• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of a Novel Graphene Oxide/titanium Dioxide Solvent-free Nanofluid①

    2018-08-17 09:15:04YANGRuiLuZHENGYaPingWANGTianYuWANGYuDengYAODongDongCHENLiXin
    結(jié)構(gòu)化學(xué) 2018年7期

    YANG Rui-Lu ZHENG Ya-Ping WANG Tian-Yu WANG Yu-Deng YAO Dong-Dong CHEN Li-Xin

    ?

    Synthesis and Characterization of a Novel Graphene Oxide/titanium Dioxide Solvent-free Nanofluid①

    YANG Rui-Lu ZHENG Ya-Ping②WANG Tian-Yu WANG Yu-Deng YAO Dong-Dong CHEN Li-Xin

    a(School of Natural and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China)

    A novel graphene oxide/titanium dioxide (GO/TiO2) solvent-free nanofluid was firstly synthesized by employing GO, which was in-situ deposited by TiO2as the core and (3-Glycidyloxypropyl) trime thoxysilane (KH560) and polyetheramine-M2070 as the shell. The morphology and structure of GO/TiO2nanofluid were verified by Transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra. These studies confirmed that TiO2has been deposited onto GO with good dispersion, and the organic shell has been grafted onto the core successfully. Thermo gravimetric analysis (TGA) and viscosity analysis indicated that this nanoparticle hybrid material presented a liquid state without solvent at room temperature, and has great fluidity and thermal stability. The solubility investigation of GO/TiO2nanofluid revealed its excellent amphiphilicity and the potential as the functional nanocomposites.

    graphene oxide, titanium dioxide, nanofluid;

    1 INTRODUCTION

    Graphene is a single-layer planar membrane made of carbon atoms with2hybridized orbitals, with only one carbon atom thick. It has many excellent physical and chemical properties, like high specific surface area, superior heat conduc- tivity and remarkable mechanical strength, which attracted the attention of many researchers in physics, chemistry and materials in the world[1-4]. Furthermore, graphene has a two-dimensional planar structure, which is very suitable as the carrier of other nanoparticles, and then the composite material of graphene/nanoparticles is obtained. Many researchers have reported that some nanoparticles, such as Ag[5], Fe3O4[6], SiO2[7,8]and TiO2[9], could be deposited on the surface of graphene. Wu et al.[10]deposited SiO2onto the surface of graphene oxide, and obtained a three-dimensional structure of porous graphene laminator. Adding the laminate to the cathode material of the lithium-sulphur battery improves the battery's cycling stability.Li et al.[11]made Fe3O4coated by chitosan, and then the core-shell structure was loaded to the surface of GO. At last, a magnetic ionic liquid/chitosan/GO hybrid was obtained and applied in water treatment. Among these nanopar- ticles, TiO2is widely concerned because of its excellent photo-catalysis and absorption of ultra- violet. Liu et al.[12]synthesized the hybrid particles composed of reduced graphene oxide sheets (GNSs) coated with Fe3O4nanorods (GNS–Fe3O4), and added it in the bismaleimide. They found that the mechanical and tribological properties of bisma- leimide composites were enhanced due to the good synergy between the graphene and Fe3O4during the wear process. Furthermore, Liu et al.[13]synthesized a ternary nano-particle (GNS-Fe3O4@PZM) consis- ting of graphene, Fe3O4nanoparticles and highly cross-linked polyphosphazene. The bismaleimide (BMI) matrix composites with aligned GNS-Fe3O4@PZM also show superior mechanical properties and thermal stability, owing to the uniform distribution and parallel alignment of graphene in the BMI matrix, as well as good interface interaction between GNS-Fe3O4@PZM and BMI matrix.

    However, either graphene or nanoparticle is chemically inertias. Their insolubility in solvents and matrix brings great difficulty to the further study and application of graphene. Therefore, we are facing the opportunities and challenges to solve the dispersion problem of grapheme, and find controllable functionalization method of graphene to meet the actual demands.

    Solvent-free nanofluid is a liquid nanoparticle, which can show a liquid state in the conditions of free-solvent, near room temperature and zero vapor pressure[14-17]. It is a kind of organic-inorganic nano-hybrid materials[18, 19]. Solvent-free nanofluids, which were prepared by grafting organic long-chain surfactants onto the nanoparticles, have excellent dispersibility in resin matrix and solvent[20, 21]. Combining in-situ deposition method and the organic long-chain surface modification method, graphene-based solvent-free nanofluids could be obtained. The functionalized graphene solvent-free nanofluids would show great solubility. In addition, the composite function of the graphene/nanopar- ticles would be brought to bear. The GO with a single-layer planar membrane structure was regar- ded as a conductive carbon mat, with TiO2nano- patricles loaded. And the synergy effect between GO and TiO2during the wear process can be produced. The interface interaction between GO and TiO2will enhance the properties of this nanofluid.

    In this study, the GO/TiO2nanofluid was firstly synthesized and the properties of it were inves- tigated.

