• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A DFT Study on the Reaction Mechanism Involved in the Synthesis of Sodium Azide vi1a Hydrazine Hydrate Method①

    2018-08-17 06:46:38SUNHuYunLIMingJingLIUYongJun
    結(jié)構(gòu)化學(xué) 2018年7期

    SUN Hu-Yun LI Ming-Jing LIU Yong-Jun

    ?

    A DFT Study on the Reaction Mechanism Involved in the Synthesis of Sodium Azide vi1a Hydrazine Hydrate Method①

    SUN Hua-YunaLI Ming-JingaLIU Yong-Junb②

    a(256414)b(250100)

    Sodium azide is a widely used inorganic compound. Besides the commonly used method of “Wislicenus process” which uses ammonia, nitrous and sodium as materials, the hydrazine hydrate route is also employed for the preparation of sodium azide particularly in laboratory. However, because many species are involved in the reaction system, the reaction details for the hydrazine hydrate route are still unclear. A comprehensive understanding of the reaction mechanism may provide meaningful help for optimizing the production process. In this work, the reaction mechanism for the synthesis of sodium azide by hydrazine hydrate route has been studied using density function theory (DFT) method. On the basis of our calculations, the reaction details, including the energetics of ten elementary steps, the structures of intermediates and transition states as well as the influence of inorganic acids and alcohols, were illuminated at the atomistic level. Both the two steps, the generation of key intermediate (NH2-NH-NO) and thetransformation of NH2-NH-NO, are suggested to be the possible rate-limiting step, corresponding to the energy barriers of 20.3 and 22.7 kcal/mol, respectively. In the early reaction steps to generate NH2-NH-NO, the main role of sulphuric acid is to donate proton, which can be replaced by nitric acid or hydrochloric acid. From the energy point of view, isopropanol has similar reactivity as methanol and ethanol.

    sodium azide, hydrazine hydrate, DFT method, isopropanol, sulphuric acid;

    1 INTRODUCTION

    Sodium azide is acolorless inorganic com- pound with the formula NaN3. It has long been applied in relative small amounts by industry to produce heavy metal azides for use in explosive detonators, to introduce the azide functional group by displacement of halides in organic synthesis[1, 2], and to produce cephalosporin[3]and sartan drugs[4]for treating hypertensive patients. Small quantities of this high toxic substance are also used as radical scavenger in laboratory preservatives, in the produc- tion of biocides, in anti-corrosion solutions and to inflate airline safety chutes, and in the formulation of getters in electric discharge tubes[5-9]. Over the past two decades, production of sodium azide was surged to meet the new demand for automobile air- bag inflator propellant[10]. Upon impact, an initiator squib is fired by an electromechanical trigger that causes the sodium azide to thermally decompose,yielding the nitrogen gas that inflates the air bag momentarily[11]. The United States National Highway Traffic Administration (NHTSA) mandated that new passenger vehicles sold in the United States after 1996 should have both driver-side and passen- ger-side air bags. Therefore, sodium azide demand exceeds 5 million kg in the U.S. by 1995 and has quickly grown as more new vehicles fitted with driver-side and passenger-side airbags[10].

    The common synthesis method is the “Wisli- cenus process”[10, 12], which uses ammonia, nitrous and sodium as materials, and provides the basis of industrial route. In the first step, ammonia is conver- ted to sodium amide:

    2Na + 2NH3→ 2NaNH2+ H2(1)

    The sodium amide is subsequently combined with nitrous oxide:

    2NaNH2+ N2O → NaN3+ NaOH + NH3(2)

    The final product is a white crystalline solid. The capacity exceeds 9 × 106kg each in the U.S[10].

    Another production process is the so called “hydrazine hydrate method”[13]. Nitrite ester is firstly generated by the reaction of sodium nitrite with alcohol (usually the ethanol is used), then, nitrite ester is converted to sodium azide using hydrazine hydrate:

    2NaNO2+ 2ROH + H2SO4→

    RON=O + Na2SO4+ 2H2O (3)

    RON=O + NaOH + NH2-NH2?H2O →

    NaN3+ ROH + 3H2O (4)

