• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure and Luminescent Property of a Zn(II) Complex with Mixed Multi-N Donor and 2,5-Dihydroxy-terephthalic Acid Ligands①

    2018-08-17 08:01:08GUOXingZheLIJiaLeSHIShanShanZHOUHuiHANShuaiShuaiCHENShuiSheng
    結構化學 2018年7期

    GUO Xing-Zhe LI Jia-Le SHI Shan-Shan ZHOU Hui HAN Shuai-Shuai CHEN Shui-Sheng

    ?

    Synthesis, Structure and Luminescent Property of a Zn(II) Complex with Mixed Multi-N Donor and 2,5-Dihydroxy-terephthalic Acid Ligands①

    GUO Xing-Zhe LI Jia-Le SHI Shan-Shan ZHOU Hui HAN Shuai-Shuai CHEN Shui-Sheng②

    (236041)(236041)

    A new complex, [Zn2(HL)2(2,5-OH-pbda)]n(1, L = 1-(1-imidazol-4-yl)-4-(4- tetrazol-5-yl)benzene (H2L) and 2,5-OH-H2pbda = 2,5-dihydroxy-terephthalic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group21/with= 8.8101(10),= 17.105(2),= 9.4014(11) ?,= 105.704(2)o,= 1363.9(3) ?3,= 4, C14H9N6O3Zn,M= 374.64,D= 1.824 g/cm3,=mm-1,= 1.042,(000) = 756, the final= 0.0309 and= 0.1003 for 3130 observed reflections (> 2()). The H2L ligand was deprotonated to be an HL?anion, and coordinated with Zn2+to form two-dimensional (2D) Zn2(HL?)22+sheets, which were pillared by the 2,5-OH-pbda2?ligands to form athree-dimensional (3D) dmcnetwithPoint (Schl?fli) symbol of (4·82)(4·85). The large vacancy of the dmcnet is filledmutual interpenetration of another independent framework, leading to the formationof a 2-fold interpenetrating architecture. Solid state luminescent property of 1has been investigated.

    metal-organic framework, crystal structure, luminescent property;

    1 INTRODUCTION

    The design and construction of metal-organic frameworks (MOFs) have attracted great interest in the fields of coordination chemistry and crystal engineering, because MOFs have intriguing variety of topologies, fascinating structures, interesting pro- perties and potential applications for instance, in gas absorption and separation, luminescence, catalysis, molecular magnetism, sensors,[1-7]. In order to obtain desirable frameworks with specific structures and functions, the primary selection is to design organic ligands. Generally, organic tectons mainly including polyazaheteroaromatic ligands and multi- carboxylic acids with N and O coordination atoms are the most widely used linkers for the assembly of various MOFs[8-12]. As an important type of multi- dentate N donor ligand, N donor ligands are usually nitrogen heterocyclic compounds, such as pyridine, imidazole, triazole, tetrazole, and so on[13-16]. The imidazole ligands are more effective ligands to build desirable MOFs as elaborated in our recent highlight[17],and we have deliberately designed mutil-N donor ligands containing the 4-imidazolyl groups such as 1,4-di(1H-imidazol-4-yl)benzene and 1,3,5-tri(1H- imidazol-4-yl)benzene, which can exhibit diverse coordination modes, employing as not only elec- trically neutral ligands, but also as anion ligands in case of their deprotonation to be imidazolate anions[18, 19]. On the other hand, polycarboxylate compounds have served as excellent candidates for building frameworks because of their strong binding ability and variable coordination modes. In this context, we have deliberately designed a multi-N donor ligand-1-(1H-imidazol-4-yl)-4-(4H-tetrazol- 5-yl)benzene (H2L), and six coordination complexes with diverse structures were successfully constructed from mixed ligands incurporating N-donor ligands and multi-carboxylates together with zinc(II) salts by hydrothermal methods under different reaction conditions[20]. In this paper, we focus our attention on the study on reactions of H2L ligand together with 2,5-dihydroxy-terephthalic acid (2,5-OH- H2pbda) and ZnSO4·7H2O for the assembly of MOFs as an extension of our work. Herein, we report the syntheses and crystal structure of a new coordination polymer [Zn2(HL)2(2,5-OH-pbda)]n(1) based on the mix ligand strategy with H2L and 2,5-OH-H2pbda with corresponding ZnSO4·7H2O under hydrothermal conditions.

    2 EXPERIMENTAL

    2. 1 Materials and measurements

    All the commercially available chemicals and solvents were of reagent grade and used as received without further purification. Elemental analyses were performed on a Perkin-Elmer 240C Elemental Analyzer. IR spectra were recorded on a Bruker Vector 22 FT-IR spectrophotometer using KBr pellets. Power X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer with Cu(= 1.5418 ?) radiation at room temperature. The luminescence spectra for the powdered solid samples at room temperature were measured on an Aminco Bowman Series 2 spectro- fluorometer with a xenon arc lamp as the light source. In the measurements of emission and excitation spectra the pass width is 5 nm, and all the measurements were carried out under the same experimental conditions.