    2 EXPERIMENTAL

    2. 1 Materials

    The graphite powder (< 20 μm) was obtained from Xiamen Knanotech Port Co., Ltd, and synthe- sized by mechanical exfoliation. Tetrabutyl titanate (TBOT, AR ≥ 99%) was provided by Xi’an Fuchen Chemical Ind. Ltd. (3-Glycidyloxypro- pyl)trime thoxysilane (KH-560, 98wt.%) was purchased from Chengdu Aikeda chemicals Co., Ltd. Polyetheramine M-2070 (Mw~2000), which was used as polymeric canopy in this study, was obtained from Dalian lianhao Co., Ltd. Other analytical reagents of H2SO4, HCl, KMnO4, H2O2, methanol, ethanol, glacial acetic acid, ammonia, acetone, tetrahydrofuran, toluene, dimethyl formamide and trichloromethane were from Xi’an Fuchen Chemical Ind. Ltd.

    2. 2 Synthesis of the GO/TiO2 nanofluid

    The synthesizing process of GO/TiO2nanofluid is illustrated in Fig. 1. A modified Hummers method was used to prepare GO[22]. After that, the GO aqueous suspension (1 mg/mL) was obtained under sonication. Then, 50 mL GO aqueous suspension was mixed with ethanol through the ultrasound dispersion for 30 min. Simultaneously, some tetrabutyl titanate was mixed with ethanol and glacial acetic acid through the ultrasound dispersion for 30 min. Next, this tetrabutyl titanate solution was added to the GO solution with stirring at room temperature, and ammonia (25% aqueous solution) was added dropwise into the solution at the same time. After 12 h, the black floccule was observed in the solution. Then the floccule was washed with distilled water three times by centrifuging with a rotating rate of 8000 r/min for 15 min (Anke TGL-20B) to remove the TiO2nanoparticles, which failed to deposit onto the surface of GO. At the end, GO/TiO2hybird was obtained after the black floccule was freeze-dried for 24 h.

    Fig. 1. Synthesizing process of GO/TiO2nanofluid

    For GO/TiO2nanofluid, firstly, 5 mmol KH560 was added to the diluted solution of 5 mmol polyetheramine-M2070 (15wt.%, diluted with methanol and deionized water) dropwise, and the mixed solution was stirred for 12 h at 45 ℃. Then the GO/TiO2hybrid was added to the mixed solution. Next, the mixture reacted at 25 ℃ for 5 h under mechanicalstirring to ensure complete reaction. The excess organic shell was removed in the dialysis tubing (3.5 k molecular weight cut-off) for 48 h. The unreacted core was removed after centrifuge. Finally, the GO/TiO2nanofluid was obtained after being dried at 70 ℃ in the vacuum oven to remove solvent.

    2. 3 Characterization

    The morphology of the samples was observed by transmission electron microscopy (TEM-H800, Hitachi Limited, Japan). Samples were dissolved in deionized water to form dispersion. A drop of dispersion was placed on a cooper grid and evaporated the solvent. X-ray diffraction (XRD) analysis was taken on a Rigaku (RD/MAX-Rc, Japan) using Curadiation (= 0.15406 nm), and the measured 2values ranged from 10° to 80°. Fourier transform infrared spectra (FTIR) were recorded from 400 to 4000 cm?1by a WQF-310 FTIR spectrometer. The samples were measured with KBr pellet. X-ray photoelectron spectra (XPS, Kratos Axis Ultra DLD) were used and the curves were obtained after a few samples were placed on a conductive blanket. The wide scan ranged from 0 to 1200 eV. The UV-vis absorption spectra were recorded using a Shimadzu UV1800 spectrometer, and the wavelength ranged from 200 to 800 nm. Thermo gravimetric analysis (TGA) measurements were taken under N2flowing at a heating rate of 10 K/min from 25 to 800 ℃ by using TGA Q50 TA instrument. A Brookfield R/S plus Rotational Rheometer was used to measure the viscosity of samples with a shearing rate of 12.5 °·s-1from 10 to 70 ℃, and the heating rate was 5 ℃·min-1. The temperature was stabilized by using a TC-650 constant temperature water bath.

    3 RESULTS AND DISCUSSION

    The TEM images of GO and GO/TiO2nanofluidsare shown in Figs. 2(a), 2(b) and 2(c). From Fig. 2(a), the sheet-like structure and fold structure of GO are observed clearly.This observation indicates that the graphite is oxidized well. Compared with Fig. 2(a), the GO/TiO2nanofluid shown in Fig. 2(b) is formed by depositing a larger number of TiO2nanoparticles on the surface of GO. In addition, it can be observed that theTiO2nanoparticles are well-dispersed without aggregation. Such a good dispersity is attributed to the protection role of organic layerswrapped on two sides of GO/TiO2core. The sphere structures of TiO2nanoparticles can be observed visibly in Fig. 2(c), which are coated with a layer of organisms. The chance of contacting between TiO2is reduced by perturbation of organic molecular chains, whichprovides lubrication between TiO2simultaneously.

