• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Evaluations of Its Cytotoxicity, Anti-microbial and Anti-hydroxyl Radical Activities of a New Co-crystal Compound (C6H6Cl2N2O2S)·(Phen)·H2O①

    2018-08-17 08:00:34HUANGLnZhenWANGNnCAIZhuoQIUXiuYing
    結(jié)構(gòu)化學 2018年7期

    HUANG Ln-Zhen WANG Y-Nn CAI Zhuo QIU Xiu-Ying

    ?

    Synthesis, Crystal Structure and Evaluations of Its Cytotoxicity, Anti-microbial and Anti-hydroxyl Radical Activities of a New Co-crystal Compound (C6H6Cl2N2O2S)·(Phen)·H2O①

    HUANG Lan-Zhena, bWANG Ya-NanaCAI ZhuocQIU Xiu-Yinga②

    (ab541004)c(530004)

    Co-crystal is a very potential kind of drug solid forms, and has a far-reaching influence on designing and preparing drugs. A new 1:1:1 co-crystal compound consisting of 4-amino-3,5-dichloro-benzenesulfonamide, 1,10-phenanthroline and water was synthesized, and its crystal structure was characterized by X-ray diffraction method. The compositions of the co-crystal are self-assembled into a three-dimensional network structure via intermolecular interactions including hydrogen bonds,-stacking, Cl×××Cl interactions and van der Waals’ forces. According to the evaluations of cytotoxicity assays, anti-microbial and anti-hydroxyl radicals, this co-crystal is a potential drug.

    4-amino-3,5-dichloro-benzenesulfonamide, co-crystal, cytotoxicity, anti-microbial, anti-hydroxyl radical;

    1 INTRODUCTION

    Weak intermolecular interactions such as hydro- gen bonds play an important role in molecule-based structural and functional chemistry and biology[1,2]. A co-crystal is a structurally homogeneous crys- talline material that contains two or more neutral building blocks which are present in definite stoichiometric amounts[3]and assembledtogether by weak intermolecular interactions, such as hydrogen bonds,-or C–H×××stacking, van der Waals forces,. The physical and chemical propertiesofco-crystal compoundaresuper tothose ofsingle com- ponents[4], so it plays avery important roleinthesolidchemistryand pharmaceuticalchemistry[5-24].

    In the context of pharmaceuticals, crystal engi- neering is an important process and intellectual pro- perty implications related to the control and repro- ducibility of composition and polymorphism[7]. Pharmaceutical co-crystal has become clear that a wide array of multiple component pharmaceutical phases can be rationally designed using crystal engi-neering, and the strategy afforded new intellectual property and enhanced properties for pharma- ceutical substances[4,7, 22]. Some co-crystal com- pounds formed by rac-ibuprofen, rac-flurbiprofen or aspirin with 4,4-bipyridine[22], and some pharma- ceutical molecules by forming novel compositions of ibuprofen, flurbiprofen, and aspirin have been reported[7]. Mino R. Caira[25]reported molecular complexes of sulfonamides and its 1:1 complex with acetylsalicylic acid.

    However, the co-crystal compounds are very inadequate and about more than two thousands are recorded in Cambridge Structural Database (CSD), far less than the number of other solid forms. Using active pharmaceutical ingredient (API) and cocrystal former (CCF) to form co-crystal compounds through hydrogen bonds or other non covalent bonds will improve the physical and chemical properties of drugs. This is a good idea in new drug design. In the structure of 4-amino-3,5-dichloro-benzenesulfona- mide, there are sulfamide, amino groups, and chlo- ride substituent, which can form weak intermole- cular interactions with CCF. The polypyridines were often designed in the new chemistry and biology compounds[26-29], exhibiting better biological activi- ties. We herein report the synthesis, crystal structure and evaluations of anticancer, antimicrobial and anti-hydroxyl radical activities of the new 1:1:1 co- crystal compound consisting of 4-amino-3,5-dichlo- ro-benzenesulfonamide, 1,10-phenanthroline and water molecules.

    2 EXPERIMENTAL

    2. 1 Procurement of the materials

    Solvents and chemicals obtained from commercial sources were of reagent grade and used without further purification. 4-amino-3,5-dichloro-benzene- sulfonamide can be synthesized according to the references[30, 31]. IR spectra were taken on a Pekin- Elmer spectrum One FT-IR spectrometer with KBr pallets in the range of 4000~400 cm-1. The elemental analyses for C, H, N and S were per- formed on a Perkin-Elmer 2400II elemental analyzer. The crystal structure was determined by a Bruker FRAMBO CCD area detector[32]. Cytotoxicity analysis was performed using the MTT (3-(4,5-di- methyl-2-thiazolyl)-2,5-diphenyl tetrazolium bro- mide) method, antimicrobial activities were obtained by the serial dilution method, and anti-hydroxyl radical activities were determined on the flow injection chemiluminescence (FI-CL) analysis system according to the reference[33]. Strains and cell lines were obtained from commercial sources.

    2. 2 Synthesis of the title co-crystal compound (1)

