• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The First Principle Study on the Rectification of Molecular Junctions Based on theAlkyl-chain-modified Phenyl Benzothiophene Derivative①

    2018-08-17 06:44:36CHENZhiPengZHANGMeiGUOZhenGngLINLiXingYANGLINGQiDn
    結(jié)構(gòu)化學(xué) 2018年7期

    CHENZhi-Peng ZHANG Y-Mei GUO Zhen-Gng LIN Li-Xing YANG E LING Qi-Dn

    ?

    The First Principle Study on the Rectification of Molecular Junctions Based on theAlkyl-chain-modified Phenyl Benzothiophene Derivative①

    CHENZhi-PengaZHANG Ya-MeiaGUO Zhen-GangcLIN Li-XiangaYANG Ea, b②LING Qi-Dana

    a(350007)b(350002)(350108)

    Using density functional theory (DFT) combined with nonequilibrium Green’s functioninvestigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified by one to four alkyl groups forming PBTDT- (CH2)CH=NH. The electronic structures of the isolated molecules (thiol-ended PBTDT- (CH2)CH=N)have been investigated before the electron-transport calculations are performed. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducingalkyl chain. TheN3 molecular junctionexhibits the best rectifying effect. Its maximum rectifying ratiois 878, which is 80 times more than that of the molecular junction based on the originalN molecular junction.The current-voltage (I-V) curves of all thesandwich systems in this work are illustrated by transmission spectra and molecular projection density analysis.

    thefirst principle, phenyl benzothiophene,alkyl chain, rectification;

    1 INTRODUCTION

    Molecular electronics has become a promising trend to obtain a variety of functional molecular devices, such as molecular rectifier effect[1-3], nega- tive differential resistance effect (NDR), molecular switch and so on[4]. Molecular rectifier plays an important role in molecular devices. Recently, the electronic transport of single thiophene oligomers has been successfully simulated by the first prin- ciples theory, including the influence of substituent[5, 6], the separation between components, the contact performance of molecular electrode interface,[7]. Many factors can affect molecular rectification[8, 9], so it is necessary to study the effects of different molecular lengths on molecular junctions. The imi- dogen-substituted2-phenylbenzo[d,d?]thieno[3,2-b;4,5-b]dithio-phene molecule (PBTDT-CH=NH) is one of the most promising candidates in organic electronics, because the conjugated molecule PBTDT-CH=NH has good electron transport pro- perties[10-12]. Thus the thiol-ended PBTDT-CH=N molecule modified by one to fouralkyl groups has been studied. The transport properties of Au/S-modifiedPBTDT-CH=N-S/Au have been investi-gated by density functional theory (DFT) combined with nonequilibrium Green’s function.

    2 COMPUTATIONAL DETAILS

    Fig.1 illustrates the models of molecular junctions N to N4 with metal/molecule/metal structures. In each so-called two probe system, a thiolate-ended molecule based on PBTDT-CH=N is sandwiched between two gold electrodes. The thiol end group is employed widely in the field of molecular devices. Molecules containing thiol end groups can be self-assembled on the Au substrate because the hydrogen atom in the thiol group will be dissociated and strong Au-S covalent bonds will form when the thiol group interacts with Au surface. The two Au(111)-(3×3) surfaces (i.e., each layer consisting of nine gold atoms) with periodic boundary conditions have been used to model the left and right electrodes[13,14].The molecule in the central region of systemN is anoriginal dithiolterminated PBTDT-CH=N. The molecules in the central region of systems N1 to N4 are HS-PBTDT-(CH2)CH=N-SH, HS-PBTDT- (CH2)2CH=N-SH, HS-PBTDT-(CH2)3CH=N-SH, and HS-PBTDT-(CH2)4CH=N-SH, respectively, which are the modified HS-PBTDT-CH=N-SH with one to four alkylgroups.