    Fig. 2. TEM images of (a) GO and (b), (c) GO/TiO2nanofluid

    To further confirm that TiO2nanoparticles are deposited onto the surface of GO successfully, XRD curves of GO and GO/TiO2are shown in Fig.3(a). The diffraction peak at 2= 11.4° corresponds to the (002) reflection of GO. In addition, the characteristic diffraction peaks at 2=25°, 38°, 48°, 53°, 62°, 69°, 79° and 75° are assigned to the (110), (004), (200), (105), (204), (116), (220) and (215) planes of TiO2anatase, respectivelyaccording to JCPDS no. 89-4921. These characteristic diffraction peaksreveal that the GO is decorated with the TiO2nanoparticles successfully. Furthermore, compared with the characteristic peak (002) of GO at 11.4°, the (002) peak for GO/TiO2is reductive, which suggests that some GO has already been reduced to graphene. This indicates that the GO/TiO2hybrid material is not the simple mixture of GO and TiO2. TiO2is deposited onto the surface of GO with chemical bonds.

    Included in Fig.3(b) are the FTIR spectra of GO, GO/TiO2hybrid and GO/TiO2nanofluid, respec- tively. Obviously, peaks at 3440 and 1720 cm-1of GO and GO/TiO2hybrid are associated to the vibration of -OH and C=O, which are from the acidic groups of GO. While the peak at 629 cm-1of GO/TiO2hybrid and GO/TiO2nanofluid is originated from the Ti–O–Ti vibrations. Addi- tionally, forthe data of GO/TiO2nanofluid, peaks at 1150and 850 cm-1are assigned to the vibrationof C–O–C, which belongs to the structure of M2070. Besides, peaks appearingat 998and 950 cm-1are designated to Si–Oand Si–O–Ti vibrations, respec- tively, which are from the groups of KH560. Most importantly, the peakat 1680 cm-1is designated to -NH- vibrations, which confirms the reaction between KH560 and M2070. All of these evidences indicate that the organic layer has been grafted onto the surface of inorganic nanoparticles successfully in GO/TiO2nanofluid.

    The curves in Fig. 4 are wide scan spectra of GO, GO/TiO2hybrid and GO/TiO2nanofluid. The peaks at 284 and 532 eV correspond to C1and O1, respectively. Moreover, the presence of Ti2at 456 eV of GO/TiO2hybrid and GO/TiO2nanofluid confirm that TiO2nanoparticles are deposited onto the surface of GO, which is consistent with the results of XRD and FTIR. Furthermore, the peaks at 100 and 150 eV, which only exist in GO/TiO2nanofluid curve, are designated to Si2and Si2, respectively. This illustrates that the corona layers KH-560 have been grafted to the hybrid nanopar- ticles successfully. In addition, the peaks at 400 eV in GO/TiO2nanofluid curve are designated to N1. This reveals that the canopy layers M2070 have been grafted to the KH560 successfully.

    Fig. 3. (a) XRD curves of GO and GO/TiO2hybird, (b) FTIR curves of GO, GO/TiO2hybird and GO/TiO2nanofluid

    Fig. 4. XPS curves of GO, GO/TiO2hybird and GO/TiO2nanofluid

    Fig.5 shows the UV-Vis spectra of GO, GO/TiO2hybrids and GO/TiO2nanofluid. The absorption peak at 235 nm is caused by-* transition of C=C. Obviously, this absorption peak exists in all three curvesbecause of the structure of GO. Furthermore, the absorption peak at 300 nm only in GO curve is assigned to→*transition of C=O because the crystalline structure of graphite is destroyed by strong oxidation. It is worth noting that there is almost no peak at 300nm in both GO/TiO2hybrid and GO/TiO2nanofluid. This might be the result of the consumption of C=O during the deposition and grafting reaction process.

    Fig. 6 is the TGA curves of GO, GO/TiO2hybrid, GO/TiO2nanofluid and KH560+M2070. As shown in Fig. 6, weight loss is observed for both GO and GO/TiO2hybrid from about 200 ℃ owing to the decomposition of hydroxy, carboxyl and carbonyl of GO. However, it is noticed that the reducing rate of GO/TiO2hybrid is much lower than GO. This may be due to the addition of TiO2nanoparticles, which display great heat resistance and are deposited onto the surface of the GO. In addition, it is clearly seen that there is few weight loss for GO/TiO2nanofluid below 300 ℃. This indicates that the GO/TiO2nanofluid is a solvent-free state and presents a liquid-like state at room temperature due to the long, flexiblechains of the polyethera- mine canopy. As can be seen from the curve of KH560+M2070, a great mass loss was observed above 300 ℃ owing to the decomposition of organic layers. Then the weight of organics is up to 0.5% at 450 ℃. This reveals that the organic shell is completely decomposed in the region of 300~450 ℃. Thereby, the residuary mass of GO/TiO2nanofluid above 450 ℃ is the weight percentage of nanoparticles, which is as high as 8.2wt%.