    A mixed solution containing salicylaldehyde (0.02442 g, 0.2 mmol) and 4-amino-3,5-dichloro- benzenesulfonamide (0.04822 g, 0.2 mmol) was stirred and refluxed at 55 ℃ for 1 h in ethanol, and a small amount of formic acid was added to the mixed solution as a catalyst for the synthesis of Schiff base. After 6 h reaction, 1,10-phenanthroline (0.0400 g, 0.22 mmol) and ammonium cerium (IV) sulfate tetrahydrate (0.2007 g, 0.3 mmol) in ethanol (10 mL, 95%) were also added to the aforemen- tioned solution. The mixture was stirred and refluxed at 55 ℃ for 12 h, and then was cooled to room temperature to afford the bright yellow precipitate which was removed by filtration. The filtrate was left at room temperature. Some yellow crystals were obtained after some days, giving yellow needle- shaped single crystals suitable for X-ray diffraction. For C18H16Cl2N4O3S anal. calcd. (%): C, 49.21; H, 3.67; N, 12.75; S, 7.29. Found (%): C, 49.22; H, 3.69; N, 12.74; S, 7.32. IR (KBr,, cm-1): 3489(s), 3386(s), 3305(s), 3024(m), 1678(m), 1613(s), 1554(m), 1494(m), 1460(m), 1409(m), 1332(s), 1261(m), 1219(m), 1162(s), 1128(m), 1051(w), 963(m), 868(m), 842(m), 756(s), 729(s), 626(m), 592(s).For O–H of water: 3489 cm-1; and for -NH2: 3386, 3305 and 1678 cm-1; and for C–H of benzene ring: 3024 cm-1; and for C=C and C=N of Phen: 1613, 1554, and 1494 cm-1; and for -SO2-: 1162, 1128, and 1051 cm-1; and for two C–Cl: 756 and 729 cm-1. Crystal reproducibility is very good, and the production rate is 63.4% (based on 4-amino-3,5- dichloro-benzenesulfonamide).

    2. 3 Structure determination and refinement

    A yellow single crystal with dimensions of 0.36mm × 0.20mm × 0.18mm was selected for the measurement. The data were collected on a Bruker FRAMBO CCD detector equipped with a graphite- monochromatized Moradiation (= 0.71073 ?) at 153(2) K using an-scan mode, and reduced with the Bruker SAINT. Absolute structure was determined with a Flack parameter= 0.00(1) (Abso- lute structure: Flack H.D. (1983), Acta Cryst. A39, 876~881). In the range of 3.01≤≤25.13° (–8≤≤8, –16≤≤17, –21≤≤21), a total of 13849 reflections were collected, of which 3447 were unique (int= 0.079) and 2402 were observed (> 2()). The structure was solved by direct methods using SHELXS-97(Sheldrick, 2008) and refined by full-matrix least-squares on2using the SHELXL- 97(Sheldrick, 2008)[34]program. The non-hydrogen atoms were assigned by anisotropic displacement parameters in the refinement. Hydrogen atoms cal- culated geometrically were included in the refine- ment by the riding method, with C–H = 0.9300 ? for aryl and N–H = 0.8999~0.9001 ? (iso(H) = 1.2eq(C),iso(H) = 1.2eq(N)), and O–H = 0.8474~0.8541 ? for water (iso(H) = 1.5eq(O)). The crystal of the complex belongs to the orthor- hombicsystem, space group212121, with= 7.4187(18),= 14.602(4),= 17.849(4) ?, C18H16Cl2N4O3S,M= 439.32,= 1933.5(8) ?3,= 2,D= 1.509 g/cm3,= 0.472 mm?1,(000) = 904. 3447 reflections were used in the succeeding refinement.The final cycle of refinement including 253 variable parameters was converged to(2> 2(2)) = 0.0636,(2) = 0.1461 (= 1/[2(F2) + (0.0759)2], where= (F2+ 2F2)/3),= 1.00, (Δ/)max= 0.001, (Δ)max= 0.319, (Δ)min= –0.351 e·??3, completeness to theta = 0.995.

    Hydrogen bonds are listed in Table 1. The mole- cular structure of 1 with atomic numbering scheme is illustrated in Fig. 1, and a 2-D sheet structure of 1 in thebplane is illustrated in Fig. 2(A), a 2-D sheet structure of 1 in theplane in Fig. 2(C), and thestacking interaction of 1 in Fig. 2(B).

    Table 1. Hydrogen Bonds for 1 (? and °)

    Symmetry codes: (i) ?+1/2, ?,?1/2; (ii),?1,; (iii),?1,?1; (iv)+1,,?1

    Fig. 1. Crystal structure of co-crystal compound. Displacement ellipsoids are drawn at the 50% probability level

    Fig. 2. (A) Crystal packing diagram of co-crystal compoundin theplane, and the distance between Cl(1) and Cl (2) is 3.500 ? (symmetry code:+ 1,– 1/2, –+ 3/2). (B)stacking interaction of co-crystal compound, and some hydrogen atoms are omitted for clarity. (C) Crystal packing diagram of co-crystal compoundin theplane. The two dimension net structures are formed by intermolecular hydrogen bonds,-stacking, Cl×××Cl interactions and van der

    Waals’ forces. The dotted lines in the figure are weak intermolecular interactions

    2. 4 In vitro cytotoxicity

    Cell culture: Cells were cultured in RPMI 1640 medium supplemented with 10% heat inactivated fetal bovine serum, 100 μg·mL-1penicillin and 100 μg· mL-1streptomycin. Cells were maintained at 37 ℃ in a 5% CO2incubator, and the media were changed every three days. MTT assay: Cell viability was determined by measuring the ability of cells to transform MTT to a purple formazan dye. We desig- ned compound sample grows (co-crystal compound, 4-amino-3,5-dichloro-benzenesulfonamide and Phen) and negative control group (physiological saline). Tumor cell lines (DLD-1, HepG2, MGC803, HeLa, HCT116) and normal cell line (HL-7702) were grown in a RPMI 1640 medium supplemented with 10% fetal calf serum, 100 μg·mL-1penicillin and 100 μg·mL-1streptomycin. They were incubated at 37 ℃ in a humidified incubator with 5% CO2and 95% air. Cells at the exponential growth stage were diluted to 3 × 104cells·mL-1with RPMI 1640, and then seeded in 96-well culture clusters (Costar) at a volume of 180 μL per cell, and incubated for 24 h at 37 ℃ in 5% CO2. Then the cells were treated at a volume of 20 μL per cell with various concentrations of complexes. The negative control group was set at the same time, and 5-fluorouracil is a positive control. After incubation of cells for up to 48 h, 20 μL of MTT (5 mg·mL-1) solution was added in each cell. After a further period of incubation (4 h at 37 ℃ in 5% CO2), each cell was added in 100 μL cell lysate (including 10% SDS (sodium dodecyl sulfate) – 5% isobutanol – 0.012 mL·L-1HCl (w/v/v)). After 12 h at 37 ℃,the values of OD were analyzed by a Microplate Reader at a wavelength of 490 nm. The percentage growth inhibitory rate of the treated cells was calculated by (OD negative control – OD compound sample)/OD negative control × 100%. The IC50values were determined by plotting the percentage viability versus the concentration on a logarithmic graph and reading off the con- centration at which 50% cells were viable relative to the control.

