ to 18‰,Strauss 1993),suggesting that sulfur in the Badi deposit is mainly from seawater.As shown in Table 2,the sulfur isotope values of chalcopyrite from quartz-sulfide type ore were 13.9‰ to 14.9‰,with an average of 13.92‰.Sulfur isotope values of chalcopyrite from sericite-sulfide type ore were 14.4‰ to 15.5‰,with an average of 14.70‰.Quartzsulfide ore formed later than sericite-sulfide ore based on petrographic observation.Sulfur isotopic values from early to late display a decreasing trend that could be a result of the reservoir effect.

    Table 3 Summary of sulfur isotope cmpositions of the Badi copper deposit

    Fig.9 Homogenization temperature(Th)versus salinity diagram for fluid inclusions(FIs)from the Badi copper deposit

    Fig.10 Frequency histogram of δ34S values for sulfide minerals from the Badi copper deposit

    In Fig.11,the O–H isotopic values of the ore-forming f l uid plot mainly in the transition field of magmatic water.Therefore,we suggest that the fluid in the ore-forming stage of this deposit is mainly mixed water.δD values decreased from sample LB022 to LB018,while δ18O values did not change much(Table 4).The reason for this may be a change in oxygen fugacity in the fluid;hydrogen isotope fractionation between water and reduced species,such as CH4or H2;or the mixing of rainwater(Taylor 1974;Mi et al.2017).The hydrogen isotope values were-87‰ to-110‰,with an average of-98.6‰ in quartz-sulfide type ore samples;oxygen isotope values were 4.95‰ to 5.56‰,with an average of 5.26‰.In sericite-sulfide type ore,hydrogen isotope values were-89‰ to-103‰,with an average of-96‰,and oxygen isotope value were 5.66‰ to 5.86‰,with an average of 5.76‰.Quartz samples separated from quartzsulfide veins had lower hydrogen and oxygen isotope values than those separated from sericite-sulfide ore.This may be due to increasing input of meteoric water in the late oreforming stage(Fig.11).

    Differences of vapor–liquid ratios were detected in I-type vapor–liquid two-phase inclusions.In the same homogenization temperature range, fluid inclusions with higher vapor–liquid volume ratios homogenized to vapor phase,while lower vapor–liquid ratios homogenized to liquid phase.Ia-type and Ib-type as well as III-type fluidinclusions seem closely related in space,often appearing in the same field.Petrography and temperature data suggest f l uid inclusions hosted in ore-bearing vein may have been captured in the boiling system(Bisehoff 1991;Zhang 1997;Qi et al.2007;Zhang et al.2004).During the fluid boiling process,escape of CO2and other volatiles can effectively reduce the temperature and increase the pH of ore-forming fluid(Li et al.2007).On the other hand,it may form a super saturated fluid and trigger sulfide deposition(Chen et al.2004,2007).

    Table 4 Summary of oxygen and hydrogen isotope data of the Badi copper deposit

    Fig.11 δDH2O–δ18OH2Oplots of fluid inclusions at the Badi copper deposit

    5 Conclusions

    (1) The Badi copper deposit contains four types of fluid inclusions in sulfide-bearing veins.They are vapor–liquid two-phase fluid inclusions with homogenization temperatures of 116.4 to 457.0°C;CO2-bearing two-phase fluid inclusions with homogenization temperatures of 211.7 to 269°C;CO2-rich three phase fluid inclusions with partial homogenization temperatures of 21.5 to 30.4°C and final homogenization temperatures of 156.6 to 296.3°C;and daughter mineral–bearing three-phase fluid inclusions with burst temperatures of 307.6 to 491°C.The vapor phase of fluid inclusion samples from the Badi copper deposit mainly consisted of H2O and CO2,with small amounts of N2and CH4;the main component of the liquid phase was H2O.

    (2) Isotope geochemistry results suggest that sulfur mainly derived from contemporaneous sea water,and the ore-forming fluids were a mixture between magmatic fluid and meteoric water.Deposition of sulfide minerals mainly resulted from fluid boiling.