    Fig. 5. UV curves of GO, GO/TiO2hybird and GO/TiO2nanofluid

    Fig. 6. TGA curves of GO, GO/TiO2hybrid and GO/TiO2nanofluid

    The viscosity of GO/TiO2nanofluid in the range of 10~70 ℃ is demonstrated in Fig. 7. We can see that the viscosity is decreased with the increased temperature. It can be concluded that the higher temperature makes the long organic chains more active. The data in Fig. 7 illustrate that the viscosity of GO/TiO2nanofluid is 25.5 Pa·s at room temperature and 11.5 Pa·s at 50 ℃. This indicates that the GO/TiO2nanofluid has good fluidity whether at room temperature or higher temperature. Pristine TiO2nanoparticles tend to agglomerate in water or other solvents owing to the large specific surface area and high surface energy. Almost all of the nanoparticles are solid in normal circumstance. The GO/TiO2nanofluidshows a liquid-like state at room temperature with the organic covering in the absence of solvents because the long organic chains enhance the steric hindrance between TiO2nanoparticles and reduce the chance of contacting between TiO2.

    Fig. 7. Viscosity of GO/TiO2nanofluid from 10 to 70 ℃

    The solubility and dispersion of GO/TiO2nano- fluid in some common organic solvents are illustrated in Fig. 8. It can be seen that GO/TiO2nanofluid is homogeneously dispersed in water, ethanol, acetone, tetrahydrofuran, toluene, dimethyl formamide, trichloromethane, methanol, etc. After one month, they still display good dispersions without precipitate. This great dispersity of the GO/TiO2nanofluid is provided by the oxy- gen functional groups from the long organic chains of the GO/TiO2nanofluid.

    Fig. 8. Images of GO/TiO2nanofluid in a) water, b) ethanol c) acetone, d) tetrahydrofuran, e) toluene, f) dimethyl formamide, g) trichloromethane and h) methanol

    Based on all these investigations, TiO2nanopar- ticles are deposited on the surface of GO and the organic long chains are grafted on the surface of hybrid nanoparticles successfully. This GO/TiO2nanofluid hybrid shows good fluidity and excellent solubility and dispersion in lots of common organic solvents. This study may provide potential appli- cations of GO derivatives in UV absorption com- posite material, photo-catalysis material, conductive polymer material, and maybe some composite materials possesses great properties of both gra- phene and TiO2.

    4 CONCLUSION

    The GO/TiO2solvent-free nanofluid was synthe- sized by employing GO/TiO2as core, and (3-glyci- dyloxypropyl) trimethoxysilane (KH560) and polyetheramine-M2070 as shell. It can be observed that GO exists a single sheet-like structure and TiO2nanoparticles are dispersed on the surface of GO without aggregation. In addition, organic polymer shell has been grafted onto the inorganic core successfully. TGA and Rheology analyses indicated that the GO/TiO2solvent-free nanofluid has great fluidity and thermal stability, and the weight percentage of nanoparticles is 8.2wt%. The great solubility in some common organic solvents revealed its composite material potential which may possess great properties of both graphene and TiO2.

    (1) Si, Y.; Samulski, E. T. Synthesis of water soluble graphene.2008, 8, 1679-1682.

    (2) Geim, A. K.; Novoselov, K. S.The rise of graphene.2007, 6, 183-190.

    (3) Liu, C.; Yan, H.; Feng, S.; Li, T.; Zhang, M. Hyperbranched cyclotriphosphazene polymer-grafted graphene with amphipathicity.. 2014, 43, 1263-1265.

    (4) Li, P. P.; Zheng, Y. P.; Shi, T.; Wang, Y. D.; Li, M. Z. A solvent-free graphene oxide nanoribbon colloid as filler phase for epoxy-matrix composites with enhanced mechanical, thermal and tribological performance.2016, 96, 40-48.

    (5) Pasricha, R.; Gupta, S.; Srivastava, A. K. A facile and novel synthesis of ag-graphene-based nanocomposites.2009, 5, 2253-2259.

    (6) Huo, X.; Liu, J.; Wang, B.; Zhang, H.; Yang, Z. A one-step method to produce graphene-Fe3O4composites and their excellent catalytic activities for three-component coupling of aldehyde, alkyne and amine.2012, 1, 651-656.

    (7) Kim, Y. S.; Kumar, K.; Fisher, F. T.; Yang, E. H. Out-of-plane growth of CNTs on graphene for supercapacitor applications.2012, 23, 015301-7.

    (8) Liu, J.; He, W.; Li, P.; Xia, S. Synthesis of graphene oxide-SiO2coated mesh film and its properties on oil-water separation and antibacterial activity.. 2016, 73, 1098-1103.

    (9) Muthirulan, P.; Devi, C. N.; Sundaram, M. M. TiO2wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiation.. 2014, 40, 5945-5957.

    (10) Wu, W.; Wan, C.; Wu, C.; Guan, L. Embedding SiO2into graphene oxide in situ to generate 3D hierarchical porous graphene laminates for high performance lithium-sulfur batteries.. 2015, 5, 80353-80356.

    (11) Li, L. L.; Luo, C.; Li, X.; Duan, H.; Wang, X. Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment.. 2014, 66, 172-178.

    (12) Liu, C.; Yan, H.; Chen, Z.; Yuan, L.; Liu, T. Enhanced tribological properties of bismaleimides filled with aligned graphene nanosheets coated with Fe3O4nanorods.2015, 3, 10559-10565.

    (13) Liu, C.; Yan, H.; Lv, Q.; Li, S.; Niu, S. Enhanced tribological properties of aligned reduced graphene oxide-Fe3O4@polyphosphazene/bismaleimides composites.2016, 102,145-153.

