• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-assembled Nanohybrid from Opposite Charged Sheets: Alternate Stacking of CoAl LDH and MoS2①

    2018-08-17 08:01:22WEIYnHuLIGungSheWANGJingHoXUEChengLinFANGShoFnLILiPing
    結(jié)構(gòu)化學(xué) 2018年7期

    WEI Yn-Hu LI Gung-She WANG Jing-Ho XUE Cheng-Lin FANG Sho-Fn LI Li-Ping

    ?

    Self-assembled Nanohybrid from Opposite Charged Sheets: Alternate Stacking of CoAl LDH and MoS2①

    WEI Yan-HuaaLI Guang-SheaWANG Jiang-HaobXUE Cheng-LinaFANG Shao-FanbLI Li-Pinga②

    a.(130012)b.(350002)

    Hybrid materials are attracting intensive attention for their applications in electronics, photoelectronics, LEDs, field-effect transistors,. Engineering new hybrid materials and further exploiting their new functions will be significant for future science and technique development. In this work, alternatively stacked self-assembled CoAl LDH/MoS2nanohybrid has been successfully synthesized by an exfoliation-flocculation method from positively charged CoAl LDH nanosheets (CoAl-NS) with negatively charged MoS2nanosheets (MoS2-NS). The CoAl LDH/MoS2hybrid material exhibits an enhanced catalytic performance for oxygen evolution reaction (OER) compared with original constituents of CoAl LDH nanosheets and MoS2nanosheets. The enhanced OER catalytic performance of CoAl LDH/MoS2is demonstrated to be due to the improved electron transfer, more exposed catalytic active sites, and accelerated oxygen evolution reaction kinetics.

    CoAl LDH/MoS2nanohybrid, exfoliation-flocculation method, self-assembly, electrocatalytic oxygen evolution reaction; electrocatalytic oxygen evolution reaction;

    1 INTRODUCTION

    Recently, much more attention has been paid to hybrid nanomaterials because strong interaction between component materials in nanoscale could result in novel properties and functions, while the component materials maintain their unique properties. Moreover, hybrid materials have exhi- bited wide potential applications in electronics[1-3], photoelectronics[4, 5], LEDs[6-8], catalysis[9-12],. Hence it is very significant to engineer new hybrid materials and further exploit their new functions for the requirement of future science and technique development. Until now, a lot of hybrid materials have been reported. Among them, less work is devoted to fabricating the hybrids consisting of opposite charged components due to the complexity and difficulty in experimental design.

    Layered double hydroxides (LDHs), known in a universal formula of [M2+1-xM3+(OH)2]+[(An-)/n]-·-mH2O, are a group of materials composed of positively charged metal hydroxide host layers and negatively charged balanced anions. Owing to the tunable structure and composition, the exchangeable interlayer anions, as well as weak interlayer interac- tion hence easy to be exfoliated, LDHs are con- sidered as an excellent basic material to engineer novel functional composites[13-15]. Moreover, the surface of exfoliated LDH in suspensions could be rich in positive charge[16], thus making its self- assembly with negatively charged nanomaterial possible.

    MoS2is a typical transition metal dichalcogenide, exhibiting unique properties, such as good chemical stability, high thermal and electronic conductivity like graphite, meanwhile showing various applica- tions in electrocatalysis[17], lithium-ion batteries[18, 19], solar cells[20], supercapacitors[21], and so on. More- over, MoS2possesses a unique layered structure, in which a plane of molybdenum atoms is sandwiched by two planes of S atoms to form a monolayer of MoS2. Since stacked monolayers are held together by weak van der Waals interaction, MoS2nanosheets can be obtained by exfoliating bulk crystals into single-layered/few-layered nanosheets through various techniques including liquid-phase exfolia- tion methods in specific solvent. From the structural point of view, reducing the thickness of MoS2nanosheets to single-layer/few-layers could expose more S atoms, thus engendering MoS2nanosheets negatively charged. If CoAl-NS suspension is mixed with that of MoS2-NS, alternatively stacked CoAl LDH/MoS2hybrid from opposite charged sheets could be formed via electrostatic interaction. Moreover, in this hybrid structure, the constituents of CoAl LDH and MoS2-NS could enhance the electron transfer and accelerate the catalytic oxygen evolution reaction kinetics.

    In our work, we have successfully self-assembled positively charged CoAl LDH-NS with negatively charged MoS2-NS in nanoscale into alternately stacked nanohybrid. The CoAl LDH/MoS2exhibits an enhanced catalytic performance for oxygen evolution reaction relative to the starting nanosheets. We attribute the enhanced OER catalytic perfor- mance to the improved electron transfer, large amount of exposed catalytic active sites, and accelerated catalytic oxygen evolution reaction kinetics.

    2 EXPERIMENTAL

    2. 1 Synthesis of CoAl LDH/MoS2 nanohybrid

    All the starting materials used in the experiment were purchased from Sinopharm Chemical Reagent Co., Ltd. An exfoliation-flocculation method was adapted to prepare the CoAl LDH/MoS2nanohybrid.

    2. 1. 1 Synthesis of Co-Al LDH-CO32-

    Firstly, Co-Al LDH-CO32-was synthesized by a homogeneous precipitation method. In a typical procedure, Co(NO3)2·6H2O, Al(NO3)3·9H2O and urea were dissolved in 80 mL of deionized water to give the final concentrations of 10, 5, and 35 mM, respectively. The aqueous mixture was transferred into a 100 mL Teflon-lined autoclave to react at 100 ℃ for 24 h. After cooling to room temperature, the solid products were filtered, subsequently washed with water and alcohol for several times, and air-dried at ambient temperature.