    2. 2 Synthesis of complex[Zn2(HL)2(2,5-OH-pbda)]n (1)

    A mixture of H2L (0.021 g, 0.1 mmol), 2,5-OH-H2pbda(0.020 g, 0.1 mmol), ZnSO4·7H2O (0.0287 g, 0.1 mmol) and NaOH (0.004 g, 0.1 mmol) in 10 mL H2O was sealed in a 25 mL Teflon-lined stainless-steel container and heated at 180 ℃ for 72 h. Colorless block crystals of 1 were collected with a yield of 63% by filtration and washed with water and ethanol for several times. Anal. Calcd. (%) for C14H9N6O3Zn: C, 44.88; H, 2.42; N, 22.43. Found (%): C, 44.66; H, 2.58; N, 22.73. IR(KBr): 3450~3060(m), 1615(m), 1525(m), 1462(s), 1388(s), 13558(m), 1306(s), 1256(m), 1142(s), 1086(m), 1012(m), 958(w), 858(s), 823(m), 752(m), 636(m), 582(m), 575(m).

    2. 3 Crystal structure determination

    The colorless crystals of complex 1 were selected for diffraction data collection at 296(2) K on a Bruker Smart Apex II CCD diffractometer equipped with a graphite-monochromatic Mo-radiation (= 0.71073 ?). A total of 9197 reflections were collected for 1,of which 3130 (int= 0.0221) were independent in the range of 2.38≤≤27.54o for 1 by using a-scan mode. Semi-empirical absorp- tion corrections were applied using the SADABS program[21]. The structure was solved by direct methods with SHELXS-97[22]program and refined by full-matrix least-squares techniques on2with SHELXL-97[23]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of 1 were generated geometrically. The final= 0.0309,= 0.1003 (= 1/[2(F2) + (0.0958)2+ 0.2985], where= (F2+ 2F2)/3),int= 0.0221, (Δ/)max= 0.000,= 1.042, (Δ)max= 0.907 and (Δ)min= –0.490 e/?3for 1. The selected bond distances and bond angles for complex 1 are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) of [Zn2(HL)2(2,5-OH-pbda)]n

    Symmetry transformation: #1:–+3/2,–1/2, –+3/2;#2: –+2, –+1, –+2

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure of 1

    The result of X-ray diffraction analysis revealed that complex 1 crystallizes in monoclinic form with space group21/and the asymmetric unit consists of one deprotonated HL?ligand, a half of 2,5- OH-pbda2?and one Zn(II) atom. Fig.1 shows the coordinationenvironment of one independent Zn(II) atom with atomicnumbering scheme. It can be clearly seen that the Zn(1) atom isin a distorted tetrahedral coordination environment withthree nitrogen atoms (N(5), N(1A), N(4B)) from three different HL?ligands with the Zn(1)–N(5), Zn(1)–N(1A), and Zn(1)–N(4B) bond distances of 2.020(2), 2.016(2), and 1.992(2) ?, respectively,and one oxygen atom (O(1)) from 2,5-OH-pbda2?ligand with theZn(1)–O(1) bond in 1.958(2)?, and the coordination angles around Zn(1) are in the range of 102.94(9)~123.59(9)°(Table 1). If the coordination of 2,5-OH-pbda2?with Zn(II) is neglected, the deprotonated HL?employs a3-bridge to coordinate with three Zn(II) atoms, forming a two-dimensional (2D) Zn2(HL?)22+double-layer of fes network with 4·82topology in theplane (Fig. 2)[24], where both of the HL?linkers and Zn(II) atoms act as 3-con- nected nodes. And the Zn2(HL?)22+2D sheets are further pillared by the linear 2,5-OH-pbda2?to form a three-dimensional (3D) framework with the Zn···Zn separation of 10.935 ? between two adjacent 2D layers (Fig. 3). Topologically,each HL?links three Zn(II) atoms, which can be regarded as a 3-connected node. As for each Zn(II) atom, it in turn links three HL?and one2,5-OH-pbda2?. Hence, it can be treated as a 4-connector. Topology analysis[25]suggests that the resulting structure of complex 1 is a binodal (3, 4)-connecteddmc net, and the Point (Schl?fli) symbol is (4·82)(4·85) (Fig. 4)[26]. When viewed along theplane, the 3D structure contains1.452nm×15.56nm channels, which can facilitate the interpenetration. As for 1, the largecavities are completely filledmutual interpenetrationof another independent framework, leading to the formationof a 2-fold interpenetrating 3D architec- ture (Fig.5).

    Fig. 1. Coordination environment of the Zn(II) atom in 1 with ellipsoids drawn at the 30% probability level. The hydrogen atoms are omitted for clarity

    Fig. 2. (a) 2D layer framework built from Zn(II)-HL?and(b) Simplified 2D fes net

    Fig. 3. 3D structure of 1 constructed from 2D networks (turquiose) pillared by 2,5-OH-pbda2?ligands (yellow)

    Fig. 4. Topological view of the dmc topology of complex 1, where the turquiose and blue balls represent the Zn(II) atoms and the centers of benzene rings of HL?ligands, respectively

    Fig. 5. Schematic representation of the 2-fold interpenetrated dmc net of 1

    3. 2 Thermal stability and powder X-ray diffraction

    Complex 1 was subjected to ascertain the stability of supramolecular architecture by thermogravimetric analysis (TGA), as shown in Fig. 6. No obvious weight loss was found for 1 before the decomposi- tion of the framework occurring at about 355 ℃, which is in good agreement with the result of crystal structure analysis. The TGA analysis showed that the framework has collapsed step by step around 400 and 535 °C. Apparently, complex 1 showed a weight loss of 25.8% in the temperature range of 355~420 °C, corresponding to the release of 2,5-OH- pbda2?ligand (calcd. 26.3%), followed by the decomposition of the residue of HL?ligand. Powder XRD experiment was performed to confirm the phase purity of bulk sample, and the experimental patterns of the as-synthesized sample are well consistent with the simulated ones, indicating the phase purity of the sample (Fig. 7).