    Fig.1. Schematic view ofthe two-probe Au/S-PBTDT-(CH2)CH=N-S/Au molecular junction (N1); The central molecule HS-PBTDT-(CH2)CH=N-SH replaced by HS-PBTDT-CH=N-SH, HS-PBTDT-(CH2)2CH=N-SH, HS-PBTDT- (CH23CH=N-SH and HS-PBTDT-(CH2)4CH=N-SH is corresponding to N, N2, N3 and N4 molecular junction, respectively. These thiol-ended molecules self-assemble on the Au(111)-(3×3) surface accompanied by the dissociation of hydrogen atoms in the thiol groups, and consist of the two-probe Au/molecule/Au systems with right and left semi-infinite electrode and the scattering region. The black, gray, blue and yellow balls in the central molecule are corresponding to C, H, N and S atoms

    The whole computation is composed of two proce-dures. First, the geometry optimization and elec-tronic structures of the isolated molecules in the central region in Fig.1 are performed using the Gaus-sian03 program[15]at the hybrid DFT/B3LYP[16,17]level of theory with the 6-311G(d,p) basis set. The next procedure is the transport computation after the above geometry optimization. The geometries of the isolated molecules are extracted from the optimized extended molecules and then translated into the central region between the two gold electrodes, as illustrated in Fig.1. The two Au(111)-(3×3) surfaces with periodic boundary conditions are used to model the left and right electrodes. The Au/molecule/Au configuration is divided into three parts: left electrode, right electrode, and central scatting region. In the models, there are three gold layers in each left and right electrode unit cell. The scattering region is composed of the isolated molecule together with the respective three gold layers on the left and right sides. The distance between the Au(111) surface and the terminal S atom is 2.28 ?, which falls in the range from 1.90 to 2.39? used by most studies[18]. The electron-transport properties of the metal/mole-cule/metal systems have been investigated usingsoftware package, Atomistix ToolKit(ATK)[19,20], which is based on density functional theory (DFT) combined with the first-principles non-equilibrium Green’s function(NEGF). In this work, a double-polarization (DZP) basis set is used for all atoms of the molecule except H, and a single-with polari-zation (SZP) basis set is used for Au and H atoms. The exchange-correlation potential is described by the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient approximation (GGA)[21,22]. The convergence criterion is set to 1×10-5Ha for grid integration to obtain accurate results. A-point sampling of 3 × 3 ×100 is used for the metal-electrode models. On a real-space grid, a mesh cutoff energy of the charge density and potentials is set to150 Ha.

    In these molecular junctions, the current-voltage (I-V) characteristics is obtained from the Landauer- Bu?ttiker formula[23]:

    where 22/=0is the quantum unit of conductance,expresses the elementary charge andshows the Planck’s constant.is the Fermi function, andμand μare respectivelyfor the electrochemical potentials of the right and left electrodes:μ(V)=E+eV/2 andμ(V)=EeV/2, whereErepresents the Fermi energy of the electrode, and (μ(V),μ(V)) shows the current integralknown as the energy region or the bias window.(, V) is the transmis- sion function for anincident electron with energyat a bias voltageV.

    3 RESULTS AND DISCUSSION

    3. 1 Electronic structures of theisolated molecules

    The molecular electronic structure can affect the conductance of the molecular transport junction. As suggested by Cohen[24], the density distribution of frontier molecular orbital is intrinsic to the molecule rather than to the junction. It is an impor- tant factor determining the conductance of the molecular transport junction. Therefore, the elec- tronic structures of the isolated molecules have been investigated before the electron-transport calcula- tions are performed. Fig. 2 shows the frontier mole- cular orbital diagrams of the highest occupied mole- cular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO). The orbital density distributions of the HOMO and LUMO for all the molecules are not fully delocalized and exhibit some obvious differences. For HS-PBTDT-CH=N-SH, the HOMO density distributions are nearly fully deloca- lized except one-SH group, because there is no orbital density distribution on it.The HOMO density distributions are similar for the -CH2,-(CH2)2, -(CH2)3and-(CH2)4groups modified HS-PBTDT-CH=N-SH molecule (N1 to N4) and mainly delocalized on the PBTDT part.The LUMO of molecule Nareonly localized strongly on the thieno-phene-CH=N-SH part. The LUMO of molecule N1are localized on the PBTDT-CH2CH part. The LUMO of molecule N2 are localized on the PBTDT-CH2CH2CH=N part. The LUMOs of mole- culesN3 and N4 are localized on the PBTDT- CH2CH2part. The delocalized extent of LUMO for molecule N2 is stronger than both of moleculesN3 and N4.