    2. 1. 2 Anion exchange of CoAl LDH

    A two-step anion-exchange process was then used to treat the as-prepared LDH sample. 0.6 g CoAl LDH-CO32-was added to 600 mL of NaCl-HCl mixed solution (1 M NaCl and 3.3 mM HCl in deionized water) and magnetically stirred at 650 rpm for 24 h. The CoAl LDH-Cl-was separated and purified by the same procedure for CoAl LDH-CO32-as described in Part 2.1.2. Then, 0.6 g of the NaCl-HCl treated LDH sample was dispersed into 600 mL of aqueous solution containing 0.1 M NaNO3. After that, CoAl LDH-NO3-, to be used for subsequent exfoliation, was obtained by filtering, washing and drying process as that for CoAl LDH-CO32-, and -Cl-.

    2. 1. 3 Exfoliation of CoAl LDH-NO3-

    0.3 g CoAl LDH-NO3-was dissolved in 300 mL formamide, followed by ultrasonic treatment for 6 h. Subsequently, the solution was magnetically stirred for another 24 h. Then, the solution was treated by the centrifugation of 4000 rpm for 10 min twice to remove the remaining unexfoliated crystals and to obtain a pink suspensioncontainingCoAl-NS.

    2. 1. 4 Exfoliation of MoS2

    2 g bulk MoS2was dispersed in 300 mL N,N-dimethylformamide (DMF), then followed by magnetically stirring for 2 h. After 8-hour ultrasonic treatment, the mixture was magnetically stirred for another 24 h. The resulting colloidal solution was further centrifuged at 10, 000 rpm for 15 min for several times to remove the unexfoliated bulk MoS2. Finally, an olive green colloidal solution containing MoS2-NS was obtained.

    2. 1. 5 Preparation of the CoAl LDH/MoS2nanohybrids

    300 mL colloidal solution of MoS2-NS was slowly added into 300 mL of that of CoAl-NS at a dropping rate of 2.5 mL·min-1under continuous stirring for 24 h. The flocculated sample was obtained by centrifugation of 3000 rpm for 15 min, washed with alcohol for several times and dried at room temperature.

    2. 2 Characterization

    The crystal structures of the as-prepared CoAl LDH and CoAl LDH/MoS2samples were identified by powder X-ray diffraction (XRD, D/MAX 2550 and MiniFlex 600, Rigaku, respectively) with Curadiation (= 0.15418 nm).The morphologies of the as-prepared LDH samples were imaged by scanning electron microscopy (SEM, SU 8020, HITACHI). Profiles of exfoliated LDH and MoS2were obtained by a Multimode 8 DI Atomic Force Microscope instrument (AFM, Bruker, USA) in a tapping mode. TEM images of the samples were characterized by Field Emission Transmission Electron Microscopy (TEM, FEI Tecnai G2F 30) with the Accelerating voltage of 300 kV.Element distribution was measured by Energy Dispersive X-RaySpectrometer (EDX, Gnensis, EDAX, AMETEK, USA). X-ray photoelectron spectroscopy (XPS) was performed using the ESCALAB 250 (Thermo Electron Corporation, USA) and the binding energy was standardized with respect to the residual C 1peak.

    2. 3 Electrochemical tests

    The electrochemical measurements were per- formed using an electrochemical workstation (CHI 760 D, Shanghai) in a three-electrode tested with the prepared films on a glassy carbon electrode with an active area of 0.196 cm2as the working electrode, Hg/HgO in sat. KCl was sued as the reference electrode, and graphite as the counter electrode at a scan rate of 5 mV·s?1in 1 M KOH. To prepare the test for electrochemical performance, 4 mg of powder sample was dispersed in a solution containing 450 μL of deionized water, 500 μL of ethanol and 50 μL of Nafion. Then, the obtained suspension was treated in an ultrasonic water bath. Glassy carbon disk electrodes with a diameter of 5 mm were polished with alpha alumina powder (50 nm) suspended in deionized water on a Nylon polishing pad. After cleaning, the electrodes were thoroughly rinsed with deionized water. Before loading with catalysts, the electrodes were also cleaned in deionized water by sonication for about 1 min. 10 μL of colloid suspension was then drop-casted on the glassy carbon electrode to give a loading density of 0.2 mg·cm-2. The electrodes were dried at ambient temperature.

    The potentials were calibrated with respect to the reversible hydrogen electrode (RHE) using the Equation (1),

    Electrochemical impedance spectra (EIS) were measured using the electrochemical workstation at a potential of 1.6 V vs. RHE and frequency range of 100 000~0.01 Hz with amplitude of 5 mV. Cyclic voltammetry (CV) measurements at different scan rates (40, 80, 120, 160, 200 mV/s) were used to determine the electrochemical double layer capacitances (EDLC, Cdl). Chronoamperometry was tested at an applied potential of 1.63 V at pH = 14 to study the durability of the electrocatalysts.

    Fig. 1. Schematic illustration of the preparation process for CoAl LDH/MoS2nanohybrid

    The formation of LDH-CO32-in terms of two steps (a homogeneous hydrothermal method and a successful anion exchange to LDH-NO3-) was verified by XRD characterization. XRD patterns of CoAl LDH inserted with CO32-, Cl-, and NO3-are shown in Fig. 2(a), which are wellindexed to CoAl LDH (JCPDS, No. 51-0045). The exchange of intercalated anions leads to the XRD peak of (003) shifting towards smaller angle obviously from CO32-, Cl-, to NO3-, demonstrating an enlarged layered spacing from 7.4 to 8.6 ? according to Bragg Equation (2),

    2dsin(2)

    which is beneficial to the next exfoliation. The relatively strong (006) peak in CoAl LDH-NO3-shows some asymmetry, which might result from original anion residue or a minor contamination of CO32-during anion exchange. The morphologies of as-fabricated CoAl LDH-CO32-and anion exchange product LDH-NO3-were further characterized by SEM displayed in Fig. 2(b, c). CoAl LDH-CO32-nanoflakes display a typical lateral size about ten microns and thickness about tens of nanometers. After two steps of ion-exchange, no morphological changes were observed for CoAl LDH-NO3-. Both CoAl LDH-CO32-and CoAl LDH-NO3-exhibit similar morphology of hexagonal plates, demon- strating that the structure of LDH was well main- tained after two-step ion exchange.