    In reaction (4), sodium azide is prepared by feeding nitr ite ester gas into the alcohol solution of hydrazine hydrate and sodium hydroxide. This method has highyield and is easy to operate. However, it has two fatal flaws, limiting its indus- trial application. On one hand, a large amount of alcohol is used as reactant and solvent, which pro- duces a great quantity of waste liquid. It unavoidably contains small amounts of raw materials and product, and is unfriendly to the environment. On the other hand, the reaction occurs in the gas-liquid interface, and thereby the reactionefficiency is low and the period is relatively longer. In 2014, Yangimproved this production process through a water treatment technique[13], which employs water as the reaction medium. Although the improved method can greatly decrease the consumption of alcohol and reaction time, the reaction should be carried out under high pressure, and the production process is hard to control. As we all know, nitrite ester has high toxicity and low boiling point (290 ℃ at 1 atm), which is an undesirable intermediate in practice. Therefore, our laboratory aims to improve the hydrazine hydrate method, probably by changing the inorganic acid, alcohol or solvent. Based on this, we want to know more details regarding the reaction mechanism of the hydrazine hydrate method. For example, what is the detailed reaction mechanism about the synthesis of sodium azide? Which elementary step is rate-determining? Can we use other alcohol to replace ethanol?

    By investigating literatures, we found that there is still no systematic study about the reaction mecha- nism of hydrazine hydrate method. Therefore, in this work, the reaction mechanism of the hydrazine hydrate route was studied using density function theory (DFT) method[14-16]. This theoretical method has been successfully applied in studying reaction mechanisms[17-22]. On the basis of our calculations, the whole reaction process, the energetics of the ten elementary steps, the structures of intermediates and transition states as well as the influences of inor- ganic acids and organic reagent, were illuminated at atomistic level.

    2 COMPUTATIONAL METHODS

    The reaction mechanism was modeled using Gaussian 09 software[23]. GaussView 5.0 software[24]was used for the visualization of molecular struc- tures and vibrational motions. All of the calculations were performed by employing DFT method with B3LYP functional and 6-311++G(d, p) basis set for all atoms, unless otherwise mentioned[25, 26]. All transition states were fully optimized and harmonic vibrational frequencies were calculated in order to confirm the transition state only has one single imaginary frequency. The intrinsic reaction coor- dinate (IRC) pathways were computed to verify that the two desired minima points are connected by the transition state. Solvent effects were treated through the polarizable continuum model (PCM) in water medium at 25 ℃[26, 27]. The structures obtained at the gas phase were further optimized to include the solvent effect. In order to obtain more reliable ener- gies, single point energy calculations were done at the PCM//B3LYP/6-311++G(2d, 2p) level.

    3 RESULTS AND DISCUSSION

    Based on our calculations, the overall reaction contains ten elementary steps, as shown in Fig. 1. For a clear description, the reaction cycle can be divided into two distinct chemical parts: the first- half reaction (step 1 to step 4) corresponding to the synthesis of alkyl nitrite, and the second-half reac- tion (step 5 to step 10) to the generation of sodium azide. In the first-half reaction, the key intermediate alkyl nitrite is generated, in which the sulfuric acid, sodium nitrite and alcohol are involved in the reaction. In the second-half reaction, the generated alkyl nitrite reacts with hydrazine hydrate, genera- ting the final product sodium azide via a series of intermediates and transition states. To explore how the inorganic acid and alcohol will influence the reaction barrier, in step 2, the commonly used sul- furic acid was replaced by nitric acid or hydrochloric acid, and in step 3 to step 5 isopropanol was repla- ced by methanol or ethanol.

    Fig. 1. Proposed mechanism for the synthesis of sodium azide based on our calculations

    3. 1 The first-half reaction

    The first-half reaction (step 1 to 4) corresponds to the synthesis of alkyl nitrite. The optimized intermediates and transition states are displayed in Fig. 2. In the first step from R to IM1, NO2-is converted to HNO2by abstracting a proton from H2SO4. This process is calculated to be very easy with an energy barrier of only 0.6 kcal/mol (Fig. 3). In the second step, HNO2abstracts another proton from H2SO4generating the high reactive species (NO+) with an energy barrier of 5.8 kcal/mol. In the third step, NO+is attacked by the hydroxyl oxygen of isopropanol. Meanwhile, another NO2-abstracts a proton from the hydroxyl of isopropanol, yielding the isopropyl nitrite. The forth step corresponds to the transformation ofisopropanol nitrite to itsisomer. During this process, the N=O group rotates around the N-O bond for facilitating the following reaction with hydrazine hydrate. As shown in Fig. 2, the dihedral angle of a-b-c-d changes from –179.89°in IM3 to 0.63°in IM481.70°in TS4. Although theform of isopropanol nitrite (IM3) was calculated to be slightly more stable than IM4 by 1.3 kcal/mol, theisomer has a relative little steric hindrance for the subsequent attack by hydrazine hydrate. The energy barrier of step 4 is only 14.4 kcal/mol, which means thetransformation can proceed at room temperature.