    2. 5 Anti-microbial activity

    The co-crystal compound was prepared into a series of concentrations of 10, 5, 2.5, 1.25 and 0.625 μmol·mL-1using sterilized distilled water. 1 mL of the solution was taken out from various concentra- tions of co-crystal compound, then added into the solution of hydrolysation casein agar of 9 mL at 50~55 ℃, with the final concentration to be 1.0, 0.5, 0.25, 0.125 and 0.0625 μmol·mL-1, respectively. These solutions were quickly spilled into the sterile flat, and then were coagulated. The control sample was set at the same time. Various experimental bacteria were diluted appropriately, and then seeded in the flat plates containing co-crystal compound and control sample with about 105CFU/point (colony-forming unit, the colony forming units CFU), and incubated at 37 ℃for 24 h. Finally, the minimum inhibitory concentration (MIC) values were observed and write-downed. Minimum concentration of the macroscopic observation to inhibit the growth of experimental fungus for the drug is MIC.

    2. 6 Anti-hydroxyl radical activity

    According to the literature[33], hydroxyl radical scavenging rate was tested by the FI-CL method. The mixed solution containing Fe2+ion, methylene blue, H2O2and water was the input analysis system through the corresponding line, and the resulting light signal was tested by photomultiplier tube and recorded chemical luminescence intensity as the value I0which is the negative control. Using Vit C solution instead of water in the aforementioned mixed solution and the same operating way, the value of chemical luminescence intensity is recorded as Is(Vit C) which is the positive control value. Using a sample solution rather than water in the aforementioned mixed solution and the same operating way, the value of chemical luminescence intensity is recorded as Is(sample). The D-value (I0– Is) is used as clear ·OH quantitative measure, and the hydroxyl radical scavenging rate, namely S, is calculated by the formula S = ((I0– Is)/I0) × 100%.

    3 RESULTS AND DISCUSSION

    X-ray crystallography reveals that 1 is a co- crystal compound consisting of one 4-amino-3,5- dichloro-benzenesulfonamide, one 1,10-phenanthro- line, and one crystal water molecule, namely (C6H6Cl2N2O2S)·(C12H8N2)·H2O, where C6H6Cl2N2O2S = 4-amino-3,5-dichloro-benzenesul- fonamide and C12H8N2= 1,10-phenanthroline (Fig. 1). In the structure of 1, all the bond lengths and bond angles fall in the normal ranges, and the co-crystal components are assembled together by weak intermolecular interactions containing hydrogen bonds,-stacking, Cl···Cl interactions, and van der Waals’ forces (Fig. 2(A, C)). As shown in Fig. 2(A), a two-dimensional structure is formed by hydrogen bonds (N(3)–H(3B)···O(1), N(4)–H(4A)···N(2), O(1W)–H(1WB)···O(1), and O(1W)–H(1WA)···N(2) (See: Table 1)) and Cl(1)···Cl(2) interactions in theplane, and-stacking is observed along theaxis to further form a three-dimensional structure. The distance between Cl(1) and Cl(2) is 3.500 ? (symmetry code:+ 1 ,– 1/2, –+ 3/2). The short Cl···Cl interaction with the distance of 3.500 ? is weaker than that of 4-amino-3,5-dichloro-benzene-sulfonamide with the distance to be 3.318 ?[31], whichshows that the co-crystal compound is slightly different from the monomer one. As shown in Fig. 2(B), X(1A) is the centre of benzene ring C(1)~C(6) of component 4-amino-3,5-dichloro- benzenesulfonamide, and X(1B) is the centre of benzene ring C(10)C(11)C(12)C(13)C(17)C(18) of component 1,10-phenanthroline (symmetry code:–1,–1,), and X(1C) is the centre of heterocyclic ring C(13)C(14)C(15)C(16)N(2)C(17) of com- ponent 1,10-phenanthroline (symmetry code:,–1,). The distance between X(1A) and X(1B) is 3.639 ?, and that between X(1A) and X(1C) is 3.571 ?, indicating-stacking between the benzene ring of 4-amino-3,5-dichloro-benzenesulfonamide and the benzene and heterocyclic rings of 1,10-phenan- throline, respectively. Moreover, in the 4-amino-3,5- dichloro-benzenesulfonamide molecule fragment S(1)–C(1)–C(2)–C(3)–Cl(1)–C(4)–N(3)–C(5)–Cl(2)–C(6)is planar (maximal deviation from the plane is –0.0583 ?, and mean deviation from the plane is –0.0302 ?; 7.052+ 3.939– 2.741= 0.2782). The intersection anglesare 54.3°, 106.6° and 90.7° between planes S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)-C(5)Cl(2)C(6) and O(1)S(1)O(2), between amino-group planesH(4A)N(4)H(4B) and S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)C(5)Cl(2)C(6), and between amino-group plane H(4A)N(4)H(4B) and plane O(1)S(1)O(2), respectively. This shows that amino-group is perpendicular to the plane O(1)S(1)O(2)anddeviates from the plane S(1)C(1)C(2)C(3)Cl(1)C(4)N(3)C(5)Cl(2)C(6). In the Phen molecule the fragment C(7)–C(16)–N(1)–C(17)–C(18)–N(2) is planar (maximal deviation from the plane is –0.0595 ?, and mean deviation from the plane is –0.0206 ?; 6.991+ 4.600– 2.012= 8.9639).