    The atomic force microscopy (AFM) profiles in Fig. 3(a, b) shows that the exfoliated CoAl LDH exhibits a typical thickness about 6~10 nanometers, while MoS2-NS of 3-6 nanometers. The presence of crack of the nanosheets may be due to the long ultrasonic time and high centrifugal rate. The ultrathin nature of the nanosheets is also confirmed by the almost transparent morphology, as shown in TEM images of Fig. 3(c, d). Besides, TEM images in Fig. 3(c, d) show that the lateral sizes of CoAl-NS and MoS2-NS are both about hundreds of nanome- ters. Furthermore, the successful exfoliation of nanoflakes to nanosheets for CoAl LDH-NO3-can also be verified by the weakening of the XRD diffraction peaks of (003), shown in Fig. 4(a). From nanoflake to nanosheet, the thickness along the direction of layer stacking is greatly reduced. Meanwhile, more octahedral edges of LDH could be exposed. It has been reported that the octahedral edges of LDH may be the OER active catalytic sites[22]. The more exposed octahedral edges, the better electrocatalytic OER performance.

    Fig. 2. (a) XRD patterns of CoAl LDH before (inserted with CO32-) and after (insertedwith NO3-) ion-exchange treatment, and SEM images of (b) CoAl LDH-CO32-and (c) CoAl LDH-NO3-

    Fig. 3. AFM profiles of (a) CoAl-NS, (b) MoS2-NS, and TEM images of (c) CoAl-NS, (d) MoS2-NS

    The ?occulation of MoS2-NS with LDH-NS was executed by dropping MoS2-NS colloidal suspension into that of CoAl-NS. Fig. 4(a) illustrates typical XRD patterns of ?occulated product CoAl LDH/MoS2. The clear diffraction peaks at two theta of 11.5°, 23.2°, 34.6°, 38.7°, 47.3° and 61.9° are well indexed to CoAl LDH (JCPDS No. 51-0045), and the diffraction peak at 14.4° is attributed to the (002) of MoS2(JCPDS No. 87-2416). The co-existence of diffraction peaks of CoAl LDH and MoS2suggests that CoAl LDH/MoS2nanohybrid was successfully engineered. TEM and HRTEM images in Fig. 4(b~d) are shown to further illustrate the alternatively stacked structure of the hybrid. The TEM image in Fig. 4(b) demonstrates that the hybrid consists of ultrathin nanosheets. The coexistence of plane (003) of CoAl LDH and plane (103) of MoS2with simultaneously alternative stacking in HRTEM of Fig. 4(c) reveals the superlattice-like structure of CoAl LDH/MoS2. Meanwhile, HRTEM image in Fig. 4(d) illustrates that nanohybrid consisting of monolayered CoAl-NS and MoS2-NS was even formed[15, 16]. The diffraction rings of both CoAl LDH and MoS2are presented in the SAED patterns of CoAl LDH/MoS2nanohybrid in Fig. 4(e). Furthermore, the uniform distribution of Co, Al, Mo and S can be clearly observed in the HAADF- mapping images of Co–Al LDH/MoS2in Fig. 5, which further proves that MoS2and CoAl LDH were successfully integrated to form nanohybrid.

    Fig. 4. (a) XRD patterns and (b) TEM, (c, d) HRTEM images and (e) SAED images of CoAl LDH/MoS2nanohybrid

    Fig. 5. HAADF-mapping images of CoAl LDH/MoS2hybrid material

    XPS measurement also confirms the formation of hybrid CoAl LDH/MoS2. Fig. 6(a) compares the XPS survey spectra of CoAl LDH/MoS2and CoAl-NS. Mo 3and S 2peaks can be identified in the survey spectra of CoAl LDH/MoS2, corro- borating the presence of MoS2in the hybrid material, i.e. successfully obtaining CoAl LDH/MoS2hybrid. Fig. 6(b) shows the high resolution Co 2spectra of CoAl-NS and CoAl LDH/MoS2. Both spectra can be well deconvoluted into four photoelectron peaks. For CoAl-NS, two strong peaks signals at 781.9 and 798.1 eV correspond to the core levels of Co 23/2and Co 21/2, while the other two peaks at 786.6 and 803.6 eV are the satellite peaks of Co 23/2and Co 21/2, respectively. The Co 2spectrum for CoAl-NS exhibits the following characteristics compared to that observed for cobalt oxides[23, 24]: more intense satellite peaks, higher binding energies of Co 23/2and Co 21/2, larger spin-orbital splitting and smaller energy difference between Co 23/2and its larger satellite peak. These characteristics demonstrate that cobalt in CoAl-NS is mainly Co2+ions in a high-spin state coordinated with hydroxyl[23]. When the nanohybrid was formed, Co 2peaks of CoAl LDH/MoS2shifted towards higher binding energies of 782.3 (Co 23/2) and 798.5 eV (Co 21/2). Meanwhile, two satellite bands located at 787.1 and 804.2 eV, respectively, indicate that the presence of a strong interaction between CoAl LDH and MoS2changes the electronic structure of the nanohybrid.