    During the first-half reaction, inorganic acid is involved in steps 1 and 2, which are calculated to be very easy. Based on the above calculation results, the main role of inorganic acid is to provide protons to facilitate the formation of NO+. Thus, H2SO4can be replaced by HNO3or HCl. Table 1 lists the corres- ponding energy values when HNO3or HCl is used in the second step. One can see that the use of HNO3and HCl does not significantly increase the energy barrier of step 2 (The optimized structures are not given here).

    Fig. 2. Optimized stationary points during the reaction process. Distances are given in angstrom and dihedral angles in degree

    Fig. 3. Energy profile of the reaction process. Energies are given in kcal/mol

    Table 1. Relative Energies (in kcal/mol) of the Optimized Species in Step 2

    3. 2 The second-half reaction

    The second half-reaction from step 5 to step 10 corresponds to the generation of sodium azide. In step 5, as shown in Fig. 1, the nitrogen of hydrazine hydrate combines with the nitrogen of isopropanol nitrite, and simultaneously the oxygen atom of isopropanol nitrite abstracts a proton from hydrazine hydrate, generating IM5. This step corresponds to an energy barrier of 20.3 kcal/mol. As shown in Fig. 2, the distance of N-N bond shortens from 3.69 ? in IM4 to 1.31 ? in IM5 via 1.85 ? in TS5, indicative of the formation of another key intermediate NO-NH-NH2(IM5). Accompanied by the forma- tion of IM5, isopropanol is regenerated. So far, the function of isopropanol as reactant has been finished.

    The sixth step corresponds to a conformational change of IM5, in which the N=O double bond of IM5 rotates around the N-N bond to generate IM6. IM5 and IM6 are two isomers. Due to the con- jugated effect in IM5, the rotation around N-N bond is not very easy, corresponding to an energy barrier of 22.7 kcal/mol. From the energy profile in Fig. 3, one can see that this conformational change is the rate-determining step of the overall reaction process. During this step, the N-N bond length changes from 1.31 ? in IM5 to 1.54 ? in TS6, and returns to 1.31 ? in IM6. This means the N-N bond has the double bond characteristic in both IM5 and IM6. In other words, the transformation of IM5 to IM6 should break the-bond of N-N, thereby corresponding to a high energy barrier.

    The seventh step corresponds to an intramolecular proton transfer of IM6 mediated by a water molecule. In TS7, the distance of N-H bond is 1.33 ? and the distance between O of N=O group and H of water is 1.39 ?, which reveals that this step proceeds in a concerted manner with an energy barrier of 13.8 kcal/mol. In the eighth step, the hydroxyl anion captures a proton from the amino group of IM7, generating IM8 with an energy barrier of 5.1 kcal/mol. In TS8, the hydroxyl anion is stabilized by forming three hydrogen bonds in which three water molecules have distances of 1.80, 1.89 and 1.91 ?, respectively. The ninth step corresponds to the departure of the hydroxyl anion from IM8, genera- ting hydrazoic acid. This step corresponds to an energy barrier of 10.2 kcal/mol. The last step is a typical acid-base reaction, in which the hydrazoic acid reacts with the sodium hydroxide to yield the final product sodium azide. Since it is a very fast process, we did explore it.

    As has been previously reported[13], in the second- half reaction, methyl nitrite and ethyl nitrite can also be used for the synthesis of sodium azide. To explore the different reactivity of methyl nitrite, ethyl nitrite and isopropanol nitrite, methanol and ethanol were also used in the calculations of step 3 to step 5. The corresponding energy values are listed in Table 2 (The optimized structures are not given here). Table 2 shows that, when isopropanol was replaced by methanol and ethanol, the energy values are basi- cally unchanged, which means that, from the energy barrier point of view, all these three alcohols can be used in the synthesis of sodium azide. Considering isopropanol nitrite has high boiling point (39 ℃ at 1 atm) and lower toxicity than those of nitrite ester, isopropanol may be an alternative for the synthesis of sodium azide.

    Table 2. Relative Energies (in kcal/mol) of Optimized Species for the Reaction Process from Steps 3 to 5

    4 CONCLUSION

    In the present work, the detailed reaction mechanism involving the synthesis of sodium azide via hydrazine hydrate method has been investigated using a density functional theory (DFT) approach. Details of each elementary step and the energetics of the whole reaction process have been calculated. The calculated results suggest that the whole reaction process contains ten elementary steps. Both the two steps, the generation of key intermediate (NH2-NH-NO) and thetransformation of NH2-NH-NO, are suggested to be possible rate- determining, corresponding to energy barriers of 20.3 and 22.7 kcal/mol, respectively. In the early reaction steps to generate NH2-NH-NO, the main role of sulphuric acid is to provide proton, which can be replaced by nitric acid or hydrochloric acid. From the energy point of view, isopropanol has similar reactivity as methanol and ethanol. Our results would provide useful information for the synthesis of sodium azide.