    The cytotoxic potentialities ofI are analyzed in vitro by MTT assay on five different cancer cell lines and one normal live cell line.As shown in Fig. 3, the cell survival inhibition rate increases with the increase of concentration in the range of 8~200 μM, indicating that 1 exhibits significant cytotoxicity in a dose dependent manner. At the concentration of 1000 μM, the cytotoxicity for normal cell line was greater than those of the examined cancer cell lines, indicating that 1 was unsuitable for the anti-tumor drug at such a high concentration. The IC50values are shown in Table 2. The value of IC50for the HCT116 (13.55 ± 1.09) μM is the smallest among the cell lines, and the value forMGC803 is (16.30 ± 2.14) μM, which means that the abilities of inhibition proliferation of 1 for HCT116 and MGC803 cell lines are stronger than those of other examined cell lines. The ability of inhibition proliferation of 1 for HepG2 (41.98 ± 2.83) μM is weaker than that of the normal liver cell line HL-7702 (32.83 ± 7.80) μM, which means that1 exhibitssome harmfulness for the normal liver cells when 1inhibitsthe proliferation of HepG2. Moreover, the inhibition effects for DLD-1 and HeLa are poorer, and the IC50values are more than 200 μM, showing an unremarkable inhibitory effect. In addition, 1 exhibits more significant cytotoxicity than 5-fluorouracil against the examined cell lines. It's worth noting that theabilities of inhibition proliferation of1 are stronger than those of its eutral building block 3,5-dichlorosalfanilamide and 1,10-phenanthroline, which fully embodies the superiority of the co-crystal drug in pharmaceutical chemistry, because co-crystal is a new compound formed by the weak intermolecular interactions, and its physical and chemical properties do not result from the addition of the properties of each building block, but superior to each building block.

    Table 2. IC50Values of the Tested Compounds towards Different Cell Lines

    IC50values are given in μM. The values are expressed as the mean ± standard deviation (triplicates). DLD-1: human knot rectal cancer cell line; HepG2: human hepatocellular liver carcinoma cell line; MGC803: human gastric cancer cell line; HeLa: human cervical carcinoma cell line; HCT116: human colon cancer cell line; HL-7702: human normal liver cell line. 5-Fluorouracil is a positive control

    Fig. 3. Cell inhibition rates assays of HCT116, MCG803, HepG2, DLD-1, HeLa, and HL-7702cell lines treated with various concentrations of 1 for 48h using a MTT method, respectively

    Antimicrobial activity experimental results showed that1 can inhibit the bacterial colony grow, and the MIC valuesare 0.25, 0.25 and 1.0 μmol.mL-1for staphylococcus aureus (S. aureus),escherichia coli (E. coli) and pseudomonas aeruginosa (P. aeruginosa), respectively (Table 3). The antimicrobial activities for S. aureus and E. coli are better than that of P. aeruginosa, showing that 1 has certain reference value in the microbial immunology field.

    Table 3. Co-crystal Compound Antibacterial Activities for S. aureus, E. coli and P. aeruginosa

    Concentration (i): co-crystal compound concentration;Concentration (ii): eventual co-crystal compoundconcentrationin agar. (-): bacterial colony don’t grow; (+): bacterial colony grow.

    Free radicals are related with aging, tumor, radiation damage, cytophagy,. The toxicity of hydroxyl radicals (·OH) is the strongest in biology active oxygen. It is of very practical significance to look for ·OH clearing agent and its applications in medicine, food, cosmetics, and so on. The ratios of the elimination of hydroxyl radicals were determi- ned by FI-CL method. It is well known that vitamin C is quite significant in resisting oxidation. Fixed the concentration of 10 ug·mL-1or 10 μmol·L-1, the clear ratio of 1 for hydroxyl radicals is 22.10% and 23.09% bigger than that of vitamin C, respectively (Table 4). At the concentration of 10 μmol·L-1, the clear ratio of 1 for hydroxyl radicals is four times that of vitamin C. 1 is a potential agent on the clearing hydroxyl radicals.

    Table 4. Action of Antihydroxyl Radical Activities of 1

    4 CONCLUSION

    In conclusion, we successfully synthesized a new co-crystal compound (C6H6Cl2N2O2S)·(Phen)·(H2O). It’s structure was characterized, and cytotoxicity test, anti-bacterial activities and the abilities of resisting hydroxyl radicals were studied. It selectively inhibits the proliferation of tumor cells, and the inhibition effects for the HCT116 and MGC803 cell lines are superior to that of HepG2 cell lines. It exhibits obvious antibacterial activities for S. aureus, E. coli, and P. aeruginosa. Moreover, its anti-hydroxyl radical activity is superior to vitamin C. The results show the superiority of co-crystal compound in the design of drug molecules. In fact, pharmaceutical co-crystal used by crystal engineering has a far-reaching influence not only at the interface of chemistry and biology, but also on the advances in drug design and development, and it will be a good mainstream in the new compound drug design.

    (1) Desiraju, G. R.; Steiner, T. The weak hydrogen bond in structural chemistry and biology. Oxford 1999.

    (2) Hibbert, F.; Emsley, J. Hydrogen bonding and chemical reactivity.1990, 26, 255–379.

    (3) Aaker?y, C. B.; Salmon, D. J.; Smitha, M. M.; Despera, J. Cyanooximes as effective and selective co-crystallizing agents.2009, 11, 439–443.

    (4) Good, D. J.; Rodríguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals.2009, 9, 2252–2264.

    (5) Gunnam, A.; Suresh, K.; Nangia, A. Salts and salt cocrystals of the antibacterial drug pefloxacin.2018, DOI: 10.1021/acs.cgd.7b01600.

    (6) Li, Y. X.; Chen, S. S.; Ren, F. D.; Jin, S. H. Theoretical insight into the influence of molecular ratio on the stability, mechanical property, solvent effect and cooperativity effect of HMX/DMI cocrystal.2017, 36, 562–574.

    (7) Bailey Walsh, R. D.; Bradner, M. W.; Fleischman, S.; Morales, L. A.; Moulton, B.; Rodríguez-Hornedo, N.; Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases.2003, 2, 186–187.