    The CoAl LDH/MoS2nanohybrid was then tested for electrochemical oxygen evolution reaction (OER) performance in 1 M KOH solution, with CoAl-NS and MoS2-NS as the compared samples. The catalysts were electrochemically pre-conditioned to reach a stable state. Then, the water oxidation activity was measured by linear sweep voltammetry in standard three-electrode system. The CoAl LDH/MoS2nanohybrid exhibits an enhanced OER performance compared with CoAl-NS and MoS2-NS. Fig. 7 displays the comparison of OER perfor- mances of samples CoAl LDH/MoS2, CoAl-NS and MoS2-NS. The linear sweep voltammetry curves in Fig. 7(a) show that the onset potential of CoAl LDH/MoS2hybrid negatively shifted significantly compared to bare CoAl-NS and MoS2-NS. At the current density of 10 mA·cm-2, CoAl LDH/MoS2exhibited a lower overpotential of 0.376 V, superior to CoAl-NS (0.425 V) and MoS2-NS (even failing to achieve the current density of 10 mA·cm-2at an overpotential of 0.494 V). At an overpotential of 400 mV, the current density of CoAl LDH/MoS2reaches as high as 20.1 mA·cm-2, 4 times higher than that of CoAl-NS (5.41 mA·cm-2) and 8 times higher than that of MoS2-NS (0.27 mA·cm-2), depicted in Fig. 7(c). All above confirms that CoAl LDH/MoS2hybrid exhibits an enhanced electrocatalytic OER performance. Fig. 7(b) shows Tafel slopes of three samples. The lower Tafel slope of CoAl LDH/MoS2suggests its optimized oxygen evolution reaction kinetics. Moreover, a smaller Tafel slope suggests that electron transfer in CoAl LDH/MoS2is more facile compared to the other two samples, as verified by electrochemical impedance spectra (EIS). Tofurther elucidate the origin of the enhanced OER catalytic performance, EIS of CoAl LDH/MoS2and bare CoAl-NS has been obtained and is presented in Fig. 7(d). Obviously, the diameter of the semicircu- lar arc for CoAl LDH/MoS2is smaller than that for CoAl-NS, indicative of a faster charge transfer at the interface of the electrode/electrolyte after assembling CoAl-NS with MoS2, which improves the OER catalytic performance.

    Fig. 6. (a) XPS survey spectra and (b) Co 2core levels of CoAl-NS and CoAl-LDH/MoS2

    The electrochemical active surface area (ECSA) of samples was valued from the electrochemical double layer capacitance (EDLC, Cdl) in Fig. 7(e). The linear slope of capacitive current versus scan rates is used to evaluate the ECSA, equivalent to twice of the double-layer capacity Cdl[25, 26]. From CoAl-NS, MoS2-NS to CoAl LDH/MoS2, the ECSA increased dramatically. The higher ECSA value for CoAl LDH/MoS2strongly suggests that the obtained hybrid exposes more catalytic active sites than those electrochemically accessible for H2O or OH-. Compared to two component materials, the special structure of alternativeely stacked CoAl LDH/MoS2hybrid enables it to exhibitadvantages of faster electron transfer and more active sites responsible for its superior OER catalytic performance. The stability of CoAl LDH/MoS2was also examined by chronoamperometric measurement at an overpo- tential of 400 mV. As shown in Fig. 7(f), the current density exhibits a slight increase after small decrease, which may result from a bubble adsorption-desorp- tion process[27]. More importantly, the current density values still retained at ca. 4.67 mA·cm-2even after 12 hours of electrocatalytic reaction, suggesting that the CoAl LDH/MoS2nanohybrid is intrinsically stable under OER reaction conditions.

    Fig. 7. Comparison of OER performance for samples CoAl LDH/MoS2, CoAl-NS and MoS2-NS. (a) Linear sweep voltammetry curves, (b) Tafel plots, (c) Histogram of Current density at overpotential of 400 mV (solid), and overpotential at current density of 10 mA·cm-2(hollow), (d) EIS results, (e) Charging current density differences (Δj = ja– jc) plotted against scan rates. The linear slope, equivalent to twice of the double-layer capacitance Cdl, was used to evaluate the ECSA. (f) Chronoamperometric measurement of CoAl LDH/MoS2hybrid at overpotential of 400 mV

    4 CONCLUSION

    In summary, we have successfully self-assembled positively charged CoAl LDH nanosheets with nega- tively charged MoS2nanosheets into alternately stacked nanohybrid. The CoAl LDH/MoS2exhibits an enhanced catalytic performance for OER when compared with pristine CoAl-NS and MoS2-NS in alkaline electrolyte of pH = 14. XPS measurement shows that Co ions in the nanohybrid are divalent and coordinate to hydroxyl. Moreover, the strong interaction between two components in CoAl LDH/MoS2nanohybrid results in a higher binding energy shift for Co 2photoelectron peaks. The results of EIS and EDLC demonstrate that the enhanced OER catalytic performance mainly attributes to the higher electron conductivity, more exposed active sites, optimized catalytic oxygen evolution reaction kinetics,. To further under- stand the mechanism of OER catalytic kinetics and interaction of the components of CoAl-NS and MoS2-NS, more works will be expected on the electron structure and physical chemistry properties. The finding about self-assembled nanohybrid from oppositely charged sheets could provide a new idea for the synthesis of new functional hybrid materials.

    (1) Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices.2000, 408, 541–548.

    (2) Zang, X.; Zhang, R.; Zhen, Z.; Lai, W.; Yang, C.; Kang, F.; Zhu, H. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes.2017, 40, 224–232.

    (3) Zhang, F.; Xu, Y.; Ren, Y.; Feng, L.; Chen, W. Y.; Pei, Y. Q. A hybrid active gate drive for switching loss reduction and voltage balancing of series-connected IGBTs.2017, 32, 7469–7481.