    (1) Chiappe, C.; Pieraccini, D.; Saullo, P. Nucleophilic displacement reactions in ionic liquids: substrate and solvent effect in the reaction of NaN3and KCN with alkyl halides and tosylates.2003, 68, 6710-6715.

    (2) Br?se, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds.. 2005, 44, 5188-5240.

    (3) Martínez-Rodríguez, J. E.; Barriga, F. J.; Santamaria, J.; Iranzo, A.; Pareja, J. A.; Revilla, M.; dela Rosa, C. R. Nonconvulsive status epilepticus associated with cephalosporins in patients with renal failure.. 2001, 111, 115-119.

    (4) Alwan, S.; Polifka, J. E.; Friedman, J. M. Angiotensin II receptor antagonist treatment during pregnancy.2005, 73, 123-130.

    (5) Madlung, A. The chemistry behind the air bag-high tech in first-year chemistry.1996, 73, 347-348.

    (6) Hill, C. A.; Forster, S. C.; Farahani, M. R. M.; Hale, M. D. C.; Ormondroyd, G. A.; Williams, G. R. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood.2005, 55, 69-76.

    (7) Venkatesh, A. G.; Sun, A.; Brickner, H.; Looney, D.; Hall, D. A.; Aronoff-Spencer, E. Yeast dual-affinity biobricks: progress towards renewable whole-cell biosensors.2015, 70, 462-468.

    (8) Navarro-Villoslada, F.; Orellana, G.; Moreno-Bondi, M. C.; Vick, T.; Driver, M.; Hildebrand, G.; Liefeith, K. Fiber-optic luminescent sensors with composite oxygen-sensitive layers and anti-biofouling coatings.2001, 73, 5150-5156.

    (9) Samokyszyn, V. M.; Freeman, J. P.; Maddipati, K. R.; Lloyd, R. V. Peroxidase-catalyzed oxidation of pentachlorophenol.1995, 8, 349-355.

    (10) Betterton, E. A. Environmental fate of sodium azide derived from automobile airbags.2003, 33, 423-458.

    (11) Resh, R. E. Air bags.1996, 274, 116-116.

    (12) Grorta, B. Development and application of initiating explosives.1925, 17, 134-138.

    (13) Yang, X.; Hao, A.; Feng, W. Method for the aqueous-phase synthesis of sodium azide and treating method for the waste water generated.2014, 43, 1156-1158.

    (14) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange.1993, 98, 5648-5652.

    (15) Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories.1993, 98, 1372-1377.

    (16) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.1988, 37, 785.

    (17) Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model.1998, 19, 404-417.

    (18) Googheri, M. S. S.; Housaindokht, M. R.; Sabzyan, H. Theoretical studies on the deacylation step of acylated Candida Antarctica lipase B: structural and reaction pathway analysis.2015, 57, 9-19.

    (19) Zhang, H.; Zhao, X.; Chen, D. A computational investigation of the hydrogenation of imines catalyzed by rhodium thiolate complexes.2015, 115, 1-5.

    (20) Borowski, T.; Georgiev, V.; Siegbahn, P. E. M. Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid DFT study.2005, 127, 17303-17314.

    (21) Pierce, M. D.; Johnston, R. C.; Mahapatra, S.; Yang, H.; Carter, R. G.; Cheong, P. H. Y. Mechanism and stereoselectivity of a dual amino-catalyzed robinson annulation: rare duumvirate stereocontrol.2012, 134, 13624-13631.

    (22) Jitonnom, J.; Sattayanon, C.; Kungwan, N.; Hannongbua, S. A DFT study of the unusual substrate-assisted mechanism of Serratia marcescens chitinase B reveals the role of solvent and mutational effect on catalysis.2015, 56, 53-59.

    (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford CT 2010..

    (24) Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission, KS.,2009.

    (25) Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti conelation energy formula into a functional of electron density.1988, 37, 785-789.

    (26) Mennucci, B.; Cances, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications.1997, 101, 10506-10517.

    (27) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J.study of solvated molecules: a new implementation of the polarizable continuum model.1996,255, 327-335.