    AcknowledgementsThis research was jointly supported by the Geological Survey of China(Grant No.1212011140050)and the National Natural Science Foundation of China(Grant No.41663006).We are grateful to Prof.Yuzhao Hu and M.S Jie Su for assistance during the field investigations.

    videosex国产| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 欧美乱色亚洲激情| 午夜福利成人在线免费观看| 国产成人免费无遮挡视频| 色播在线永久视频| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区色噜噜| 久久久久亚洲av毛片大全| 精品国产美女av久久久久小说| 国产精品日韩av在线免费观看 | 91大片在线观看| 国产伦一二天堂av在线观看| 波多野结衣高清无吗| 国产精品,欧美在线| 亚洲国产精品成人综合色| 日本三级黄在线观看| 精品少妇一区二区三区视频日本电影| 搡老岳熟女国产| 欧美日韩瑟瑟在线播放| 国产av又大| 美女扒开内裤让男人捅视频| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人| 香蕉国产在线看| 午夜免费观看网址| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美精品永久| 一本久久中文字幕| 天堂√8在线中文| 午夜免费成人在线视频| 亚洲色图av天堂| 亚洲一区高清亚洲精品| 男女床上黄色一级片免费看| 色老头精品视频在线观看| 麻豆av在线久日| 一a级毛片在线观看| 日韩精品青青久久久久久| 欧美一级毛片孕妇| 久久久精品欧美日韩精品| 成人国产综合亚洲| 中文字幕色久视频| 国产精品一区二区三区四区久久 | 女警被强在线播放| 99re在线观看精品视频| 欧美国产精品va在线观看不卡| 日本在线视频免费播放| 成年人黄色毛片网站| 18禁国产床啪视频网站| 窝窝影院91人妻| 午夜日韩欧美国产| 在线观看午夜福利视频| 日本三级黄在线观看| 欧美日韩亚洲综合一区二区三区_| 日韩精品免费视频一区二区三区| 久久婷婷成人综合色麻豆| 午夜精品国产一区二区电影| 日韩免费av在线播放| 长腿黑丝高跟| 免费在线观看黄色视频的| 中文字幕久久专区| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 国产视频一区二区在线看| 亚洲成人精品中文字幕电影| 男人舔女人下体高潮全视频| 国产精品久久久av美女十八| 美女免费视频网站| 亚洲电影在线观看av| 国产1区2区3区精品| 久久青草综合色| 精品国产国语对白av| 欧美性长视频在线观看| 国产av在哪里看| 嫩草影院精品99| 无人区码免费观看不卡| 欧美乱码精品一区二区三区| 精品国产一区二区三区四区第35| 欧美成人一区二区免费高清观看 | 国产xxxxx性猛交| 免费观看人在逋| 女人被狂操c到高潮| 国产成+人综合+亚洲专区| 国产av在哪里看| 亚洲九九香蕉| 国产成人啪精品午夜网站| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 亚洲伊人色综图| 国产精品av久久久久免费| 国产区一区二久久| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av香蕉五月| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 色av中文字幕| 一边摸一边做爽爽视频免费| 一二三四社区在线视频社区8| 麻豆国产av国片精品| 欧美最黄视频在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产精品麻豆| 一个人免费在线观看的高清视频| 日日干狠狠操夜夜爽| 黄色片一级片一级黄色片| 国产亚洲精品第一综合不卡| 美女高潮到喷水免费观看| 97人妻精品一区二区三区麻豆 | 最新美女视频免费是黄的| 国产av又大| 少妇裸体淫交视频免费看高清 | 亚洲av成人一区二区三| 少妇 在线观看| 国产亚洲av高清不卡| 国产熟女xx| 国产精品香港三级国产av潘金莲| 国产成人免费无遮挡视频| 在线播放国产精品三级| 亚洲在线自拍视频| 国产熟女xx| 亚洲精品中文字幕在线视频| 波多野结衣高清无吗| 俄罗斯特黄特色一大片| 久久久久国产一级毛片高清牌| 欧美激情久久久久久爽电影 | 中文字幕色久视频| 亚洲电影在线观看av| 黄色视频不卡| 欧美成人免费av一区二区三区| 精品久久久精品久久久| 亚洲视频免费观看视频| 精品一区二区三区四区五区乱码| 香蕉久久夜色| 国产av一区二区精品久久| 久久久久九九精品影院| 欧美乱码精品一区二区三区| 午夜免费观看网址| 