    (8) Guo, T.; Huang, X. C.; Tang, W.; Wang, Z. J.; Liu, M.; Qiu, S. J. Crystal structure and thermal behavior of a novel cocrystal consisting of 3,3?-dinitrimino-5,5?-bis(1H-1,2,4-triazole), H2O and (CH3)2SO.2016, 35, 537–544.

    (9) Yin, H. S.; Yang, G. S.; Liu, C. B.; He, A. W.; Zhou, Y. B.; Zhang, Z. P.; Li, H. M. Crystal structures and antibacterial activities of 1,3-phenylenebis(oxy)diacetic acid dihydrate and 4,4?-bipyridine cocrystal.2015, 34, 650–658.

    (10) Xiao, Y.; Huang, P.; Liu, Y. Q. Microwave assisted synthesis, and structure of a co-crystal Nickel complex with 2-ethoxy-6-methyliminomethyl-phenol.2015, 607, 242–249.

    (11) Xiao, Y.; Liu, Y. Q.; Li, G.; Huang, P. Microwave-assisted synthesis, structure and properties of a co-crystal compound with 2-ethoxy-6-methyliminomethyl-phenol.2015, 27, 161–166.

    (12) Wheeler, K. A.; Grove, R. C.; Davis, R. E.; Kassel, W. S. Quasiracemic materials-rediscovering Pasteur’s quasiracemates.2008, 47, 78–81.

    (13) Stoler, E.; Warner, J. C. Non-covalent derivatives: cocrystals and eutectics.2015, 20, 14833–14848.

    (14) Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: design, properties and characterization.. 2014, 50, 906–923.

    (15) Jennifer, S. J.; Muthiah, P. T. Design of co-crystals/salts of some nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.2014, 8, 20.

    (16) Aitipamula, S.; Chow, P. S.; Tan, R. B. H. Crystal engineering of tegafur cocrystals: structural analysis and physicochemical properties.2014, 14, 6557–6559.

    (17) Joshi, M.; Choudhury, A. R. Salts of amoxapine with improved solubility for enhanced pharmaceutical applicability.2018, 3, 2406–2416

    (18) Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs.2013, 453, 101–125.

    (19) Ojha, N.; Prabhakar, B. Advances in solubility enhancement techniques.2013, 21, 351–358.

    (20) Cherukuvada, S.; Nangia, A. Fast dissolving eutectic compositions of two anti-tubercular drugs.2012, 14, 2579–2588.

    (21) Smith, A. J.; Kavuru, P.; Wojtas, L.; Zaworotko, M. J.; Shytle, R. D. Cocrystals of quercetin with improved solubility and oral bioavailability.2011, 8, 1867–1876.

    (22) Almarsson, O.; Zaworotko, M. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?.. 2004, 17, 1889–1892.

    (23) Rehder, S.; Klukkert, M.; L?bmann, K. A. M.; Strachan, C. J.; Sakmann, A.; Gordon, K.; Rades, T.; Leopold, C. S. Investigation of the formation process of two piracetam cocrystals during grinding.2011, 3, 706–722.

    (24) Aaker?y, C. B.; Grommet, A. B.; Desper, J. Co-crystal screening of diclofenac.2011, 3, 601–614.

    (25) Caira, M. R. Molecular complexes of sulfonamides. 3. Structure of 5-methoxysulfadiazine (form II) and its 1:1 complex with acetylsalicylic acid.1994, 24, 695–701.

    (26) Qin, X. Y.; Wang, Y. N.; Yang, X. P.; Liang, J. J.; Liu, J. L.; Luo, Z. H. Synthesis, characterization, and anticancer activity of two mixed ligand copper(Ⅱ) complexes by regulating VEGF/VEGFR2signaling pathway.2017, 46, 16446–16454.

    (27) Qin, X. Y.; Yang, L. C.; Le, F. L.; Yu, Q. Q.; Sun, D. D.; Liu, Y. N.; Liu, J. Structures and anti-cancer properties of two binuclear copper complexes.2013, 42, 14681–14684.

    (28) Qin, X. Y.; Liu, Y. N.; Yu, Q. Q.; Yang, L. C.; Liu, Y.; Zhou, Y. H.; Liu J. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity.2014, 9, 1665–1671.

    (29) (a) Qin, X. Y.; Yao, H. N.; Ou, W.; Zhang, S. H. Water chains in a novel copper(II) compound [Cu(C9H6O4)(C12H8N2)]·4H2O.2014, 44, 242–246; (b) Qin, X. Y.; Zeng, J. L.; Zhang, S. H.; Jiang, Y. M. Synthesis and crystal structure of Schiff base compound [Zn(C10H9NO5S)(C12H8N2)(H2O)] ·4.25H2O.2012, 42, 915–919.

    (30) Qiu, M. Y.; Lv, D. Preparation of 3,5-dichlorosulfanilamide.. (Chinese) 2005, 34, 115–116.

    (31) Qin, X. Y.; Liu, H. F.; Lin, J. X. 4-Amino-3,5-dichlorobenzenesulfonamide.2010, E66, o2838.

    (32) (a) Higashi, T. ABSCOR. Rigaku Corporation, Tokyo, Japan 1995. (b) Rigaku RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan 2004.

    (33) Cai, Z.; Jiang, C. Y.; Zhao, J.; Mo, L. J.; Zhang, X. Determination of eliminating ratio of fruits extracts for hydroxyl radicals using flow injection chemiluminescence.() 2010, 26, 219–222.

    (34) Sheldrick, G. M. A short history of SHELX.2008, 64, 112–122.