    24 August 2017;

    2 May 2018

    ① This project was supported by the National Natural Science Foundation of China (21773138)

    . Liu Yong-Jun, born in 1964, professor, majoring in physical chemistry. E-mail: yongjunliu_1@sdu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1813

    性色av乱码一区二区三区2| 国产精品亚洲一级av第二区| 91av网一区二区| 久久精品综合一区二区三区| 久久久色成人| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区免费观看 | or卡值多少钱| 精品一区二区三区视频在线 | 亚洲熟妇中文字幕五十中出| 男插女下体视频免费在线播放| 校园春色视频在线观看| 婷婷亚洲欧美| 在线观看一区二区三区| 一夜夜www| 亚洲欧美激情综合另类| 国产亚洲精品综合一区在线观看| 又粗又爽又猛毛片免费看| 亚洲精品美女久久久久99蜜臀| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 婷婷亚洲欧美| 丰满的人妻完整版| 成人无遮挡网站| 国产成人啪精品午夜网站| 日本熟妇午夜| eeuss影院久久| 免费看美女性在线毛片视频| 欧美黄色淫秽网站| 天天一区二区日本电影三级| 午夜福利欧美成人| 国产精品女同一区二区软件 | 国产亚洲av嫩草精品影院| 国产精品 欧美亚洲| 国产精品国产高清国产av| 国产午夜精品久久久久久一区二区三区 | tocl精华| 亚洲av成人精品一区久久| 国产精品亚洲一级av第二区| 美女高潮喷水抽搐中文字幕| 亚洲国产色片| 日韩欧美在线乱码| 亚洲成人精品中文字幕电影| 偷拍熟女少妇极品色| x7x7x7水蜜桃| 中文字幕高清在线视频| 日本与韩国留学比较| 国产精品日韩av在线免费观看| 久久久国产成人免费| 午夜精品一区二区三区免费看| 亚洲 欧美 日韩 在线 免费| 国产成人福利小说| 国内精品久久久久久久电影| 搞女人的毛片| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 国产精品久久久久久久久免 | 在线a可以看的网站| 国产主播在线观看一区二区| 久久久久国内视频| 国产又黄又爽又无遮挡在线| 国产午夜福利久久久久久| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区精品| 一级毛片高清免费大全| 色在线成人网| 色播亚洲综合网| 午夜福利成人在线免费观看| 激情在线观看视频在线高清| 丰满人妻一区二区三区视频av | 国产精品国产高清国产av| 中文字幕人成人乱码亚洲影| 欧美黑人巨大hd| 蜜桃久久精品国产亚洲av| 成年版毛片免费区| 国产成年人精品一区二区| 免费观看的影片在线观看| 九色国产91popny在线| 熟女电影av网| 亚洲av日韩精品久久久久久密| 99在线视频只有这里精品首页| 怎么达到女性高潮| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 村上凉子中文字幕在线| 久久久精品欧美日韩精品| 免费在线观看亚洲国产| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看 | 人人妻人人看人人澡| 男人舔奶头视频| 舔av片在线| av片东京热男人的天堂| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 青草久久国产| 免费人成在线观看视频色| 日本免费一区二区三区高清不卡| 18禁美女被吸乳视频| 国产精品亚洲av一区麻豆| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看 | 在线a可以看的网站| 高清日韩中文字幕在线| 国产中年淑女户外野战色| 午夜免费男女啪啪视频观看 | 99热这里只有精品一区| 国产99白浆流出| 天堂√8在线中文| av女优亚洲男人天堂| 午夜视频国产福利| 欧美在线黄色| 性色avwww在线观看| 淫妇啪啪啪对白视频| 亚洲成人久久性| 国产精品日韩av在线免费观看| xxxwww97欧美| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 欧美成人免费av一区二区三区| 手机成人av网站| 香蕉av资源在线| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 此物有八面人人有两片| 欧美黑人巨大hd| 九色国产91popny在线| 老熟妇仑乱视频hdxx| 听说在线观看完整版免费高清| 欧美3d第一页| 成年女人看的毛片在线观看| 