    Fig. 6. TG curve of 1

    Fig. 7. Simulated and experimental XRPD patterns of complex 1

    3. 3 Luminescent property

    Compounds constructed by10metal centers and conjugated organic linkers can be promising candi- dates employed as chemical sensors and photoche- mistry[27,28].In this paper, the solid-state photolu-minescent property of complex 1 has been investigated together with free H2L ligands at room temperature(Fig. 8). The free H2L ligand shows blue photolu- minescence emission at 385 nm upon excitation at 338 nm, which is probably attributable to the* → n or* →transitions[29]. As previously reported[30], the emission bands of solid-state benzenecarboxylate ligands can be assigned to the* → n transition, but fluorescent emission of benzene-dicarboxylate ligands resulting from the* → n transition is very weak compared with that of the* →transition of the H2L ligand, so benzene-carboxylate ligands almost have no contribution to the fluorescent emission of the assynthesized coordination polymers[31]. On com- plexation of these ligands with Zn(II) atoms, excitation of the microcrystalline samples leads to the generation of strong blue fluorescent emissions, with the maximal peaks occurring at 410 nm (ex= 345 nm) for 1. It can be seen that compound 1 exhibits strong broad blue photoluminescence with emission maxima at 410 nm upon excitation at 345 nm. In contrast to the case for the free ligand, the emission band of 1 is 25 nm red-shifted. Such broad emission bands mainly originate from the ligand-based luminescence, with the corresponding shifts originating from the ligand-to-metal charge transfer[32-33]. In addition, it is noteworthy that the enhancement of luminescence for complex 1, compared with the free ligand under the same conditions, may mainly originate from the coordination interactions between the metal Zn(II) atom and the ligand, which enhanced its confor- mational rigidity and then decreased the nonradia- tive energy loss[34].

    Fig. 8. Excitation (left) and emission (right) spectra of H2L and complex 1

    4 CONCLUSION

    A new complex was constructed from the mixed 1-(1H-imidazol-4-yl)-4-(4H-tetrazol-5-yl)benzene and 2,5-dihydroxy-terephthalic acid ligands together with ZnSO4·7H2O under hydrothermal method, and the structure was characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analy- sis and PXRD. The result of X-ray diffraction analysis reveals the complex is a 2-fold interpene- trating dmc net. The result confirms that the com- bination of multi-N-donor ligand and polycar- boxylate ligand is a good choice for the construction of MOFs with specific structures and properties.

    (1) Wang, Q. Q.; Luo, N.; Wang, X. D.; Ao, Y. F.; Chen, Y. F.; Liu, J. M.; Su, C. Y.; Wang, D. X.; Wang, M. X. Molecular barrel by a hooping strategy: synthesis, structure, and selective CO2adsorption facilitated by lone pair-interactions.2017, 139, 635-638.

    (2) Gao, X.; Liu, M.; Lan, J.; Liang, L.; Zhang, X.; Sun, J. Lewis acid-base bifunctional crystals with a three-dimensional framework for selective coupling of CO2and epoxides under mild and solvent-free conditions.. 2017, 17, 51–57.

    (3) Brenner, W.; Ronson, T. K.; Nitschke, J. R. Separation and selective formation of fullerene adducts within an MII8L6cage.2017, 139, 75-78.

    (4) Wang, G. M.; Li, J. H.; Pan, J.; Xue, Z. Z.; Wei, L.; Han, S. D.; Bao, Z. Z.; Wang, Z. H. Two hybrid transition metal triphosphonates decorated with a tripodal imidazole ligand: synthesis, structures and properties.. 2017, 46, 803–813.

    (5) Wang, X. L.; Xiong, Y.; Sha, X. T.; Liu, G. C.; Lin, H. Y. Various polycarboxylate-directed Cd(II) coordination polymers based on a semirigid bis-pyridyl-bis-amide ligand: construction and fluorescent and photocatalytic properties.. 2017, 17, 483–496.

    (6) Zhang, L.; Kang, Z.; Xin, X.; Sun, D. Metal-organic frameworks based luminescent materials for nitroaromatics sensing.. 2016, 18, 193–206.

    (7) Wen, G. X.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Zhang, J. An ultrastable europium(III)-organic framework with the capacity of discriminating Fe2+/Fe3+ions in various solutions.. 2016, 55, 10114?10117.

    (8) Ouellette, W.; Jones, S.; Zubieta, J. Solid state coordination chemistry of metal-1,2,4-triazolates and the related metal-4-pyridyltetrazolates.. 2011, 13, 4457?4485.