    (4) Hu, X.; Chen, L.; Ji, T.; Zhang, Y.; Hu, A.; Wu, F.; Li, G.; Chen, Y. Roll-to-roll production of graphene hybrid electrodes for high-efficiency, flexible organic photoelectronics.2015, 2, 1500445.

    (5) Jia, H.; Chen, Z.; Chen, P.; Xu, C.; Liu, C.; Zhao, Z.; Liu, X.; Qiu, J. Broadband NIR photoelectronic performance for sunlight-induced photocurrent from (NaYF4:Yb-Er)/BiOI hybrid films.2017, 100, 697–704.

    (6) Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes.. 2015, 27, 1248–1254.

    (7) Yang, Q.; Liu, Y.; Pan, C.; Chen, J.; Wen, X.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect.2013, 13, 607–613.

    (8) K?yak, ?.; Oral, B.; Topuz, V. Smart indoor LED lighting design powered by hybrid renewable energy systems.2017, 148, 342–347.

    (9) Cao, S. W.; Liu, X. F.; Yuan, Y. P.; Zhang, Z. Y.; Liao, Y. S.; Fang, J.; Loo, S. C. J. S.; Tze, C.; Xue, C. Solar-to-fuels conversion over In2O3/g-C3N4hybrid photocatalysts.. 2014, 147, 940–946.

    (10)Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W.; Wang, Y. L.; Hwang, B. J.; Chen, C. C.; Dai, H. Highly active and stable hybrid catalyst of cobalt-doped FeS2nanosheets-carbon nanotubes for hydrogen evolution reaction.. 2015, 137, 1587–1592.

    (11)Leelavathi, A.; Ravishankar, N.; Madras, G. Enhanced preferential CO oxidation on Zn2SnO4supported Au nanoparticles: support and H2effects.2016, 4, 14430–14436.

    (12)Li, X. K.; Jiang, Y. Q. A new iodocuprate/methyl viologen-based hybird: structure, properties and photocatalytic activity for the degradation of organic dye.. 2017, 36,1020–1026.

    (13)Tang, D.; Liu, J.; Wu, X.; Liu, R.; Han, X.; Han, Y.; Huang, H.; Liu, Y.; Kang, Z. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation.2014, 6, 7918–7925.

    (14)Kalali, E. N.; Wang, X.; Wang, D. Y. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties.2015, 3, 6819–6826.

    (15)Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasak. T. A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water.2015, 9, 1977–1984.

    (16)Ge, X.; Gu, C. D.; Yin, Z. Y.; Wang, X. L.; Tu, J. P.; Li, J. Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide.2015, 20, 185–193.

    (17)Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials.2014, 4, 3957–3971.

    (18)Tan, C.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites.. 2015, 44, 2713–2731.

    (19) Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites.2014, 7, 209–231.

    (20)Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides.2014, 8, 1102–1120.

    (21)Zhang, Y.; He, T.; Liu, G.; Zu, L.; Yang, J. One-pot mass preparation of MoS2/C aerogels for high-performance supercapacitors and lithium-ion batteries.2017, 9, 10059–10066.

    (22)Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis.2014, 5, 4477.

    (23)Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS studies of solvated metal atom dispersed catalysts: evidence for layered cobalt-manganese particles on alumina and silica.. 1991, 113, 855–861.

    (24)Yu, C.; Guan, X. F.; Li, G. S.; Zheng, J.; Li, L. P. A novel approach to composite electrode 0.3Li2MnO3-0.7LiMn1/3Ni1/3Co1/3O2in lithium-ion batteries with an anomalous capacity and cycling stability at 45.4 °C.2012, 66, 300–303.

    (25)Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2nanosheets.2013, 135, 10274–10277.

    (26)Jaramillo, T. F.; J?rgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2evolution from MoS2nanocatalysts.2007, 317, 100–102.

    (27)Wang, J. H.; Li, L. P.; Tian, H. Q.; Zhang, Y. L.; Che, X. L.; Li, G. S. Ultrathin LiCoO2nanosheets: an efficient water-oxidation catalyst.s 2017, 9, 7100–7107.

    26 October 2017;

    9 January 2018

    This work was financiallysupported by NNSFC (No. 21025104, 21271171, and 91022018)

    . Li Li-Ping, professor. E-mail: lipingli@jlu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1869