免费不卡黄色视频| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 一级黄色大片毛片| 露出奶头的视频| 可以免费在线观看a视频的电影网站| 又黄又爽又免费观看的视频| 欧美激情 高清一区二区三区| 国产av又大| 麻豆一二三区av精品| 国产午夜福利久久久久久| 亚洲av五月六月丁香网| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区精品| 十八禁人妻一区二区| 国产亚洲欧美98| 国产成人免费无遮挡视频| 乱人伦中国视频| 十八禁网站免费在线| 日韩av在线大香蕉| 可以在线观看毛片的网站| 久久人人精品亚洲av| 免费看十八禁软件| 午夜福利影视在线免费观看| 国产精品一区二区三区四区久久 | 99精品久久久久人妻精品| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜| 叶爱在线成人免费视频播放| 黄色丝袜av网址大全| 国产精品综合久久久久久久免费 | 色播在线永久视频| 亚洲男人天堂网一区| 三级毛片av免费| www日本在线高清视频| 精品乱码久久久久久99久播| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 叶爱在线成人免费视频播放| 精品国内亚洲2022精品成人| 日韩精品免费视频一区二区三区| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 长腿黑丝高跟| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 丝袜人妻中文字幕| av电影中文网址| 欧美午夜高清在线| 99久久综合精品五月天人人| 亚洲全国av大片| 国产精品久久久久久人妻精品电影| 免费观看精品视频网站| 黄色女人牲交| 日韩一卡2卡3卡4卡2021年| 久久国产精品影院| 日韩欧美免费精品| 91精品国产国语对白视频| 在线观看免费视频网站a站| 69精品国产乱码久久久| 午夜激情av网站| 亚洲中文av在线| 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| 成年人黄色毛片网站| 超碰成人久久| 久久久久久大精品| av天堂久久9| av中文乱码字幕在线| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 美女扒开内裤让男人捅视频| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 亚洲av五月六月丁香网| 黄色视频,在线免费观看| 久久人妻av系列| 久久久国产欧美日韩av| 久久久精品国产亚洲av高清涩受| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av高清一级| 日本黄色视频三级网站网址| 久久久国产精品麻豆| svipshipincom国产片| 亚洲精品在线观看二区| 好男人在线观看高清免费视频 | 日本 av在线| 国产熟女午夜一区二区三区| 久久香蕉精品热| 国产精品一区二区免费欧美| av有码第一页| 久久久国产成人免费| 丝袜美足系列| 日韩精品中文字幕看吧| 日本三级黄在线观看| 成人18禁在线播放| 欧美日本视频| 12—13女人毛片做爰片一| 精品久久久久久,| 19禁男女啪啪无遮挡网站| 无人区码免费观看不卡| 美国免费a级毛片| 乱人伦中国视频| 日本a在线网址| 精品久久蜜臀av无| 久久影院123| 长腿黑丝高跟| 电影成人av| 久久人人爽av亚洲精品天堂| 国产高清有码在线观看视频 | 亚洲成国产人片在线观看| 大码成人一级视频| 国产成人免费无遮挡视频| 午夜两性在线视频| 欧美老熟妇乱子伦牲交| 电影成人av| av福利片在线| 欧美午夜高清在线| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品中文字幕在线视频| 99精品欧美一区二区三区四区| 精品欧美国产一区二区三| 精品一区二区三区四区五区乱码| 色播在线永久视频| 搡老岳熟女国产| 视频在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 91字幕亚洲| 制服丝袜大香蕉在线| av天堂久久9| 美女午夜性视频免费| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| 男人操女人黄网站| 亚洲国产精品合色在线| 亚洲精品久久成人aⅴ小说| 国产成人免费无遮挡视频| 搞女人的毛片| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕| 69精品国产乱码久久久| 看黄色毛片网站| 日本欧美视频一区| 久久精品国产亚洲av高清一级| 99香蕉大伊视频| 人妻丰满熟妇av一区二区三区| av在线播放免费不卡| 国产区一区二久久| 不卡一级毛片| 极品教师在线免费播放| 可以在线观看毛片的网站| 欧美在线黄色| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 两个人视频免费观看高清| 久久久久久久久中文| 