    (9) Zhang, Z. Y.; Xiao, L.; Chen, S. S.; Qiao, R.; Yang, S. A novel Zn(II) complex with 4-connected umc topology: synthesis, crystal structure and luminescent property.2017, 36, 819?824.

    (10) Ramirez, J. R.; Yang, H.; Kane, C. M.; Ley, A. N.; Travis Holman, K. Reproducible synthesis and high porosity of mer-Zn(Im)2(ZIF-10): exploitation of an apparent double-eight ring template.2016, 138, 12017?12020.

    (11) Shen, J. Q.; Wei, Y. S.; Liao, P. Q.; Lin, R. B.; Zhou, D. D.; Zhang, J. P.; Chen, X. M. Unique (3,9)-connected porous coordination polymers constructed by tripodal ligands with bent arms.. 2016, 18, 4115–4120

    (12) Xiao, L.; Li, W. D.; Fang, X.; Jiang, L. Y.; Chen, S. S. Two three-dimensional supramolecular polymers built from mixed N-donor and carboxylate ligands.. 2016, 35, 781–788.

    (13) Chen, S. S.; Wang, P.; Takamizawa, S.; Okamura, T. A.; Chen, M.; Sun, W. Y. Zinc(II) and cadmium(II) metal-organic frameworks with 4-imidazole containing tripodal ligand: sorption and anion exchange properties.. 2014, 43, 6012–6020.

    (14) Mondal, S. S.; Bhunia, A.; Demeshko, S.; Kelling, A.; Schilde, U.; Janiak, C.; Holdt, H. J. Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties.. 2014, 16, 39?42.

    (15) Dong, R.; Chen, X.; Li, Q.; Hu, M.; Huang, L.; Li, C.; Shen, M.; Deng, H. ((1H-tetrazol-5-yl) methyl) pyridine-based metal coordination complexes: in situ tetrazole synthesis, crystal structures, luminescence properties.. 2015, 17, 1305–1317.

    (16) Zhao, Y. P.; Li, Y.; Cui, C. Y.; Xiao, Y.; Li, R.; Wang, S. H.; Zheng, F. K. Guo, G. C. Tetrazole-viologen-based flexible microporous metal-organic framework with high CO2selective uptake.. 2016, 55, 7335?7340.

    (17) Chen, S.S. The roles of imidazole ligands in coordination supramolecular systems..2016, 18, 6543–6565.

    (18) Chen, S. S.; Chen, M.; Takamizawa, S.; Chen, M. S.; Su, Z.; Sun, W. Y. Temperature dependent selective gas sorption of the microporous metal-imidazolate framework [Cu(L)] (H2L = 1,4-di(1H-imidazol-4-yl)benzene).. 2011, 47, 752–754.

    (19) Chen, S. S.; Chen, M.; Takamizawa, S.; Wang, P.; Lv, G. C.; Sun, W. Y. Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property.. 2011, 47, 4902–4904.

    (20) Chen, S.S.;Sheng, L.Q.; Zhao, Y.;Liu, Z.D.; Qiao, R.; Yang, S. Syntheses, structures, and properties of a series of polyazaheteroaromatic core-based Zn(II) coordination polymers together with carboxylate auxiliary ligands.. 2016, 16, 229–241.

    (21) Sheldrick, G. M.. University of G?ttingen, G?ttingen, Germany.

    (22) Sheldrick, G. M.. University of G?ttingen 1997.

    (23) Sheldrick, G. M.. University of G?ttingen 1997.

    (24) Xie, L. X.; Hou, X. W.; Fan, Y. T. Four three-dimensional coordination polymers constructed by 2-((1-1,2,4-triazol-1-yl)methyl)-1-imidazole- 4,5-dicarboxylate: syntheses, topological structures, and magnetic properties.. 2012, 12, 1282?1291.

    (25) Blatov, V. A.Samara State University, Russia 2009.

    (26) Blatov, V. A.; Carlucci, L.; Ciani, G.; Proserpio, D. M. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part I.2004, 6, 378?395.

    (27) Yang, J. X.; Qin, Y. Y.; Ye, R. P.; Zhang, X.; Yao, Y. G. Employing mixed-ligand strategy to construct aseries of luminescent Cd(II) compounds withstructural diversities..2016, 18, 8309–8320.

    (28) Xing, K.; Fan, R.; Gao, S.; Wang, X.; Du, X.; Wang, P.; Fang, R.; Yang, Y. Controllable synthesis of Zn/Cd(II) coordinationpolymers: dual-emissive luminescent properties,and tailoring emission tendency under varyingexcitation energies.2016,, 4863?4878.

    (29) Zhu, M. A.; Guo, X. Z.; Chen, S. S. Synthesis, crystal structure and luminescent property of a Zn(II) complex based on4-imidazole-carboxylate ligand.2017, 36, 1348–1354.

    (30) Hua, J. A.; Zhao, Y.; Liu, Q.; Zhao, D.; Chen, K.; Sun, W. Y. Zinc(II) coordination polymers with substituted benzenedicarboxylate and tripodal imidazole ligands: syntheses, structures and properties..2014, 16, 7536–7546.