    久久九九热精品免费| 亚洲人成伊人成综合网2020| 日本撒尿小便嘘嘘汇集6| 91大片在线观看| 老司机深夜福利视频在线观看| 不卡一级毛片| 淫妇啪啪啪对白视频| 99精品在免费线老司机午夜| 亚洲成人免费电影在线观看| 亚洲第一青青草原| 国产精品久久久久久人妻精品电影| 超色免费av| 美女扒开内裤让男人捅视频| 手机成人av网站| 超碰97精品在线观看| 999久久久国产精品视频| 日韩国内少妇激情av| 91国产中文字幕| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 青草久久国产| 99在线视频只有这里精品首页| 免费在线观看黄色视频的| 欧美人与性动交α欧美精品济南到| 99精品欧美一区二区三区四区| 国产高清激情床上av| 日本 av在线| 在线免费观看的www视频| 欧美日本中文国产一区发布| 国产黄a三级三级三级人| 丝袜美腿诱惑在线| 狠狠狠狠99中文字幕| 最近最新免费中文字幕在线| 久久午夜亚洲精品久久| 亚洲欧美激情综合另类| 免费在线观看日本一区| 热re99久久精品国产66热6| 男女做爰动态图高潮gif福利片 | 在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色 | 国产精品爽爽va在线观看网站 | 黄色视频不卡| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 久久久久久久午夜电影 | 男女午夜视频在线观看| 男女之事视频高清在线观看| 久久久久国产一级毛片高清牌| 在线观看舔阴道视频| 天天躁夜夜躁狠狠躁躁| 国产三级黄色录像| 国产亚洲欧美98| 午夜91福利影院| 新久久久久国产一级毛片| 嫩草影院精品99| 在线观看日韩欧美| 一级毛片高清免费大全| 国产欧美日韩一区二区三区在线| 露出奶头的视频| 国产国语露脸激情在线看| 窝窝影院91人妻| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 一个人观看的视频www高清免费观看 | 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人| 99久久人妻综合| 国产免费现黄频在线看| 亚洲成国产人片在线观看| 午夜福利影视在线免费观看| 国产精品影院久久| 51午夜福利影视在线观看| 国产区一区二久久| 欧美不卡视频在线免费观看 | 丰满人妻熟妇乱又伦精品不卡| 久久伊人香网站| 成年人免费黄色播放视频| 日韩三级视频一区二区三区| 99国产综合亚洲精品| 这个男人来自地球电影免费观看| 视频在线观看一区二区三区| 制服诱惑二区| 女人被狂操c到高潮| 我的亚洲天堂| 免费日韩欧美在线观看| 精品国产亚洲在线| 女性被躁到高潮视频| av网站在线播放免费| 正在播放国产对白刺激| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 亚洲精品一二三| 嫩草影院精品99| 欧美日韩福利视频一区二区| 国产精品永久免费网站| 手机成人av网站| 亚洲第一av免费看| 19禁男女啪啪无遮挡网站| 老鸭窝网址在线观看| 无人区码免费观看不卡| 黑人猛操日本美女一级片| 成人精品一区二区免费| 免费在线观看视频国产中文字幕亚洲| 午夜视频精品福利| 国产在线观看jvid| 久久精品影院6| 51午夜福利影视在线观看| 午夜免费激情av| 桃色一区二区三区在线观看| 丁香六月欧美| 中文亚洲av片在线观看爽| 亚洲国产看品久久| 亚洲av五月六月丁香网| 999久久久精品免费观看国产| 午夜福利一区二区在线看| 亚洲精品中文字幕一二三四区| 桃色一区二区三区在线观看| 亚洲精品久久午夜乱码| 亚洲成人免费电影在线观看| 亚洲国产看品久久| 69av精品久久久久久| 亚洲人成电影免费在线| 最新美女视频免费是黄的| 老司机深夜福利视频在线观看| 国产男靠女视频免费网站| 深夜精品福利| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 99国产精品99久久久久| 欧美午夜高清在线| 99热只有精品国产| 国产亚洲精品久久久久5区| 欧美乱妇无乱码| 自拍欧美九色日韩亚洲蝌蚪91| xxxhd国产人妻xxx| www日本在线高清视频| 国产一区二区三区视频了| 男女下面进入的视频免费午夜 | 夜夜夜夜夜久久久久| 级片在线观看| 又黄又爽又免费观看的视频| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 亚洲国产精品一区二区三区在线| 亚洲黑人精品在线| 很黄的视频免费| 国产成人av激情在线播放| 黑人操中国人逼视频| 九色亚洲精品在线播放| 乱人伦中国视频| 岛国视频午夜一区免费看| 最近最新中文字幕大全免费视频| 在线观看日韩欧美| 国产片内射在线| 久久精品亚洲精品国产色婷小说| 一进一出抽搐gif免费好疼 | 法律面前人人平等表现在哪些方面| 国产亚洲精品综合一区在线观看 | 亚洲av成人av| 久久精品亚洲av国产电影网| svipshipincom国产片| 国产熟女xx| 一a级毛片在线观看| 又大又爽又粗| 91九色精品人成在线观看| 亚洲国产精品999在线| 视频在线观看一区二区三区| 在线观看舔阴道视频| 国产不卡一卡二| 桃红色精品国产亚洲av| 国产精品野战在线观看 | 无人区码免费观看不卡| 女人被狂操c到高潮| 欧美在线一区亚洲| www国产在线视频色| 日韩欧美在线二视频| 看免费av毛片| 欧美国产精品va在线观看不卡| 亚洲熟女毛片儿| 午夜a级毛片| 香蕉丝袜av| 久久久精品国产亚洲av高清涩受| 一级毛片女人18水好多| 国产亚洲精品久久久久久毛片| 一a级毛片在线观看| 51午夜福利影视在线观看| 亚洲欧美激情综合另类| 国产成人免费无遮挡视频| 黄色 视频免费看| 午夜福利,免费看| 丝袜人妻中文字幕| 正在播放国产对白刺激| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 免费人成视频x8x8入口观看| av网站在线播放免费| 国产99白浆流出| 国产av精品麻豆| 夫妻午夜视频| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 亚洲国产欧美网| 在线观看一区二区三区| 