长腿黑丝高跟| 夜夜躁狠狠躁天天躁| 国产一卡二卡三卡精品| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| 婷婷丁香在线五月| 丁香欧美五月| 亚洲欧美精品综合久久99| 国产精品影院久久| 性少妇av在线| 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| av免费在线观看网站| 男女之事视频高清在线观看| 国产亚洲精品一区二区www| 国产午夜精品久久久久久| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 黑人欧美特级aaaaaa片| 99精品欧美一区二区三区四区| 伦理电影免费视频| 久久中文看片网| www.熟女人妻精品国产| 亚洲精品久久成人aⅴ小说| 亚洲欧美精品综合久久99| 午夜福利18| 性少妇av在线| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 纯流量卡能插随身wifi吗| 亚洲五月天丁香| 日韩大尺度精品在线看网址 | 一边摸一边抽搐一进一出视频| 久久久久亚洲av毛片大全| 制服丝袜大香蕉在线| 两个人看的免费小视频| 一级a爱视频在线免费观看| 人人妻人人爽人人添夜夜欢视频| 国产成人欧美在线观看| 在线观看www视频免费| 亚洲五月天丁香| 无限看片的www在线观看| 欧美日本中文国产一区发布| 在线播放国产精品三级| 搡老岳熟女国产| 精品国产一区二区久久| 欧美精品亚洲一区二区| 国产免费av片在线观看野外av| 久久精品国产亚洲av高清一级| av片东京热男人的天堂| av免费在线观看网站| videosex国产| 精品日产1卡2卡| 亚洲精品国产区一区二| 国产亚洲精品久久久久5区| 制服人妻中文乱码| 亚洲成人国产一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦 在线观看视频| 亚洲 欧美一区二区三区| 天堂动漫精品| 久久 成人 亚洲| 久久久久久国产a免费观看| 中文字幕av电影在线播放| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 成人免费观看视频高清| 亚洲av成人一区二区三| 日本免费a在线| 免费在线观看视频国产中文字幕亚洲| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 满18在线观看网站| 午夜亚洲福利在线播放| 欧美日韩亚洲综合一区二区三区_| 日韩欧美国产在线观看| 精品人妻1区二区| 日韩高清综合在线| 精品国产国语对白av| 国产成年人精品一区二区| 国产成人欧美在线观看| 天天躁夜夜躁狠狠躁躁| 热99re8久久精品国产| 亚洲 国产 在线| 国产麻豆69| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 涩涩av久久男人的天堂| 欧美色视频一区免费| 一二三四在线观看免费中文在| 国产亚洲欧美精品永久| 日日夜夜操网爽| 午夜视频精品福利| 亚洲七黄色美女视频| 性少妇av在线| 国产高清有码在线观看视频 | 精品免费久久久久久久清纯| 亚洲人成电影免费在线| 国产伦一二天堂av在线观看| 婷婷六月久久综合丁香| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 亚洲黑人精品在线| 在线观看舔阴道视频| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 此物有八面人人有两片| 欧美成狂野欧美在线观看| 午夜激情av网站| 欧美日韩乱码在线| 日本三级黄在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 亚洲av美国av| av片东京热男人的天堂| 亚洲中文字幕日韩| 国产av精品麻豆| 一区二区三区国产精品乱码| 男女床上黄色一级片免费看| 大码成人一级视频| 韩国精品一区二区三区| 欧美成人一区二区免费高清观看 | 九色亚洲精品在线播放| 久久中文字幕人妻熟女| 一区二区三区国产精品乱码| 91精品三级在线观看| 91大片在线观看| 婷婷六月久久综合丁香| 极品人妻少妇av视频| 国产一区二区三区视频了| 人成视频在线观看免费观看| 搞女人的毛片| 亚洲中文av在线| 欧美久久黑人一区二区| 一a级毛片在线观看| 国产熟女午夜一区二区三区| 激情在线观看视频在线高清| 黑丝袜美女国产一区| 欧美大码av| 久久久国产欧美日韩av| 操出白浆在线播放| 免费无遮挡裸体视频| 欧美午夜高清在线| 国产亚洲欧美98| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 国产视频一区二区在线看| av网站免费在线观看视频| 91九色精品人成在线观看| 99国产综合亚洲精品| 女性被躁到高潮视频| 无限看片的www在线观看| 日韩视频一区二区在线观看| 日韩精品中文字幕看吧| 两性夫妻黄色片| 一区二区三区高清视频在线| 香蕉国产在线看| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 