    (31) Li, Y. W.; Ma, H.; Chen, Y. Q.; He, K. H.; Li, Z. X.; Bu, X. H. Structure modulation in Zn(II)-1,4-bis(imidazol-1-yl)benzene frameworks by varying dicarboxylate anions.2012, 12, 189–196.

    (32) Chen, S. S.; Liu, Q.; Zhao, Y.; Qiao, R.; Sheng, L. Q.; Liu, Z. D.; Yang, S.; Song, C. F. New metal-organic frameworks constructed from the 4-imidazole-carboxylate ligand: structural diversities, luminescence, and gas adsorption properties.. 2014, 14, 3727?3741.

    (33) Li, L. N.; Wang, S. Y.; Chen, T. L.; Sun, Z. H.; Luo, J. H.; Hong, M. C. Solvent-dependent formation of Cd(II) coordination polymers based on a2-Symmetric tricarboxylate linker.. 2012, 12, 4109?4115.

    (34) Xu, J.; Bai, Z. S.; Chen, M. S.; Su, Z.; Chen, S. S.; Sun, W. Y. Metal-organic frameworks with six- and four-fold interpenetration and their photoluminescence and adsorption property..2009, 11, 2728–2733.

    11 October 2017;

    11 December 2017 (CCDC 1578692)

    ①This work was supported by the National Natural Science Foundation of China (No. 21171040), the Natural Science Foundation of Anhui Provincial Education Commission (No. KJ2017ZD29) and National Undergraduates Innovation Project (201710371018)

    . Chen Shui-Sheng, doctor, majoring in coordination chemistry. E-mail: sscfync@163.com