国产熟女午夜一区二区三区| 亚洲午夜精品一区,二区,三区| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 18禁观看日本| av网站免费在线观看视频| 精品国内亚洲2022精品成人| 两个人免费观看高清视频| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 亚洲性夜色夜夜综合| 国内久久婷婷六月综合欲色啪| ponron亚洲| 69av精品久久久久久| 久久青草综合色| 啦啦啦免费观看视频1| 午夜精品在线福利| 精品福利观看| 精品国产乱码久久久久久男人| 久久伊人香网站| 99久久久亚洲精品蜜臀av| 精品免费久久久久久久清纯| 成人精品一区二区免费| 91精品三级在线观看| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 日韩欧美三级三区| 精品午夜福利视频在线观看一区| 久久欧美精品欧美久久欧美| 欧美成狂野欧美在线观看| 欧美 亚洲 国产 日韩一| 深夜精品福利| 色尼玛亚洲综合影院| 丝袜在线中文字幕| 国产成人精品无人区| 怎么达到女性高潮| 午夜福利一区二区在线看| 精品无人区乱码1区二区| 黄网站色视频无遮挡免费观看| 99精国产麻豆久久婷婷| 国产激情欧美一区二区| 宅男免费午夜| 欧美另类亚洲清纯唯美| 美女大奶头视频| tocl精华| 亚洲五月色婷婷综合| 俄罗斯特黄特色一大片| 精品第一国产精品| 欧美黑人精品巨大| 性欧美人与动物交配| 国产精品综合久久久久久久免费 | 香蕉国产在线看| 久久精品亚洲精品国产色婷小说| 色综合站精品国产| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 18美女黄网站色大片免费观看| 香蕉久久夜色| 成人免费观看视频高清| 欧美久久黑人一区二区| 国产主播在线观看一区二区| 一级片'在线观看视频| 日韩免费av在线播放| 亚洲一区二区三区欧美精品| 亚洲午夜精品一区,二区,三区| 国产免费现黄频在线看| 黄色毛片三级朝国网站| 国产成年人精品一区二区 | 男女床上黄色一级片免费看| 久久伊人香网站| 亚洲国产精品sss在线观看 | 激情视频va一区二区三区| 精品国产乱码久久久久久男人| 啦啦啦在线免费观看视频4| 婷婷六月久久综合丁香| 成人三级做爰电影| 日韩欧美国产一区二区入口| 日韩有码中文字幕| 欧美亚洲日本最大视频资源| 亚洲五月婷婷丁香| 一级黄色大片毛片| 母亲3免费完整高清在线观看| 色综合婷婷激情| 黄片小视频在线播放| 欧美一级毛片孕妇| 亚洲伊人色综图| 一区在线观看完整版| 午夜福利影视在线免费观看| 国产精品二区激情视频| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸 | 日韩成人在线观看一区二区三区| 精品久久久久久电影网| 自线自在国产av| 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 在线视频色国产色| 91国产中文字幕| 一级黄色大片毛片| 亚洲av美国av| 正在播放国产对白刺激| 精品人妻在线不人妻| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 五月开心婷婷网| 国产精品一区二区免费欧美| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 成在线人永久免费视频| 精品国产乱子伦一区二区三区| 国产精品98久久久久久宅男小说| 天堂中文最新版在线下载| 热re99久久国产66热| av视频免费观看在线观看| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 欧美在线一区亚洲| netflix在线观看网站| 国产欧美日韩精品亚洲av| 国产精品久久久久久人妻精品电影| 国产激情欧美一区二区| www.999成人在线观看| 精品欧美一区二区三区在线| 国产又色又爽无遮挡免费看| 亚洲五月天丁香| 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区| 大码成人一级视频| 久久久久久人人人人人| bbb黄色大片| 淫妇啪啪啪对白视频| 久久国产精品男人的天堂亚洲| 男人操女人黄网站| 精品国内亚洲2022精品成人| 久久人人97超碰香蕉20202| 一本综合久久免费| 纯流量卡能插随身wifi吗| 亚洲美女黄片视频| 精品免费久久久久久久清纯| 免费在线观看亚洲国产| 国产伦一二天堂av在线观看| 午夜视频精品福利| 国产有黄有色有爽视频| 亚洲成国产人片在线观看| 狂野欧美激情性xxxx| 国产成人啪精品午夜网站| 国产精品国产高清国产av| 大码成人一级视频| 色婷婷久久久亚洲欧美| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 女人精品久久久久毛片| 两个人看的免费小视频| av中文乱码字幕在线| 国产免费现黄频在线看| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 日韩人妻精品一区2区三区| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 一区二区三区国产精品乱码| 露出奶头的视频| 婷婷丁香在线五月| 亚洲第一av免费看| 欧美日韩视频精品一区| 91字幕亚洲| 欧美日韩一级在线毛片| 黄网站色视频无遮挡免费观看| 超色免费av| 女性被躁到高潮视频| 人成视频在线观看免费观看| 黄色成人免费大全| 亚洲av第一区精品v没综合| www日本在线高清视频| 97人妻天天添夜夜摸| 国产精品爽爽va在线观看网站 | 在线观看66精品国产| cao死你这个sao货| 亚洲av成人一区二区三| 成在线人永久免费视频| 首页视频小说图片口味搜索| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看| 99国产精品99久久久久| 色综合站精品国产| 日日摸夜夜添夜夜添小说| 国产三级黄色录像| 99精品久久久久人妻精品| 女人被躁到高潮嗷嗷叫费观| 国产精品美女特级片免费视频播放器 | 午夜影院日韩av| 男女之事视频高清在线观看| 精品久久久久久久久久免费视频 | 