    (14) Li, P. P.; Zheng, Y. P.; Wu, Y. W.; Qu, P.; Yang, R.L. Nanoscale ionic graphene material with liquid-like behavior in the absence of solvent.2014, 314, 983-990.

    (15) Zhang, J.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J.Porous liquids: a promising class of media for gas separation.. 2015, 54, 932-936.

    (16) Hsiu, Y. Y.; Koch, D. L. Predicting the disorder-order transition of solvent-free nanoparticle-organic hybrid materials.2013, 29, 8197-8202.

    (17) Lin, K. Y. A.; Petit, C.; Park, A. H. A.Effect of SO2on CO2capture using liquid-like nanoparticle organic hybrid materials.2013, 27, 4167-4174.

    (18) Choudhury, S.; Agrawal, A.; Kim, S. A.; Archer, L. A. self-suspended suspensions of covalently grafted hairy nanoparticles.2015, 31, 3222-3231.

    (19) Yang, R. L.; Zheng, Y. P.; Li, P. P.; Wang, Y. D. Investigation of a power strip-like compositenanoparticle derivative with liquid-like behaviouron capturing carbon dioxide.. 2017, 41, 603-610.

    (20) Bai, H. P.; Zheng, Y. P.; Wang, T. Y.; Peng, N. K. Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity.2016, 4, 14392-14399.

    (21) Zheng, Y. P.; Yang, R. L.; Wu, F.; Li, D. W. A functional liquid-like multiwalled carbon nanotube derivative in the absence of solvent and its application in nanocomposites.2014, 4, 30004-30012.

    (22) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations.1999, 11, 771-778.

    10 November 2017;

    30 January 2018

    ① This project was supported by the National Natural Science Foundation of China (51373137), the International cooperation project of Shaanxi Province (2016KW-053), and the Natural Science Basic Research Plan in Shaanxi (2017JQ2002)