    10.14102/j.cnki.0254-5861.2011-1849

    亚洲精华国产精华精| 一二三四在线观看免费中文在| 免费在线观看影片大全网站| 久久久久国产精品人妻aⅴ院| 一级毛片女人18水好多| 香蕉国产在线看| 欧美在线一区亚洲| 国内毛片毛片毛片毛片毛片| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 高清黄色对白视频在线免费看| 亚洲第一欧美日韩一区二区三区| 日韩人妻精品一区2区三区| 成在线人永久免费视频| 99riav亚洲国产免费| 亚洲少妇的诱惑av| 最近最新中文字幕大全电影3 | 最新在线观看一区二区三区| 国产伦人伦偷精品视频| 美女午夜性视频免费| 久久久久亚洲av毛片大全| 亚洲一区二区三区色噜噜 | 丁香欧美五月| 丁香欧美五月| 国产成人系列免费观看| 一级a爱片免费观看的视频| av天堂在线播放| ponron亚洲| 777久久人妻少妇嫩草av网站| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利影视在线免费观看| 国产熟女xx| 看黄色毛片网站| 最近最新中文字幕大全电影3 | 少妇粗大呻吟视频| 国产精品乱码一区二三区的特点 | 色综合婷婷激情| 亚洲 欧美一区二区三区| 在线播放国产精品三级| 亚洲欧美激情综合另类| 久久香蕉激情| 中文字幕人妻熟女乱码| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美日韩精品亚洲av| 免费少妇av软件| 伊人久久大香线蕉亚洲五| 亚洲一区二区三区不卡视频| 精品国内亚洲2022精品成人| 国产欧美日韩一区二区精品| 亚洲一卡2卡3卡4卡5卡精品中文| 91国产中文字幕| 大香蕉久久成人网| 国产色视频综合| 亚洲中文av在线| 日韩欧美一区二区三区在线观看| 91成人精品电影| 一级a爱视频在线免费观看| 99精品在免费线老司机午夜| 亚洲成a人片在线一区二区| 99国产综合亚洲精品| 亚洲国产看品久久| www.自偷自拍.com| 黄色成人免费大全| 好看av亚洲va欧美ⅴa在| 中文字幕人妻熟女乱码| 亚洲黑人精品在线| 亚洲成人国产一区在线观看| 在线观看66精品国产| 久久久国产成人精品二区 | 真人一进一出gif抽搐免费| 亚洲自拍偷在线| 久久青草综合色| 很黄的视频免费| 女性生殖器流出的白浆| 天堂俺去俺来也www色官网| 免费在线观看黄色视频的| 国产黄色免费在线视频| 波多野结衣av一区二区av| 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 色播在线永久视频| 又黄又爽又免费观看的视频| 很黄的视频免费| 天天添夜夜摸| 日韩欧美国产一区二区入口| 久久久久精品国产欧美久久久| 亚洲五月婷婷丁香| 99riav亚洲国产免费| 精品卡一卡二卡四卡免费| 好看av亚洲va欧美ⅴa在| 欧美另类亚洲清纯唯美| 久久久国产成人免费| 后天国语完整版免费观看| 人成视频在线观看免费观看| 在线观看免费日韩欧美大片| 中文字幕人妻丝袜制服| 日韩大码丰满熟妇| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 俄罗斯特黄特色一大片| 啪啪无遮挡十八禁网站| 免费日韩欧美在线观看| 女同久久另类99精品国产91| 很黄的视频免费| 90打野战视频偷拍视频| 18禁观看日本| 欧美成人午夜精品| 国产亚洲精品第一综合不卡| 999久久久国产精品视频| 91字幕亚洲| 成人永久免费在线观看视频| 成年版毛片免费区| 国产成人精品在线电影| 女警被强在线播放| 在线看a的网站| aaaaa片日本免费| 99久久人妻综合| 国产99白浆流出| 成人三级做爰电影| 国产亚洲欧美精品永久| 亚洲久久久国产精品| 精品国产乱码久久久久久男人| 免费在线观看完整版高清| 亚洲成av片中文字幕在线观看| 亚洲三区欧美一区| 欧美丝袜亚洲另类 | 国产精品99久久99久久久不卡| 极品人妻少妇av视频| 久久天躁狠狠躁夜夜2o2o| 久久亚洲精品不卡| 在线视频色国产色| av有码第一页| 99国产精品免费福利视频| 啦啦啦在线免费观看视频4| 久久人妻av系列| 大香蕉久久成人网| 亚洲avbb在线观看| 真人做人爱边吃奶动态| 亚洲欧美精品综合一区二区三区| 国产精品亚洲一级av第二区| 久久久久久久久久久久大奶| 91大片在线观看| 成熟少妇高潮喷水视频| 别揉我奶头~嗯~啊~动态视频| 一级,二级,三级黄色视频| 如日韩欧美国产精品一区二区三区| 男人的好看免费观看在线视频 | 动漫黄色视频在线观看| 搡老熟女国产l中国老女人| 精品国内亚洲2022精品成人| 老鸭窝网址在线观看| 欧美乱妇无乱码| 国产三级黄色录像| 久久国产乱子伦精品免费另类| 亚洲一区二区三区不卡视频| 脱女人内裤的视频| 久久久久久久久中文| 精品久久久精品久久久| 亚洲av成人一区二区三| 久久精品亚洲精品国产色婷小说| 久久精品亚洲熟妇少妇任你| 午夜激情av网站| 亚洲少妇的诱惑av| 成人亚洲精品一区在线观看| 99热国产这里只有精品6| 国产激情欧美一区二区| 999精品在线视频| 女生性感内裤真人,穿戴方法视频| 久久久久九九精品影院| 精品第一国产精品| 欧美成人午夜精品| 亚洲激情在线av| 午夜精品在线福利| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 欧美日本中文国产一区发布| 久久精品成人免费网站| 亚洲avbb在线观看| 50天的宝宝边吃奶边哭怎么回事| 午夜福利影视在线免费观看| 99国产精品一区二区三区| 久久久精品国产亚洲av高清涩受| 波多野结衣一区麻豆| 少妇的丰满在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 国产精品综合久久久久久久免费 | 亚洲精品国产一区二区精华液| 精品午夜福利视频在线观看一区| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 一级片免费观看大全| 日韩欧美免费精品| 91国产中文字幕| 级片在线观看| 成人永久免费在线观看视频| 色在线成人网| 19禁男女啪啪无遮挡网站| 中亚洲国语对白在线视频| 高清黄色对白视频在线免费看| 国产麻豆69| 亚洲五月婷婷丁香| 