噜噜噜噜噜久久久久久91| 首页视频小说图片口味搜索| 又紧又爽又黄一区二区| 亚洲内射少妇av| 国产中年淑女户外野战色| 日本熟妇午夜| 国产精品,欧美在线| 午夜精品久久久久久毛片777| 亚洲国产欧美网| 91av网一区二区| 18美女黄网站色大片免费观看| 淫妇啪啪啪对白视频| 97碰自拍视频| 亚洲精品久久国产高清桃花| 99精品在免费线老司机午夜| 国产午夜精品久久久久久一区二区三区 | 国产成人欧美在线观看| 动漫黄色视频在线观看| 午夜亚洲福利在线播放| 久久人妻av系列| 欧美+亚洲+日韩+国产| 一夜夜www| 亚洲天堂国产精品一区在线| 99国产极品粉嫩在线观看| 女人十人毛片免费观看3o分钟| 欧美国产日韩亚洲一区| 日韩欧美国产一区二区入口| 日韩高清综合在线| 国产激情偷乱视频一区二区| 国内揄拍国产精品人妻在线| 亚洲成人久久爱视频| 国产精品乱码一区二三区的特点| 黄色女人牲交| 亚洲人成伊人成综合网2020| 国产精品久久久久久久电影 | 成人高潮视频无遮挡免费网站| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 波野结衣二区三区在线 | 久久伊人香网站| 国产高清视频在线播放一区| 18禁在线播放成人免费| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 亚洲在线自拍视频| 欧美在线黄色| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 国产乱人伦免费视频| АⅤ资源中文在线天堂| 狂野欧美激情性xxxx| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 国产精品一区二区免费欧美| 18禁黄网站禁片免费观看直播| 国产精华一区二区三区| 日本熟妇午夜| 露出奶头的视频| 亚洲人成网站在线播| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 国产成人a区在线观看| 午夜免费成人在线视频| tocl精华| 国产精品98久久久久久宅男小说| 最近视频中文字幕2019在线8| 亚洲国产中文字幕在线视频| 在线观看av片永久免费下载| 亚洲精品久久国产高清桃花| 亚洲国产日韩欧美精品在线观看 | 美女被艹到高潮喷水动态| 成人三级黄色视频| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 麻豆一二三区av精品| 欧美bdsm另类| 日本撒尿小便嘘嘘汇集6| 无限看片的www在线观看| 国产精品一及| 人妻久久中文字幕网| 欧美日韩黄片免| 日本免费a在线| 九色国产91popny在线| 色在线成人网| 黄色片一级片一级黄色片| 少妇高潮的动态图| 超碰av人人做人人爽久久 | 亚洲精品成人久久久久久| 日韩亚洲欧美综合| 黄色成人免费大全| 一个人免费在线观看电影| 久久久精品大字幕| 亚洲av一区综合| 国产高清videossex| 此物有八面人人有两片| 真人一进一出gif抽搐免费| 在线十欧美十亚洲十日本专区| 变态另类丝袜制服| 日本三级黄在线观看| 男人舔奶头视频| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 欧美午夜高清在线| 欧美极品一区二区三区四区| 国产三级中文精品| 18美女黄网站色大片免费观看| 在线播放无遮挡| 色吧在线观看| 亚洲av电影不卡..在线观看| 日韩免费av在线播放| 啪啪无遮挡十八禁网站| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品综合一区二区三区| 人妻丰满熟妇av一区二区三区| 一a级毛片在线观看| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 岛国在线免费视频观看| 亚洲无线观看免费| 国产黄a三级三级三级人| 成人18禁在线播放| 欧美日本亚洲视频在线播放| 在线免费观看不下载黄p国产 | 国产探花极品一区二区| 国产精品一区二区三区四区久久| 欧美成人免费av一区二区三区| 日韩人妻高清精品专区| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站| 九色国产91popny在线| 国产一区在线观看成人免费| 黄色片一级片一级黄色片| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 日日夜夜操网爽| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 三级毛片av免费| 中文亚洲av片在线观看爽| 91在线精品国自产拍蜜月 | 99国产精品一区二区蜜桃av| 好看av亚洲va欧美ⅴa在| 亚洲国产欧洲综合997久久,| 两个人看的免费小视频| 久久久成人免费电影| 欧美黄色淫秽网站| 免费看a级黄色片| 一本一本综合久久| 