    26 February 2018;

    11 May 2018 (CCDC 884597)

    Guangxi Natural Science Foundation (No. 2016GXNSFAA380292), and National Natural Science Foundation of China (No. 21661011)

    . Dr, associate professor, female, 44 years old, majoring in coordination chemistry, biochemistry and molecular biology. E-mail: xyqin6688@163.com

    10.14102/j.cnki.0254-5861.2011-1985

    国产成人精品一,二区 | 免费黄网站久久成人精品| 日韩成人伦理影院| 不卡一级毛片| 国产蜜桃级精品一区二区三区| 黄色视频,在线免费观看| 一本久久中文字幕| 成人亚洲精品av一区二区| 亚洲国产日韩欧美精品在线观看| 欧美精品一区二区大全| 黑人高潮一二区| 在线观看午夜福利视频| 高清毛片免费看| 日韩在线高清观看一区二区三区| 22中文网久久字幕| 国产私拍福利视频在线观看| 国产成人a∨麻豆精品| 成人二区视频| 色5月婷婷丁香| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 性色avwww在线观看| 高清毛片免费看| 岛国毛片在线播放| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 久久精品夜色国产| 国产成人精品一,二区 | 啦啦啦啦在线视频资源| 18+在线观看网站| av.在线天堂| 欧美bdsm另类| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 春色校园在线视频观看| 九九爱精品视频在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产精品久久男人天堂| 51国产日韩欧美| 午夜爱爱视频在线播放| 最近2019中文字幕mv第一页| 美女高潮的动态| 久久精品国产亚洲av天美| 国产精品麻豆人妻色哟哟久久 | 一边摸一边抽搐一进一小说| 国产人妻一区二区三区在| 亚洲成a人片在线一区二区| 女的被弄到高潮叫床怎么办| 国产精品久久电影中文字幕| 国产精品麻豆人妻色哟哟久久 | 狂野欧美白嫩少妇大欣赏| 丝袜喷水一区| 中文亚洲av片在线观看爽| 国产成人91sexporn| 69人妻影院| 免费看日本二区| 天天一区二区日本电影三级| 免费观看a级毛片全部| 嫩草影院新地址| 男人狂女人下面高潮的视频| 九草在线视频观看| 少妇丰满av| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 国产午夜精品论理片| 国产精品福利在线免费观看| 综合色丁香网| 国产精品久久久久久久久免| 三级经典国产精品| 色综合亚洲欧美另类图片| 午夜福利在线观看吧| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| avwww免费| 毛片一级片免费看久久久久| 99久久成人亚洲精品观看| 日本成人三级电影网站| 99热只有精品国产| 麻豆国产av国片精品| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 舔av片在线| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6| 成熟少妇高潮喷水视频| 亚洲经典国产精华液单| 美女黄网站色视频| 午夜爱爱视频在线播放| 国产伦理片在线播放av一区 | 能在线免费观看的黄片| 中文资源天堂在线| av免费观看日本| 亚洲av熟女| 一卡2卡三卡四卡精品乱码亚洲| 岛国毛片在线播放| 99久久中文字幕三级久久日本| 国产亚洲av嫩草精品影院| 精品久久久噜噜| 99久久久亚洲精品蜜臀av| 国产一区二区激情短视频| 99热6这里只有精品| 中文资源天堂在线| 少妇丰满av| 在线观看午夜福利视频| 99精品在免费线老司机午夜| 国产极品天堂在线| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 男女视频在线观看网站免费| 99久久人妻综合| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 亚洲自拍偷在线| а√天堂www在线а√下载| 精品久久久久久成人av| 欧美区成人在线视频| 亚州av有码| 老司机影院成人| 国产伦精品一区二区三区四那| 一区二区三区高清视频在线| 国产精品,欧美在线| 日本爱情动作片www.在线观看| 99国产精品一区二区蜜桃av| 成人av在线播放网站| 色尼玛亚洲综合影院| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 亚洲综合色惰| 99久久精品热视频| 深爱激情五月婷婷| 午夜爱爱视频在线播放| 一个人看视频在线观看www免费| 国产高清激情床上av| 午夜免费激情av| 精品国内亚洲2022精品成人| 国产亚洲5aaaaa淫片| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 中文在线观看免费www的网站| 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 女人被狂操c到高潮| 免费av不卡在线播放| 久久久久久久久久黄片| 人妻系列 视频| 麻豆成人av视频| 成人国产麻豆网| 国产亚洲精品久久久com| a级一级毛片免费在线观看| 日本与韩国留学比较| 免费人成视频x8x8入口观看| 成人欧美大片| 哪个播放器可以免费观看大片| 亚洲精品久久国产高清桃花| 欧美变态另类bdsm刘玥| eeuss影院久久| 亚洲va在线va天堂va国产| a级一级毛片免费在线观看| 91av网一区二区| 性插视频无遮挡在线免费观看| 精品久久久久久久久久免费视频| 国产亚洲5aaaaa淫片| 美女内射精品一级片tv| 久久这里有精品视频免费| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| 国产精品野战在线观看| 3wmmmm亚洲av在线观看| 午夜精品在线福利| 欧美激情国产日韩精品一区| 高清日韩中文字幕在线| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 国产av不卡久久| 干丝袜人妻中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 女同久久另类99精品国产91| 狂野欧美激情性xxxx在线观看| 亚洲av电影不卡..