女生性感内裤真人,穿戴方法视频| 国产免费现黄频在线看| 90打野战视频偷拍视频| 国产精品电影一区二区三区| 高清欧美精品videossex| 韩国av一区二区三区四区| 好看av亚洲va欧美ⅴa在| 国产精品乱码一区二三区的特点 | 香蕉丝袜av| 一级片免费观看大全| 亚洲第一青青草原| 久热这里只有精品99| 国产精品自产拍在线观看55亚洲| 成人手机av| 亚洲精品久久成人aⅴ小说| 久久久水蜜桃国产精品网| 精品高清国产在线一区| 校园春色视频在线观看| 我的亚洲天堂| 欧美乱码精品一区二区三区| 久久久久久人人人人人| 免费少妇av软件| 色综合站精品国产| 十八禁人妻一区二区| 欧美日韩视频精品一区| 69精品国产乱码久久久| 人人妻人人添人人爽欧美一区卜| 色综合婷婷激情| 亚洲少妇的诱惑av| 大型av网站在线播放| 老司机午夜福利在线观看视频| 老司机深夜福利视频在线观看| 嫩草影视91久久| 一二三四社区在线视频社区8| 国产亚洲av高清不卡| 精品国产国语对白av| 亚洲中文日韩欧美视频| 国产成人精品久久二区二区免费| 精品国产乱子伦一区二区三区| 成人特级黄色片久久久久久久| 国产三级在线视频| 色在线成人网| 久久狼人影院| 亚洲国产精品一区二区三区在线| 亚洲男人的天堂狠狠| 成年版毛片免费区| 国产男靠女视频免费网站| 精品一品国产午夜福利视频| www.自偷自拍.com| 国产人伦9x9x在线观看| 国产高清videossex| 久久青草综合色| 日本免费一区二区三区高清不卡 | 亚洲av熟女| 日韩中文字幕欧美一区二区| 咕卡用的链子| 91精品国产国语对白视频| 国产激情久久老熟女| 50天的宝宝边吃奶边哭怎么回事| 免费日韩欧美在线观看| 一级a爱片免费观看的视频| 精品久久久久久,| 90打野战视频偷拍视频| 中国美女看黄片| 一a级毛片在线观看| 亚洲狠狠婷婷综合久久图片| 国产色视频综合| 久久亚洲精品不卡| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲综合一区二区三区_| videosex国产| 国产精品影院久久| 侵犯人妻中文字幕一二三四区| 成人三级黄色视频| 91精品三级在线观看| 天天添夜夜摸| 十分钟在线观看高清视频www| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 一本综合久久免费| 欧美+亚洲+日韩+国产| 黄色女人牲交| 叶爱在线成人免费视频播放| 很黄的视频免费| 色婷婷久久久亚洲欧美| 欧美老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 一区在线观看完整版| 99精国产麻豆久久婷婷| 国产精品 国内视频| 操出白浆在线播放| 国产国语露脸激情在线看| 国产国语露脸激情在线看| 久久九九热精品免费| √禁漫天堂资源中文www| 免费av中文字幕在线| 身体一侧抽搐| 亚洲精品粉嫩美女一区| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 欧美人与性动交α欧美软件| 久久 成人 亚洲| 久久久国产一区二区| 国产日韩一区二区三区精品不卡| 亚洲va日本ⅴa欧美va伊人久久| 国产精品99久久99久久久不卡| 亚洲国产精品sss在线观看 | 成人黄色视频免费在线看| 成人18禁高潮啪啪吃奶动态图| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 超碰成人久久| 午夜免费观看网址| 久久99一区二区三区| 韩国精品一区二区三区| 国产一区二区三区综合在线观看| 亚洲五月天丁香| 国产精品久久视频播放| 青草久久国产| 老司机午夜十八禁免费视频| 50天的宝宝边吃奶边哭怎么回事| 三上悠亚av全集在线观看| 在线天堂中文资源库| 国产成人av教育| 久久午夜综合久久蜜桃| 不卡一级毛片| 亚洲熟妇中文字幕五十中出 | 国产成人av激情在线播放| 国产熟女xx| 免费少妇av软件| 99久久国产精品久久久| 欧美日韩av久久| 亚洲男人天堂网一区| 国产欧美日韩一区二区精品| 国产免费男女视频| 自线自在国产av| 乱人伦中国视频| 黑人巨大精品欧美一区二区蜜桃| 午夜a级毛片| 久久中文字幕一级| 国产精品永久免费网站| 日韩大尺度精品在线看网址 | 亚洲欧美日韩高清在线视频| 久久人人97超碰香蕉20202| 91精品三级在线观看| 久久性视频一级片| 黑人操中国人逼视频| 伊人久久大香线蕉亚洲五| 午夜亚洲福利在线播放| 国产国语露脸激情在线看| 久久久久久久久免费视频了| 日本五十路高清| 大陆偷拍与自拍| 黄色片一级片一级黄色片| 国产成人精品久久二区二区免费| av中文乱码字幕在线| 少妇裸体淫交视频免费看高清 | 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 美女高潮到喷水免费观看| 麻豆国产av国片精品| 99久久国产精品久久久| 国产成人啪精品午夜网站| 9热在线视频观看99| 免费av毛片视频| 欧美日韩乱码在线| 人妻久久中文字幕网| 国产一区二区三区视频了| 久久精品国产清高在天天线| 俄罗斯特黄特色一大片| av网站在线播放免费| 香蕉久久夜色| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品成人在线| 色播在线永久视频| 91成人精品电影| 久久亚洲真实| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区黑人| 波多野结衣一区麻豆| 国产成人av激情在线播放| 日韩国内少妇激情av| 两个人免费观看高清视频| 亚洲黑人精品在线| 久久热在线av| 天天躁夜夜躁狠狠躁躁| 岛国视频午夜一区免费看| 99热国产这里只有精品6| 欧美日韩瑟瑟在线播放| 91精品三级在线观看| 两人在一起打扑克的视频| 国产激情久久老熟女| 国产成人啪精品午夜网站| 国产成人免费无遮挡视频| 搡老熟女国产l中国老女人| 亚洲第一av免费看| 欧美日韩福利视频一区二区| 久久久久久久久免费视频了| 亚洲成人免费av在线播放| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看| 亚洲情色 制服丝袜| 女人被躁到高潮嗷嗷叫费观| 