    . E-mail: zhengyp@nwpu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1886

    av福利片在线| 黄色 视频免费看| 午夜两性在线视频| 久久久久精品国产欧美久久久| 夜夜夜夜夜久久久久| 可以免费在线观看a视频的电影网站| 国产成人啪精品午夜网站| 最近最新中文字幕大全电影3 | 亚洲精品国产精品久久久不卡| 免费看美女性在线毛片视频| 午夜亚洲福利在线播放| 男女下面插进去视频免费观看| 一级作爱视频免费观看| 啦啦啦韩国在线观看视频| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 97超级碰碰碰精品色视频在线观看| 一级毛片精品| 纯流量卡能插随身wifi吗| 日韩精品免费视频一区二区三区| 久久精品91无色码中文字幕| 9色porny在线观看| 欧美日韩黄片免| 在线永久观看黄色视频| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕| 老司机在亚洲福利影院| 色综合亚洲欧美另类图片| 高清黄色对白视频在线免费看| 在线av久久热| 老熟妇乱子伦视频在线观看| 亚洲第一av免费看| 久久精品91无色码中文字幕| www.熟女人妻精品国产| 亚洲欧美日韩另类电影网站| 亚洲av美国av| 欧美人与性动交α欧美精品济南到| 黄片播放在线免费| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| 国产欧美日韩一区二区精品| 精品一区二区三区av网在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲av电影在线进入| 久99久视频精品免费| 国产99久久九九免费精品| 身体一侧抽搐| 亚洲av成人av| 国产精品秋霞免费鲁丝片| 欧美久久黑人一区二区| 欧美 亚洲 国产 日韩一| 免费看a级黄色片| or卡值多少钱| 很黄的视频免费| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 亚洲精品国产精品久久久不卡| av福利片在线| 又黄又粗又硬又大视频| 午夜a级毛片| 一个人观看的视频www高清免费观看 | 亚洲国产精品久久男人天堂| 久久久久久久久中文| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 一级片免费观看大全| 人成视频在线观看免费观看| 大陆偷拍与自拍| 精品国产国语对白av| 国产单亲对白刺激| 美女扒开内裤让男人捅视频| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产成人免费| 午夜福利成人在线免费观看| 欧美日本视频| www.自偷自拍.com| 亚洲视频免费观看视频| 长腿黑丝高跟| 好看av亚洲va欧美ⅴa在| 在线观看66精品国产| 免费少妇av软件| 亚洲成人国产一区在线观看| 国产亚洲精品久久久久5区| 欧美乱妇无乱码| 麻豆国产av国片精品| 久久久久久久精品吃奶| 成人亚洲精品一区在线观看| 视频区欧美日本亚洲| 91av网站免费观看| 亚洲国产精品成人综合色| 精品一区二区三区四区五区乱码| 中文字幕另类日韩欧美亚洲嫩草| 久久天躁狠狠躁夜夜2o2o| 精品熟女少妇八av免费久了| 人人妻人人澡人人看| 日本三级黄在线观看| 久久久久久久久中文| av免费在线观看网站| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| 欧美av亚洲av综合av国产av| 日韩免费av在线播放| 少妇的丰满在线观看| www.精华液| 久久久久久久久中文| 又黄又爽又免费观看的视频| 12—13女人毛片做爰片一| 亚洲精品一区av在线观看| 亚洲av成人不卡在线观看播放网| 少妇粗大呻吟视频| 国产亚洲精品久久久久久毛片| 亚洲av成人一区二区三| 真人做人爱边吃奶动态| 丝袜美足系列| 国产免费男女视频| 一边摸一边做爽爽视频免费| 婷婷精品国产亚洲av在线| 在线免费观看的www视频| 亚洲av熟女| 精品国产一区二区久久| 欧美久久黑人一区二区| 9热在线视频观看99| 少妇粗大呻吟视频| 亚洲成人精品中文字幕电影| 制服人妻中文乱码| 久久精品成人免费网站| 国产熟女午夜一区二区三区| 老司机福利观看| 看黄色毛片网站| 又紧又爽又黄一区二区| 欧美日韩黄片免| 亚洲第一av免费看| 久久久水蜜桃国产精品网| 国产成人精品无人区| 亚洲成av人片免费观看| 亚洲精品国产色婷婷电影| 国产乱人伦免费视频| 久久婷婷成人综合色麻豆| 国产精品久久久久久精品电影 | 欧美激情极品国产一区二区三区| 一区二区三区精品91| 日本vs欧美在线观看视频| 看黄色毛片网站| 人人妻,人人澡人人爽秒播| 精品久久久久久久毛片微露脸| 久9热在线精品视频| 国产片内射在线| 欧美成人午夜精品| 国产欧美日韩一区二区三| 午夜福利在线观看吧| 精品日产1卡2卡| 多毛熟女@视频| 一区二区三区精品91| 国产高清视频在线播放一区| 男女午夜视频在线观看| 久久中文看片网| 黄频高清免费视频| 男人操女人黄网站| 校园春色视频在线观看| av天堂久久9| 50天的宝宝边吃奶边哭怎么回事| 色老头精品视频在线观看| 亚洲精品中文字幕在线视频| 午夜影院日韩av| 亚洲一区二区三区不卡视频| 一级作爱视频免费观看| 国产成人av教育| 在线观看免费午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 可以在线观看毛片的网站| 色婷婷久久久亚洲欧美| 午夜激情av网站| 色av中文字幕| 中文字幕最新亚洲高清| 午夜成年电影在线免费观看| 国产激情欧美一区二区| 亚洲午夜精品一区,二区,三区| 自线自在国产av| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 欧美性长视频在线观看| 午夜影院日韩av| 日韩大尺度精品在线看网址 | 色综合站精品国产| 亚洲色图 男人天堂 中文字幕| 黄色a级毛片大全视频| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| 午夜免费激情av| 国产人伦9x9x在线观看| 国产精品国产高清国产av| 久久国产精品男人的天堂亚洲| 日本a在线网址| 大码成人一级视频| 欧美性长视频在线观看| 黄网站色视频无遮挡免费观看| 又黄又爽又免费观看的视频| 成人手机av| 午夜成年电影在线免费观看| 超碰成人久久| 丁香欧美五月| 国产精品精品国产色婷婷| 波多野结衣一区麻豆| 日本三级黄在线观看| 一边摸一边抽搐一进一出视频| 欧美成人午夜精品| 午夜福利18| 国产精品一区二区三区四区久久 | 777久久人妻少妇嫩草av网站| 亚洲欧美激情在线| 在线永久观看黄色视频| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 国产精品1区2区在线观看.