99国产综合亚洲精品| 多毛熟女@视频| 午夜精品国产一区二区电影| 亚洲五月婷婷丁香| 999精品在线视频| 久久精品成人免费网站| 亚洲人成网站在线播放欧美日韩| 中国美女看黄片| 女性被躁到高潮视频| 国产精品 国内视频| 国产亚洲精品综合一区在线观看 | 老司机福利观看| 国产欧美日韩一区二区三区在线| 亚洲成a人片在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 日韩大尺度精品在线看网址 | 免费久久久久久久精品成人欧美视频| 在线永久观看黄色视频| 久久国产精品人妻蜜桃| 男女做爰动态图高潮gif福利片 | 人妻久久中文字幕网| 啦啦啦免费观看视频1| 如日韩欧美国产精品一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产精品av久久久久免费| 香蕉久久夜色| 免费搜索国产男女视频| 日韩免费高清中文字幕av| 大型av网站在线播放| 亚洲中文日韩欧美视频| 亚洲中文av在线| 久久久久久久久中文| 日韩三级视频一区二区三区| 黄片播放在线免费| 女同久久另类99精品国产91| 亚洲av熟女| 曰老女人黄片| 51午夜福利影视在线观看| 一级a爱视频在线免费观看| 中国美女看黄片| 日韩精品中文字幕看吧| 久久精品91无色码中文字幕| 五月开心婷婷网| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 国产成人系列免费观看| 黄色丝袜av网址大全| 国产在线观看jvid| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 成人亚洲精品av一区二区 | 欧美黄色片欧美黄色片| 91字幕亚洲| 亚洲精品美女久久av网站| 熟女少妇亚洲综合色aaa.| 午夜激情av网站| 亚洲狠狠婷婷综合久久图片| 日韩免费av在线播放| 国产精品九九99| 麻豆av在线久日| 国产亚洲精品一区二区www| 男人舔女人的私密视频| 制服诱惑二区| 成人精品一区二区免费| 亚洲久久久国产精品| 香蕉国产在线看| 欧美成人午夜精品| 亚洲熟妇中文字幕五十中出 | 色综合婷婷激情| 男人舔女人下体高潮全视频| 免费在线观看亚洲国产| 日韩免费高清中文字幕av| 女生性感内裤真人,穿戴方法视频| 成人三级做爰电影| av中文乱码字幕在线| av网站免费在线观看视频| 日韩国内少妇激情av| a级片在线免费高清观看视频| 18禁裸乳无遮挡免费网站照片 | 国产精品影院久久| 欧美成狂野欧美在线观看| 99久久人妻综合| 中文字幕色久视频| 亚洲精品一区av在线观看| 精品久久久久久成人av| 亚洲成人精品中文字幕电影 | 欧美性长视频在线观看| 亚洲五月天丁香| 成年版毛片免费区| 青草久久国产| 韩国精品一区二区三区| 免费在线观看黄色视频的| 亚洲国产精品sss在线观看 | 色婷婷久久久亚洲欧美| 国产精品免费一区二区三区在线| 中文字幕最新亚洲高清| 成人三级黄色视频| 日韩免费av在线播放| 久久中文字幕人妻熟女| 欧美最黄视频在线播放免费 | 国产一区二区三区综合在线观看| 电影成人av| 免费在线观看日本一区| 亚洲第一青青草原| 69精品国产乱码久久久| 亚洲三区欧美一区| 91成年电影在线观看| 亚洲色图综合在线观看| 久久精品国产亚洲av香蕉五月| 亚洲男人的天堂狠狠| 国产成人欧美| 超色免费av| 国产熟女xx| 免费高清在线观看日韩| 成人亚洲精品av一区二区 | 亚洲人成电影免费在线| 美女大奶头视频| 中文字幕色久视频| 午夜福利,免费看| 亚洲情色 制服丝袜| 免费高清在线观看日韩| 国产成人av激情在线播放| 亚洲久久久国产精品| 超碰成人久久| av视频免费观看在线观看| 国产精品野战在线观看 | 看免费av毛片| 亚洲欧美一区二区三区黑人| 丝袜美足系列| 午夜福利在线观看吧| 亚洲 国产 在线| 国产麻豆69| 精品人妻在线不人妻| 黄色毛片三级朝国网站| 99在线人妻在线中文字幕| 国产伦一二天堂av在线观看| 91成年电影在线观看| 国产精品99久久99久久久不卡| 高清毛片免费观看视频网站 | 黑丝袜美女国产一区| 精品久久久精品久久久| 午夜免费激情av| 激情在线观看视频在线高清| 免费观看人在逋| 久久香蕉精品热| a在线观看视频网站| 97碰自拍视频| 视频在线观看一区二区三区| 久久人人97超碰香蕉20202| www.精华液| 久热这里只有精品99| 麻豆一二三区av精品| 电影成人av| 老司机在亚洲福利影院| 国产国语露脸激情在线看| 国产野战对白在线观看| 两个人看的免费小视频| 国产亚洲精品久久久久5区| 亚洲一区二区三区不卡视频| 亚洲av第一区精品v没综合| 国产成+人综合+亚洲专区| www.www免费av| 99久久人妻综合| 成人黄色视频免费在线看| 欧美在线黄色| 国产精品野战在线观看 | 欧美人与性动交α欧美软件| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 免费在线观看亚洲国产| a级片在线免费高清观看视频| 成人18禁在线播放| 国产免费现黄频在线看| 国产乱人伦免费视频| 人成视频在线观看免费观看| 久久人人97超碰香蕉20202| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 午夜久久久在线观看| 久久久国产精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 欧美人与性动交α欧美精品济南到| 久久狼人影院| 精品高清国产在线一区| 亚洲九九香蕉| 国产成人欧美| 午夜久久久在线观看| 99精品欧美一区二区三区四区| 中文字幕精品免费在线观看视频| 少妇裸体淫交视频免费看高清 | 成人国产一区最新在线观看| 亚洲欧洲精品一区二区精品久久久| 久久中文字幕人妻熟女| 9色porny在线观看| 狠狠狠狠99中文字幕| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| 757午夜福利合集在线观看| 黄片大片在线免费观看| 国产又爽黄色视频| 国产区一区二久久| 亚洲成人精品中文字幕电影 | 嫩草影院精品99| 中文字幕精品免费在线观看视频| 麻豆av在线久日| 国产欧美日韩一区二区三区在线| 最近最新中文字幕大全免费视频| 老熟妇仑乱视频hdxx|