免费高清在线观看日韩| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 黑丝袜美女国产一区| 怎么达到女性高潮| 久久国产精品男人的天堂亚洲| 亚洲五月天丁香| 波多野结衣一区麻豆| 国产亚洲欧美精品永久| 免费在线观看视频国产中文字幕亚洲| 婷婷精品国产亚洲av在线| a在线观看视频网站| 一级毛片精品| 精品一区二区三卡| 成人手机av| www日本在线高清视频| 国产主播在线观看一区二区| 精品熟女少妇八av免费久了| 高清欧美精品videossex| 国产精品免费一区二区三区在线| 免费在线观看黄色视频的| 777久久人妻少妇嫩草av网站| 日韩三级视频一区二区三区| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看| 免费在线观看黄色视频的| www国产在线视频色| 久久婷婷成人综合色麻豆| 交换朋友夫妻互换小说| 久久久久久久久免费视频了| 日韩成人在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| netflix在线观看网站| 午夜久久久在线观看| 又黄又爽又免费观看的视频| 国产成年人精品一区二区 | 亚洲一区二区三区色噜噜 | 久久 成人 亚洲| 18禁国产床啪视频网站| 成人三级做爰电影| 亚洲少妇的诱惑av| 国产精品美女特级片免费视频播放器 | 国产精品久久久av美女十八| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 亚洲av第一区精品v没综合| 久久久久久久久中文| 男女床上黄色一级片免费看| 一级片'在线观看视频| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 欧美成人午夜精品| 视频区图区小说| 久久人人精品亚洲av| 国产激情久久老熟女| 亚洲,欧美精品.| 成人精品一区二区免费| 亚洲一码二码三码区别大吗| 麻豆成人av在线观看| 一区二区三区精品91| 成人av一区二区三区在线看| 女人精品久久久久毛片| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久免费视频 | 午夜老司机福利片| 亚洲精品一区av在线观看| 狂野欧美激情性xxxx| av视频免费观看在线观看| 精品国产乱子伦一区二区三区| 日韩视频一区二区在线观看| 9热在线视频观看99| 超色免费av| 一区二区三区激情视频| 精品久久久久久电影网| 精品人妻在线不人妻| 精品国产乱子伦一区二区三区| 国产精品自产拍在线观看55亚洲| 国产精品99久久99久久久不卡| 一区在线观看完整版| 亚洲美女黄片视频| 男女高潮啪啪啪动态图| 色综合站精品国产| 午夜激情av网站| 欧美精品一区二区免费开放| 涩涩av久久男人的天堂| 国产激情久久老熟女| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 欧美日韩乱码在线| 动漫黄色视频在线观看| 国产亚洲欧美98| 精品国产美女av久久久久小说| 看免费av毛片| 日本a在线网址| 丰满饥渴人妻一区二区三| 日本vs欧美在线观看视频| 久久精品aⅴ一区二区三区四区| 欧美最黄视频在线播放免费 | 丁香六月欧美| 99国产精品一区二区蜜桃av| 久久精品91蜜桃| 亚洲成a人片在线一区二区| 国产av一区二区精品久久| 脱女人内裤的视频| 狠狠狠狠99中文字幕| 欧美日韩黄片免| 十分钟在线观看高清视频www| 91麻豆精品激情在线观看国产 | 最近最新中文字幕大全免费视频| 久久久久久免费高清国产稀缺| 久久久久久亚洲精品国产蜜桃av| 久久天堂一区二区三区四区| 午夜91福利影院| 视频在线观看一区二区三区| 婷婷精品国产亚洲av在线| 国产精品永久免费网站| 久久久久久大精品| 久久国产精品影院| 午夜老司机福利片| 免费av毛片视频| 黑人操中国人逼视频| av超薄肉色丝袜交足视频| 亚洲一区二区三区色噜噜 | 亚洲专区中文字幕在线| 欧美成人免费av一区二区三区| 一区福利在线观看| 国产激情欧美一区二区| 18禁美女被吸乳视频| 亚洲精品在线美女| 99久久精品国产亚洲精品| 欧美午夜高清在线| 中文字幕高清在线视频| 色精品久久人妻99蜜桃| 18禁观看日本| www.熟女人妻精品国产| 国产av精品麻豆| 亚洲专区国产一区二区| 免费不卡黄色视频| 在线免费观看的www视频| 黑人操中国人逼视频| 亚洲人成电影观看| 亚洲自拍偷在线| 50天的宝宝边吃奶边哭怎么回事| 欧美成人性av电影在线观看| 一进一出抽搐gif免费好疼 | 国产一区二区三区综合在线观看| 欧美国产精品va在线观看不卡| 1024视频免费在线观看| 最好的美女福利视频网| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| 久久香蕉精品热| 久久久久久亚洲精品国产蜜桃av| 88av欧美| 国产精品乱码一区二三区的特点 | 啦啦啦在线免费观看视频4| 人成视频在线观看免费观看| 97碰自拍视频| 在线播放国产精品三级| 久久人妻福利社区极品人妻图片| 日本黄色视频三级网站网址| 中文字幕色久视频| 亚洲熟妇中文字幕五十中出 | 成人黄色视频免费在线看| 美女午夜性视频免费| 看片在线看免费视频| 一级片免费观看大全| 日本五十路高清| 两个人看的免费小视频| 日本免费a在线| 免费在线观看影片大全网站| 午夜成年电影在线免费观看| 亚洲av电影在线进入| 亚洲三区欧美一区| 91麻豆av在线| 国产一区二区在线av高清观看| av免费在线观看网站| 亚洲免费av在线视频| 男女床上黄色一级片免费看| 亚洲午夜精品一区,二区,三区| 无人区码免费观看不卡| 精品乱码久久久久久99久播| 欧美日韩瑟瑟在线播放| bbb黄色大片| 精品国产美女av久久久久小说| av电影中文网址| 别揉我奶头~嗯~啊~动态视频| 黄色女人牲交| 一本综合久久免费| 99香蕉大伊视频| 丰满的人妻完整版| 国产成+人综合+亚洲专区| 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 91老司机精品| 国产精品 国内视频| 国产亚洲精品第一综合不卡| 欧美最黄视频在线播放免费 | 不卡av一区二区三区| 国产熟女午夜一区二区三区| 少妇被粗大的猛进出69影院| 一本大道久久a久久精品| 欧美日韩一级在线毛片| 宅男免费午夜|