亚洲国产欧美网| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 日本欧美视频一区| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| 99riav亚洲国产免费| 9热在线视频观看99| 亚洲狠狠婷婷综合久久图片| 亚洲在线自拍视频| 亚洲视频免费观看视频| 欧美中文日本在线观看视频| 乱人伦中国视频| 国产国语露脸激情在线看| 色哟哟哟哟哟哟| 黄片大片在线免费观看| 女同久久另类99精品国产91| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 国产欧美日韩一区二区精品| 身体一侧抽搐| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 精品国产国语对白av| 一级片免费观看大全| 老司机靠b影院| 首页视频小说图片口味搜索| 欧美老熟妇乱子伦牲交| 在线观看舔阴道视频| 色精品久久人妻99蜜桃| 亚洲 国产 在线| 欧美日韩亚洲国产一区二区在线观看| 长腿黑丝高跟| 女性被躁到高潮视频| 欧美成狂野欧美在线观看| 涩涩av久久男人的天堂| 91大片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久人妻熟女aⅴ| 无人区码免费观看不卡| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 满18在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 国产精品免费视频内射| 一本久久中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲色图 男人天堂 中文字幕| 一边摸一边做爽爽视频免费| 男人的好看免费观看在线视频 | 天堂√8在线中文| 午夜日韩欧美国产| 久久人妻熟女aⅴ| 午夜日韩欧美国产| АⅤ资源中文在线天堂| 热re99久久国产66热| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 两个人视频免费观看高清| 亚洲专区国产一区二区| 亚洲国产精品成人综合色| 成年版毛片免费区| 一级,二级,三级黄色视频| 女同久久另类99精品国产91| 大香蕉久久成人网| 老司机靠b影院| 人人妻人人澡人人看| 精品人妻1区二区| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 亚洲国产精品久久男人天堂| 午夜免费观看网址| 精品久久久久久久久久免费视频| 亚洲久久久国产精品| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 国产99久久九九免费精品| 成人免费观看视频高清| 亚洲午夜理论影院| 久久中文字幕一级| 久久久久国产精品人妻aⅴ院| 电影成人av| 国产亚洲精品久久久久久毛片| 两性夫妻黄色片| 纯流量卡能插随身wifi吗| 一进一出抽搐动态| 免费看a级黄色片| 久久久久九九精品影院| 亚洲国产欧美日韩在线播放| 男人的好看免费观看在线视频 | 欧美丝袜亚洲另类 | av有码第一页| 91精品国产国语对白视频| 国产精品爽爽va在线观看网站 | 国产一级毛片七仙女欲春2 | 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女 | 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 女人被躁到高潮嗷嗷叫费观| 三级毛片av免费| 亚洲美女黄片视频| 欧美成人免费av一区二区三区| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 免费高清视频大片| 免费无遮挡裸体视频| 精品日产1卡2卡| 黄色女人牲交| 日韩欧美免费精品| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 男女下面进入的视频免费午夜 | 女人被躁到高潮嗷嗷叫费观| 久久精品成人免费网站| 麻豆成人av在线观看| 嫁个100分男人电影在线观看| 亚洲电影在线观看av| 亚洲人成电影观看| 欧美亚洲日本最大视频资源| 久久香蕉激情| 亚洲专区中文字幕在线| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区| 日本欧美视频一区| 国产亚洲欧美精品永久| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 黄色女人牲交| 正在播放国产对白刺激| 亚洲成av片中文字幕在线观看| 亚洲 欧美一区二区三区| 香蕉丝袜av| 欧美日韩精品网址| 久久性视频一级片| 黄片播放在线免费| 国产一区在线观看成人免费| 国产人伦9x9x在线观看| 变态另类丝袜制服| 咕卡用的链子| 国内毛片毛片毛片毛片毛片| 91老司机精品| 女性生殖器流出的白浆| 两性午夜刺激爽爽歪歪视频在线观看 | 国产又色又爽无遮挡免费看| 国产成人欧美在线观看|