| avwww免费| av超薄肉色丝袜交足视频| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| 一进一出好大好爽视频| 丝袜人妻中文字幕| 丰满人妻熟妇乱又伦精品不卡| 久热爱精品视频在线9| 午夜免费观看网址| 国产av又大| 窝窝影院91人妻| 午夜影院日韩av| 这个男人来自地球电影免费观看| 欧美一级a爱片免费观看看 | 99在线视频只有这里精品首页| 国产aⅴ精品一区二区三区波| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区| 久久天堂一区二区三区四区| 老汉色∧v一级毛片| 精品乱码久久久久久99久播| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多| 动漫黄色视频在线观看| 亚洲熟妇中文字幕五十中出| 久久九九热精品免费| 天堂动漫精品| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 久久精品91蜜桃| 欧美亚洲日本最大视频资源| 亚洲性夜色夜夜综合| 正在播放国产对白刺激| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 91麻豆av在线| 亚洲 欧美 日韩 在线 免费| 久久中文字幕人妻熟女| 性欧美人与动物交配| 日韩国内少妇激情av| 精品人妻1区二区| cao死你这个sao货| 人人澡人人妻人| 一区二区三区高清视频在线| 亚洲人成77777在线视频| 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 国产一卡二卡三卡精品| 老司机靠b影院| 啦啦啦 在线观看视频| 狠狠狠狠99中文字幕| 午夜成年电影在线免费观看| 激情在线观看视频在线高清| 88av欧美| 日韩一卡2卡3卡4卡2021年| 美国免费a级毛片| 啦啦啦免费观看视频1| 1024视频免费在线观看| 正在播放国产对白刺激| 国产精品国产高清国产av| 免费看a级黄色片| 一二三四社区在线视频社区8| 久久久久国内视频| 少妇的丰满在线观看| 咕卡用的链子| 国产野战对白在线观看| 精品免费久久久久久久清纯| 久久久久国产一级毛片高清牌| 黄色视频不卡| 久久久久久大精品| 久久久国产成人精品二区| 9热在线视频观看99| 午夜福利一区二区在线看| 91国产中文字幕| 精品国内亚洲2022精品成人| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 窝窝影院91人妻| 日韩免费av在线播放| 琪琪午夜伦伦电影理论片6080| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 美女午夜性视频免费| 禁无遮挡网站| 丝袜美足系列| av欧美777| 一级作爱视频免费观看| 不卡av一区二区三区| 美女高潮喷水抽搐中文字幕| 99久久国产精品久久久| 国产淫片久久久久久久久| 国产成人一区二区在线| 免费av毛片视频| 乱系列少妇在线播放| 色综合色国产| 国产欧美日韩精品亚洲av| 干丝袜人妻中文字幕| av天堂中文字幕网| 亚洲av一区综合| 在线播放无遮挡| 亚洲国产欧美人成| 99久久精品一区二区三区| 97超视频在线观看视频| 黄色丝袜av网址大全| 少妇被粗大猛烈的视频| 亚洲avbb在线观看| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 成人三级黄色视频| 亚洲av不卡在线观看| 成人三级黄色视频| 亚洲av不卡在线观看| 成人三级黄色视频| 老司机福利观看| 91av网一区二区| bbb黄色大片| 不卡一级毛片| 成人av在线播放网站| 精品一区二区三区人妻视频| av女优亚洲男人天堂| 色哟哟哟哟哟哟| 午夜福利视频1000在线观看| 三级男女做爰猛烈吃奶摸视频| av视频在线观看入口| 两性午夜刺激爽爽歪歪视频在线观看| 免费看美女性在线毛片视频| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 不卡视频在线观看欧美| 日韩av在线大香蕉| 免费看光身美女| 男女之事视频高清在线观看| 国产精品乱码一区二三区的特点| 日本a在线网址| 日韩国内少妇激情av| 观看美女的网站| 欧美激情国产日韩精品一区| 亚洲av熟女| 日韩精品中文字幕看吧| 日本 欧美在线| 国产精品1区2区在线观看.| 久久亚洲真实| 日本成人三级电影网站| 亚洲最大成人手机在线| 91久久精品电影网| 国产成人aa在线观看| 身体一侧抽搐| 亚洲人与动物交配视频| 波多野结衣高清无吗| 久久精品国产亚洲网站| 深夜a级毛片| 成年免费大片在线观看| 91av网一区二区| 婷婷丁香在线五月| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 美女黄网站色视频| 联通29元200g的流量卡| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 日日夜夜操网爽| 琪琪午夜伦伦电影理论片6080| 午夜视频国产福利| 国产精品女同一区二区软件 | 麻豆国产97在线/欧美| a级一级毛片免费在线观看| 国产一区二区在线av高清观看| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 看免费成人av毛片| 97热精品久久久久久| 熟女电影av网| 