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| 少妇的逼水好多| 国产高清视频在线观看网站| 国产在视频线在精品| 少妇人妻一区二区三区视频| xxxwww97欧美| 国产av在哪里看| av女优亚洲男人天堂| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 特级一级黄色大片| 我要搜黄色片| 国产精品亚洲美女久久久| 哪里可以看免费的av片| 国产色婷婷99| 天堂动漫精品| 国产精品一区二区免费欧美| 日韩欧美三级三区| 亚洲avbb在线观看| 在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲成人精品中文字幕电影| 美女高潮的动态| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 身体一侧抽搐| tocl精华| 1000部很黄的大片| av女优亚洲男人天堂| 亚洲电影在线观看av| 色精品久久人妻99蜜桃| 变态另类成人亚洲欧美熟女| 一区二区三区免费毛片| 麻豆成人av在线观看| 最近最新中文字幕大全免费视频| 757午夜福利合集在线观看| 叶爱在线成人免费视频播放| 国产午夜精品论理片| 亚洲av日韩精品久久久久久密| 免费观看精品视频网站| 变态另类丝袜制服| 国产精品野战在线观看| 床上黄色一级片| 欧美一级a爱片免费观看看| 色吧在线观看| 日本一本二区三区精品| 五月玫瑰六月丁香| 怎么达到女性高潮| 国产黄a三级三级三级人| 夜夜躁狠狠躁天天躁| 国产91精品成人一区二区三区| 欧美中文综合在线视频| 国产蜜桃级精品一区二区三区| 熟女少妇亚洲综合色aaa.| 丁香欧美五月| 亚洲av电影不卡..在线观看| 热99在线观看视频| 久久伊人香网站| 精品国产三级普通话版| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 99热这里只有精品一区| 久久久成人免费电影| 亚洲国产精品久久男人天堂| 国产免费av片在线观看野外av| 蜜桃亚洲精品一区二区三区| 精华霜和精华液先用哪个| 少妇的丰满在线观看| 日本与韩国留学比较| 欧美色欧美亚洲另类二区| 在线观看av片永久免费下载| 非洲黑人性xxxx精品又粗又长| 一区二区三区高清视频在线| 午夜精品久久久久久毛片777| 精品一区二区三区人妻视频| 日韩有码中文字幕| 国产三级中文精品| 国产69精品久久久久777片| av中文乱码字幕在线| 国产中年淑女户外野战色| 嫩草影视91久久| 热99re8久久精品国产| 91久久精品电影网| 一进一出抽搐动态| 亚洲精品一区av在线观看| xxxwww97欧美| 搡老岳熟女国产| 狂野欧美激情性xxxx| 亚洲国产精品999在线| 久久草成人影院| 精品久久久久久,| 最新在线观看一区二区三区| 一级a爱片免费观看的视频| 国产精品久久久久久久久免 | 在线免费观看的www视频| 亚洲天堂国产精品一区在线| 波多野结衣高清作品| 亚洲在线观看片| 波多野结衣高清作品| 精品国内亚洲2022精品成人| 丰满乱子伦码专区| 亚洲一区二区三区不卡视频| 两个人视频免费观看高清| 成人国产综合亚洲| 日韩高清综合在线| 人妻夜夜爽99麻豆av| 99精品久久久久人妻精品| 日韩免费av在线播放| 无人区码免费观看不卡| av中文乱码字幕在线| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 欧美极品一区二区三区四区| 欧美午夜高清在线| 免费观看精品视频网站| 国产一区二区激情短视频| 波多野结衣巨乳人妻| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 在线观看美女被高潮喷水网站 | 日韩中文字幕欧美一区二区| 午夜精品久久久久久毛片777| 亚洲 国产 在线| 免费在线观看成人毛片| 欧美在线黄色| 一本精品99久久精品77| 深爱激情五月婷婷| 日本熟妇午夜| 免费看十八禁软件| 人妻夜夜爽99麻豆av| 18禁黄网站禁片午夜丰满| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| 精品久久久久久,| 成熟少妇高潮喷水视频| 国产91精品成人一区二区三区| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 天天一区二区日本电影三级| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 久久久国产成人免费| 又粗又爽又猛毛片免费看| 成年免费大片在线观看| 久久亚洲精品不卡| 真实男女啪啪啪动态图| 亚洲av成人av| 午夜日韩欧美国产| 欧美激情在线99| 免费av不卡在线播放| 青草久久国产| 日韩欧美国产一区二区入口| 特大巨黑吊av在线直播| 丰满人妻一区二区三区视频av | 一进一出好大好爽视频| 精品国内亚洲2022精品成人| 