在线观看| 91久久精品电影网| 久久6这里有精品| 十八禁国产超污无遮挡网站| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 欧美一级a爱片免费观看看| 2022亚洲国产成人精品| 97热精品久久久久久| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 色播亚洲综合网| 亚洲av成人精品一区久久| 亚洲精品自拍成人| 精品久久久久久久末码| 99热精品在线国产| 亚洲欧美成人综合另类久久久 | 黄色欧美视频在线观看| 国产亚洲5aaaaa淫片| 午夜老司机福利剧场| 麻豆一二三区av精品| 色噜噜av男人的天堂激情| 在现免费观看毛片| 九草在线视频观看| 亚洲精品国产成人久久av| 国产精品永久免费网站| 久久欧美精品欧美久久欧美| 日本一二三区视频观看| 国内精品一区二区在线观看| 麻豆国产97在线/欧美| 国产v大片淫在线免费观看| 天堂中文最新版在线下载 | 麻豆一二三区av精品| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 成人永久免费在线观看视频| 国产国拍精品亚洲av在线观看| 中文字幕制服av| 1000部很黄的大片| 一区二区三区免费毛片| 国产精品不卡视频一区二区| 国产精品一区二区三区四区久久| 九九爱精品视频在线观看| 亚洲精品乱码久久久久久按摩| 毛片一级片免费看久久久久| 欧美日韩国产亚洲二区| 欧美精品国产亚洲| 日本三级黄在线观看| 亚洲精品亚洲一区二区| 毛片女人毛片| 国语自产精品视频在线第100页| 欧美一区二区国产精品久久精品| 真实男女啪啪啪动态图| 国产精品福利在线免费观看| 午夜爱爱视频在线播放| 国产亚洲精品久久久久久毛片| 一级二级三级毛片免费看| 一本精品99久久精品77| av国产免费在线观看| 能在线免费观看的黄片| 夜夜看夜夜爽夜夜摸| av在线播放精品| 天堂av国产一区二区熟女人妻| 成人国产麻豆网| 日韩亚洲欧美综合| 亚洲,欧美,日韩| 亚州av有码| 成人亚洲精品av一区二区| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 国产伦在线观看视频一区| 亚洲国产欧美在线一区| 亚洲不卡免费看| 国产精品综合久久久久久久免费| videossex国产| 国产精品99久久久久久久久| 淫秽高清视频在线观看| 成人综合一区亚洲| 国产私拍福利视频在线观看| 欧美高清性xxxxhd video| 国产三级中文精品| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 变态另类丝袜制服| 国产亚洲av片在线观看秒播厂 | 亚洲欧美精品综合久久99| 内射极品少妇av片p| 热99在线观看视频| 久久6这里有精品| 晚上一个人看的免费电影| 国产探花极品一区二区| 精品国产三级普通话版| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| or卡值多少钱| 老司机福利观看| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 午夜激情福利司机影院| 亚洲性久久影院| 国产高清激情床上av| 亚洲av免费高清在线观看| 国产欧美日韩精品一区二区| 国产精品无大码| 18禁裸乳无遮挡免费网站照片| 日韩大尺度精品在线看网址| 亚洲精品久久久久久婷婷小说 | 深爱激情五月婷婷| 久久久欧美国产精品| 亚洲熟妇中文字幕五十中出| 国产大屁股一区二区在线视频| 亚洲国产精品sss在线观看| 美女 人体艺术 gogo| 亚洲国产高清在线一区二区三| 国产成人a∨麻豆精品| 精品少妇黑人巨大在线播放 | 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 99riav亚洲国产免费| 国产成人一区二区在线| 激情 狠狠 欧美| 大又大粗又爽又黄少妇毛片口| 久久久久久伊人网av| 国产精品蜜桃在线观看 | 精品欧美国产一区二区三| .国产精品久久| 亚洲av熟女| 伦精品一区二区三区| 欧美一区二区国产精品久久精品| av专区在线播放| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 国产成年人精品一区二区| 高清在线视频一区二区三区 | 天堂√8在线中文| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 久久99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 麻豆国产av国片精品| 免费观看在线日韩| 99久久精品国产国产毛片| 人体艺术视频欧美日本| videossex国产| 亚洲色图av天堂| 69人妻影院| 中国美白少妇内射xxxbb| 久久久久久国产a免费观看| 大又大粗又爽又黄少妇毛片口| 97超视频在线观看视频| 真实男女啪啪啪动态图| 黑人高潮一二区| 久久人妻av系列| 99久久精品热视频| 天堂影院成人在线观看| 久久99热这里只有精品18| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 成人三级黄色视频| 女的被弄到高潮叫床怎么办| 白带黄色成豆腐渣| 嫩草影院新地址| 亚洲人成网站在线观看播放| 欧美bdsm另类| 亚洲欧美日韩卡通动漫| 乱人视频在线观看| 晚上一个人看的免费电影| av在线蜜桃| 舔av片在线| 国内精品久久久久精免费| 亚洲欧洲国产日韩| 人妻少妇偷人精品九色| 成年版毛片免费区| 欧美性猛交黑人性爽| 国产av一区在线观看免费| 日韩人妻高清精品专区| 欧美激情在线99| 国产激情偷乱视频一区二区| 五月伊人婷婷丁香| 国产美女午夜福利| 欧美区成人在线视频| 青春草亚洲视频在线观看| 日韩视频在线欧美| 18禁黄网站禁片免费观看直播| 男人和女人高潮做爰伦理| 不卡视频在线观看欧美| avwww免费| 久久久久性生活片| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 级片在线观看| 久久久午夜欧美精品| 国产成人a∨麻豆精品| 国产精品不卡视频一区二区| 国产高清视频在线观看网站| 成人亚洲精品av一区二区| 国产三级中文精品| 给我免费播放毛片高清在线观看| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 