日本欧美国产在线视频| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 亚洲自拍偷在线| 极品教师在线视频| 精品国产三级普通话版| 国产色爽女视频免费观看| 久久久久久久久久黄片| 国产欧美日韩精品一区二区| 欧美性猛交╳xxx乱大交人| 欧美绝顶高潮抽搐喷水| 免费人成视频x8x8入口观看| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 国产一区二区在线观看日韩| 色尼玛亚洲综合影院| 久久中文看片网| 国产色婷婷99| 嫩草影院精品99| 特级一级黄色大片| 日本 欧美在线| 夜夜看夜夜爽夜夜摸| 1024手机看黄色片| av天堂在线播放| 免费看日本二区| 久久亚洲精品不卡| 亚洲av成人精品一区久久| 精品久久国产蜜桃| 国产午夜精品论理片| 岛国在线免费视频观看| 亚洲人成网站在线播放欧美日韩| 好男人在线观看高清免费视频| 日韩欧美 国产精品| 亚洲成人久久爱视频| 免费看a级黄色片| 精品午夜福利视频在线观看一区| 高清日韩中文字幕在线| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 91狼人影院| 国产高清有码在线观看视频| 九九在线视频观看精品| 日韩 亚洲 欧美在线| 日本与韩国留学比较| 欧美另类亚洲清纯唯美| 深夜精品福利| 国产亚洲精品综合一区在线观看| 岛国在线免费视频观看| 亚洲电影在线观看av| 可以在线观看的亚洲视频| 国产精品福利在线免费观看| 别揉我奶头 嗯啊视频| 亚洲自偷自拍三级| 中文字幕高清在线视频| 日本爱情动作片www.在线观看 | 国产蜜桃级精品一区二区三区| 老女人水多毛片| 国产一区二区激情短视频| 欧美日韩国产亚洲二区| 中亚洲国语对白在线视频| 亚洲一区二区三区色噜噜| 99热6这里只有精品| 精品人妻视频免费看| 亚洲第一电影网av| 色哟哟·www| 熟妇人妻久久中文字幕3abv| 午夜老司机福利剧场| 悠悠久久av| 亚洲欧美激情综合另类| 久久这里只有精品中国| 欧美潮喷喷水| 最近中文字幕高清免费大全6 | 国产高清有码在线观看视频| 成人特级黄色片久久久久久久| 人妻少妇偷人精品九色| 亚洲成人中文字幕在线播放| 最近最新中文字幕大全电影3| 国产成人福利小说| 永久网站在线| 中文字幕精品亚洲无线码一区| 精华霜和精华液先用哪个| 久久久久久久久久久丰满 | 亚洲va在线va天堂va国产| 国产一区二区三区视频了| 午夜精品在线福利| 亚洲第一区二区三区不卡| 久久九九热精品免费| av天堂在线播放| 亚洲国产精品久久男人天堂| 国产一区二区激情短视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲va在线va天堂va国产| 97碰自拍视频| 亚洲图色成人| 女生性感内裤真人,穿戴方法视频| 亚洲,欧美,日韩| 性色avwww在线观看| 久久精品人妻少妇| 欧美另类亚洲清纯唯美| 变态另类丝袜制服| 欧美精品啪啪一区二区三区| 精品欧美国产一区二区三| 亚洲狠狠婷婷综合久久图片| 老熟妇乱子伦视频在线观看| 精品一区二区三区视频在线| 五月伊人婷婷丁香| 久久久精品大字幕| 男女之事视频高清在线观看| 日韩中文字幕欧美一区二区| 免费在线观看成人毛片| www.色视频.com| 少妇的逼水好多| 免费人成视频x8x8入口观看| 国产精品综合久久久久久久免费| 91精品国产九色| 日本精品一区二区三区蜜桃| 91狼人影院| 俺也久久电影网| 99国产极品粉嫩在线观看| 亚洲精品乱码久久久v下载方式| 哪里可以看免费的av片| 日韩国内少妇激情av| 亚洲四区av| 深夜a级毛片| 亚洲人成网站高清观看| 午夜亚洲福利在线播放| 欧美日韩黄片免| 久久精品国产99精品国产亚洲性色| 日韩欧美一区二区三区在线观看| 中文字幕av在线有码专区| 国产精品久久久久久av不卡| 又粗又爽又猛毛片免费看| 日韩欧美在线二视频| 国国产精品蜜臀av免费| 国产精品1区2区在线观看.| 国产麻豆成人av免费视频| 少妇丰满av| 国产伦精品一区二区三区四那| 亚洲国产精品成人综合色| ponron亚洲| 亚洲美女搞黄在线观看 | 午夜激情欧美在线| 日韩欧美一区二区三区在线观看| 国产亚洲精品综合一区在线观看| 日韩欧美精品免费久久| 国产三级在线视频| 老师上课跳d突然被开到最大视频| 国产精品精品国产色婷婷| 中文亚洲av片在线观看爽| 色视频www国产| 亚洲av免费在线观看| 欧美人与善性xxx| 日本欧美国产在线视频| 黄片wwwwww| 免费一级毛片在线播放高清视频| 久久久久久久精品吃奶| 中文字幕av成人在线电影| 国产精品永久免费网站| 极品教师在线免费播放| 永久网站在线| 老司机福利观看| 精品久久国产蜜桃| av福利片在线观看| 色视频www国产| 精品午夜福利在线看| 国产探花极品一区二区| 别揉我奶头~嗯~啊~动态视频| 午夜a级毛片| 亚洲中文日韩欧美视频| 亚洲va在线va天堂va国产| 精品久久久久久,| 国产成人a区在线观看| 国产高清有码在线观看视频| 久久热精品热| 日韩欧美国产在线观看| 一个人免费在线观看电影| 三级国产精品欧美在线观看| 内地一区二区视频在线| 最近视频中文字幕2019在线8| 又紧又爽又黄一区二区| 女人被狂操c到高潮| 国产国拍精品亚洲av在线观看| 看十八女毛片水多多多| 欧美色欧美亚洲另类二区| 国产精品,欧美在线| 内射极品少妇av片p| 国产人妻一区二区三区在| 久久久成人免费电影| 在线观看舔阴道视频| 久久午夜亚洲精品久久| 黄片wwwwww| 18+在线观看网站| 毛片女人毛片| 日韩中字成人| 午夜免费男女啪啪视频观看 | 欧美一级a爱片免费观看看| 丝袜美腿在线中文| 精品人妻1区二区| 亚洲欧美日韩高清在线视频| 久久久久久久精品吃奶| av天堂在线播放| 成人综合一区亚洲| 中亚洲国语对白在线视频| 村上凉子中文字幕在线| 人妻丰满熟妇av一区二区三区| 欧美黑人巨大hd| av中文乱码字幕在线| 啦啦啦观看免费观看视频高清| 日本 欧美在线| 国产午夜精品久久久久久一区二区三区 | 成人二区视频| 有码 亚洲区| 九九在线视频观看精品| 女的被弄到高潮叫床怎么办 | h日本视频在线播放| 最新在线观看一区二区三区| 少妇的逼好多水| 熟女电影av网| 中文字幕免费在线视频6| 欧美性猛交╳xxx乱大交人|