色视频www国产| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| 欧美黑人欧美精品刺激| 亚洲午夜理论影院| 久久久久久久精品吃奶| 国产午夜福利久久久久久| 国产成人av教育| 亚洲国产精品999在线| svipshipincom国产片| 黄片小视频在线播放| 成人一区二区视频在线观看| 亚洲av一区综合| 国产精品99久久99久久久不卡| 久久久久九九精品影院| 中文字幕av成人在线电影| 欧美3d第一页| 免费av毛片视频| 啦啦啦韩国在线观看视频| 99国产综合亚洲精品| 757午夜福利合集在线观看| 久久久久国内视频| 国产乱人视频| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 韩国av一区二区三区四区| 91久久精品国产一区二区成人 | 夜夜爽天天搞| 日本黄大片高清| 很黄的视频免费| 97人妻精品一区二区三区麻豆| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 成人欧美大片| 欧美日韩乱码在线| 中文亚洲av片在线观看爽| 18禁黄网站禁片午夜丰满| 搡老岳熟女国产| 制服人妻中文乱码| 国产亚洲欧美在线一区二区| 日韩精品中文字幕看吧| 青草久久国产| 午夜影院日韩av| 国产av一区在线观看免费| 天堂√8在线中文| 国产成+人综合+亚洲专区| 午夜福利在线观看吧| 久久久久久九九精品二区国产| 国产成人欧美在线观看| 黄片小视频在线播放| 18+在线观看网站| 色播亚洲综合网| av在线蜜桃| 99久久精品国产亚洲精品| 久久亚洲精品不卡| 日日摸夜夜添夜夜添小说| 亚洲七黄色美女视频| 在线天堂最新版资源| 18禁黄网站禁片午夜丰满| eeuss影院久久| 99热这里只有是精品50| 超碰av人人做人人爽久久 | 亚洲av熟女| 999久久久精品免费观看国产| 两人在一起打扑克的视频| 久久99热这里只有精品18| 99久久精品一区二区三区| 国产黄色小视频在线观看| 日本黄色视频三级网站网址| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 午夜视频国产福利| 国产精品 国内视频| 免费在线观看影片大全网站| 免费看日本二区| 亚洲av免费在线观看| 中文资源天堂在线| 嫁个100分男人电影在线观看| 又粗又爽又猛毛片免费看| 国产精品久久电影中文字幕| 亚洲国产欧美人成| h日本视频在线播放| 欧美日韩福利视频一区二区| avwww免费| 免费人成在线观看视频色| 国产高清有码在线观看视频| 国产免费一级a男人的天堂| 成人鲁丝片一二三区免费| 精品乱码久久久久久99久播| 国产伦在线观看视频一区| 十八禁人妻一区二区| 午夜免费成人在线视频| 国产又黄又爽又无遮挡在线| 免费看美女性在线毛片视频| 动漫黄色视频在线观看| 亚洲精品456在线播放app | 精品国产三级普通话版| 看片在线看免费视频| 久久6这里有精品| 国产精品综合久久久久久久免费| 精品日产1卡2卡| 少妇的逼好多水| 少妇高潮的动态图| 51国产日韩欧美| 亚洲片人在线观看| 久久久久久久久中文| 18美女黄网站色大片免费观看| 欧美又色又爽又黄视频| 级片在线观看| 俄罗斯特黄特色一大片| 国产午夜福利久久久久久| 中出人妻视频一区二区| 一二三四社区在线视频社区8| 成人高潮视频无遮挡免费网站| av女优亚洲男人天堂| 最新中文字幕久久久久| 亚洲中文日韩欧美视频| 99riav亚洲国产免费| 免费看a级黄色片| 日本一本二区三区精品| 91在线精品国自产拍蜜月 | 免费看日本二区| 99在线人妻在线中文字幕| 手机成人av网站| 少妇人妻精品综合一区二区 | 少妇的逼好多水| 老司机在亚洲福利影院| 午夜激情福利司机影院| 免费电影在线观看免费观看| 一个人看视频在线观看www免费 | 91av网一区二区| 国产精品电影一区二区三区| 日本 欧美在线| 国产av在哪里看| 亚洲av成人精品一区久久| 亚洲av熟女| 亚洲精品亚洲一区二区| 欧美大码av| 我要搜黄色片| 一区二区三区高清视频在线| 欧美国产日韩亚洲一区| 国产精品女同一区二区软件 | 在线观看66精品国产| 日本黄色片子视频| 天堂√8在线中文| 波野结衣二区三区在线 | 国内少妇人妻偷人精品xxx网站| 亚洲不卡免费看| 18禁在线播放成人免费| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 乱人视频在线观看| 老汉色∧v一级毛片| 国产精品 欧美亚洲| 偷拍熟女少妇极品色| 亚洲成人久久性| www.熟女人妻精品国产| 免费大片18禁| 麻豆久久精品国产亚洲av| 精品99又大又爽又粗少妇毛片 | 岛国视频午夜一区免费看| 又黄又爽又免费观看的视频| x7x7x7水蜜桃| 波多野结衣高清作品| 国产精品99久久99久久久不卡| 夜夜夜夜夜久久久久| 国产国拍精品亚洲av在线观看 | 狠狠狠狠99中文字幕| 大型黄色视频在线免费观看| 级片在线观看| av视频在线观看入口| 日本五十路高清| 国产探花在线观看一区二区|