国产日韩欧美在线精品| 国产高清激情床上av| 色视频www国产| 免费看a级黄色片| 亚洲欧美中文字幕日韩二区| 99久久久亚洲精品蜜臀av| 亚洲精品国产av成人精品| 老熟妇乱子伦视频在线观看| 我要看日韩黄色一级片| 真实男女啪啪啪动态图| 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 不卡一级毛片| 好男人视频免费观看在线| 看黄色毛片网站| 久久这里只有精品中国| 中文字幕精品亚洲无线码一区| av天堂中文字幕网| 久久久久久大精品| 老师上课跳d突然被开到最大视频| 国产真实伦视频高清在线观看| 简卡轻食公司| 99视频精品全部免费 在线| 天美传媒精品一区二区| 99热精品在线国产| 国产私拍福利视频在线观看| 91精品国产九色| 亚洲精品亚洲一区二区| 高清毛片免费观看视频网站| 国内精品一区二区在线观看| 久久久精品欧美日韩精品| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 女人被狂操c到高潮| 久久精品人妻少妇| 99久国产av精品国产电影| 伦理电影大哥的女人| 欧美性感艳星| av专区在线播放| 国产一区亚洲一区在线观看| 成年av动漫网址| 久久99蜜桃精品久久| 午夜激情欧美在线| 一进一出抽搐gif免费好疼| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99 | 亚洲图色成人| 精华霜和精华液先用哪个| 99热6这里只有精品| 国产女主播在线喷水免费视频网站 | 一级毛片我不卡| 亚洲性久久影院| 亚洲无线在线观看| 精品久久久噜噜| 我的女老师完整版在线观看| 99热这里只有精品一区| 国产三级中文精品| 久久久色成人| 你懂的网址亚洲精品在线观看 | 69人妻影院| 亚洲无线观看免费| 亚洲婷婷狠狠爱综合网| 亚洲欧美精品自产自拍| 国产成人aa在线观看| 国产精品福利在线免费观看| 日本在线视频免费播放| 黑人高潮一二区| 人人妻人人看人人澡| 乱人视频在线观看| .国产精品久久| 久久久久网色| 亚洲av免费高清在线观看| 男的添女的下面高潮视频| 国产精品一二三区在线看| 在线观看一区二区三区| 精品久久久噜噜| 嫩草影院精品99| 国产精品一区二区三区四区免费观看| 国产亚洲精品久久久com| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 亚洲av成人av| 搞女人的毛片| 亚洲欧美清纯卡通| 日韩av不卡免费在线播放| 国产v大片淫在线免费观看| 99久久中文字幕三级久久日本| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 国产精品一区二区三区四区免费观看| 国内精品宾馆在线| 欧美日本亚洲视频在线播放| 精品久久久久久久久久久久久| 国产黄a三级三级三级人| 国产精品99久久久久久久久| 久久久久九九精品影院| 2022亚洲国产成人精品| 国产精品永久免费网站| 成年女人永久免费观看视频| 少妇高潮的动态图| av女优亚洲男人天堂| 深夜a级毛片| 乱码一卡2卡4卡精品| 成人特级av手机在线观看| 黄色配什么色好看| 久久国内精品自在自线图片| 日产精品乱码卡一卡2卡三| 亚洲美女搞黄在线观看| 麻豆国产97在线/欧美| 伊人久久精品亚洲午夜| 性色avwww在线观看| 国产三级中文精品| 别揉我奶头 嗯啊视频| 有码 亚洲区| 亚洲最大成人中文| 日韩亚洲欧美综合| 免费观看a级毛片全部| 国产色爽女视频免费观看| 最近视频中文字幕2019在线8| 久久精品国产亚洲av涩爱 | 午夜福利高清视频| 干丝袜人妻中文字幕| 日韩制服骚丝袜av| 人人妻人人看人人澡| 性插视频无遮挡在线免费观看| 成人毛片a级毛片在线播放| 极品教师在线视频| 五月玫瑰六月丁香| 国产探花极品一区二区| 久久午夜亚洲精品久久| 自拍偷自拍亚洲精品老妇| 级片在线观看| 舔av片在线| 成人亚洲欧美一区二区av| 国产美女午夜福利| 国产精品av视频在线免费观看| 天堂av国产一区二区熟女人妻| 69av精品久久久久久| 欧美精品一区二区大全| 国产91av在线免费观看| 国产一区二区激情短视频| 老熟妇乱子伦视频在线观看| 最近2019中文字幕mv第一页| 国产伦精品一区二区三区视频9| 看片在线看免费视频| av视频在线观看入口| 国产女主播在线喷水免费视频网站 | 青青草视频在线视频观看| av福利片在线观看| 久久久久性生活片| 免费电影在线观看免费观看| 成人永久免费在线观看视频| 国内精品宾馆在线| 欧美日韩精品成人综合77777| 联通29元200g的流量卡| 免费人成视频x8x8入口观看| 久久精品人妻少妇| 高清在线视频一区二区三区 | 精品久久久久久久末码| 亚洲精品久久久久久婷婷小说 | 国产精品人妻久久久久久| 男女视频在线观看网站免费| 国产精品久久久久久亚洲av鲁大| 直男gayav资源| 久久久久久久午夜电影| h日本视频在线播放| 99热6这里只有精品| 久久久久久伊人网av| 亚洲性久久影院| 午夜精品在线福利| 26uuu在线亚洲综合色| 看片在线看免费视频| 精品久久久久久久末码| 最好的美女福利视频网| 久久人妻av系列| 精品免费久久久久久久清纯| 三级国产精品欧美在线观看| 亚洲人成网站在线播| 综合色av麻豆| 夜夜看夜夜爽夜夜摸| 嘟嘟电影网在线观看| 精品久久久久久久久av| 白带黄色成豆腐渣| 免费在线观看成人毛片| 亚州av有码| 亚洲国产精品合色在线| 国产片特级美女逼逼视频| 精品国产三级普通话版| 日韩在线高清观看一区二区三区| 美女cb高潮喷水在线观看| av免费观看日本| a级一级毛片免费在线观看| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 国产欧美日韩精品一区二区| 欧美成人一区二区免费高清观看| 国产午夜精品久久久久久一区二区三区| 国产久久久一区二区三区| 国产精品一区二区三区四区久久| 联通29元200g的流量卡| 在线免费观看的www视频| 人妻久久中文字幕网| 久久久久久伊人网av| 老女人水多毛片| 久久久久久久久大av| 老女人水多毛片| 噜噜噜噜噜久久久久久91| 国产白丝娇喘喷水9色精品| 麻豆国产av国片精品| 亚洲欧美精品专区久久| 精品久久久久久久久久久久久| 国产国拍精品亚洲av在线观看| 91狼人影院| 亚洲精品久久国产高清桃花| 久久精品人妻少妇| 精品久久久久久成人av| 亚洲国产欧美在线一区| 亚洲性久久影院| 18禁裸乳无遮挡免费网站照片| 日韩一本色道免费dvd| 亚洲av电影不卡..在线观看| 五月玫瑰六月丁香|