    Fig. 2. Frontier molecular orbital shapes of thiol-ended PBTDT-CH=N and its derivatives

    3. 2 I-V characteristics and rectification

    The current-voltage (I-V) curves of the five two-probe systems N to N4 are plotted in Fig. 3. It is evident that the I-V curves of molecular systems N to N4are obviously asymmetric at zero bias and show obvious p-n junction characteristics. The current of model N increases slowly at positive bias and beforeabout –1.0 V bias voltage, and grows rapidlyafter about –1.2Vbias voltage.The introducing groups of -CH2,-(CH2)2, -(CH2)3and-(CH2)4into the PBTDT-CH=NHmolecule have obvious effects on the current at –2.0 to +2.0 V bias voltage. The current value of system N1 is smaller than that of system N whether at the positive or negative bias. But it grows rapidlyafter about –0.7 V, which indicates that its forward threshold voltage (–0.7 V) is lower than that of system N (–1.2 V). The currents of molecular junctions N2, N3 and N4 are much weaker than that of system N and decrease with increasing the number of alkyl group in the model molecule. Their trends are similar especially for molecular junction N1 and N3. The currents of modelsN2, N3 and N4are very small at +2.0 V toabout –0.8 V, and growafter about –0.8 Vbias voltage.Therefore, their forward threshold voltages (–0.8 V) are lower than that of system N (–1.2 V). And systems N1 to N4 exhibit obvious negative differential resistance behavior (NDR). Overall, the longer the alkyl chain, the smaller the current. This is consistent with the frontier molecular orbitalof the isolated molecule, because the weaker delocalization of the molecular frontier orbitals is corresponding to the longer alkyl chain.

    Fig. 3. I?V curvesof systems N~N4 in the bias range from –2.0 to +2.0 V. The positive current means that the current flows from the left electrode to the right electrode and vice versa. The inset shows the rectification ratio (R) as a function of applied voltage forsystemsN to N4

    Fig. 4. Transmission spectra (black lines),correspondingPDDOSspectra (redlines)of the N to N4 two-probe systems under zero bias

    3. 2 Transmission spectrum and molecular projected density analysis

    The transmission coefficients of the N~N4 two-probe systemsand the projected device density of states(PDDOS) of the N to N4 central molecules under zero bias have been analyzed and give insights into the states contributing to the conductivity in Fig. 4. The similarity in the peak structures of PDDOS and the transmission spectra indicates that there are clear correspondences between the energy levels on the central molecules and the transmission spectra. There is a broad transmission peak near the Fermi energy in the N system, maybe originating from strong coupling between the gold electrode and the sulfur atom[24], which is in line with the HOMO of thiol-endedPBTDT-CH=N. Unlike the N system, all the bridge-doped systems have sharp peaks near the Fermi level, in line with the front orbitals of the corresponding isolated molecules. At the zero bias, the electrontransmission mainly depends on the size of the transmission coefficient near the Fermi level. The size of transmission peaks decreases as the alkyl chain grows. This means electrons cannot permeate effectively through the alkyl chain. According to the current depending on their transmission peaks and coefficients, the current values of the N1 to N4systems become smaller than that of system N as the applied bias voltage exceeds the forward threshold voltage, in line with the I-V curves, which indicates that bridge-dopingwith alkyl groups reduces the conductivity of thiol-endedPBTDT-CH=N.On the basis of the resonances in the transmission spectra and the states of PDDOS spectra under zero bias, it can be concluded that the HOMO states mainly contribute to the current of the systems.

    In Fig. 3, it is evident that the I-V curves of mole- cular systems Nto N4 are obviously asymmetric at about zero bias.In order to reveal the features of the asymmetry in detail, the rectification ratios of systems Nto N4have been analyzed. The rectifica- tion ratio is defined as

    By definition,() = 1 means that there is no rectification.() > 1 means that the current is larger in the negative direction than in the positive direction, and vice versa.

    According to asymmetric I-V curves,models N to N4 have obvious rectification effects. Their recti- fication values are up to 9.6, 125, 575, 878 and 529 respectively, as shown in the inset in Fig. 3. It comes out into that the modified alkyl groups have many effects on the thiol-endedPBTDT-CH=N rectifica- tion.

    The rectifying for the molecular systems is interpreted by analyzing the transmission spectra. The current through a molecule system is determined by the transmission spectra within the bias window (L(b),R(V)). The region of the bias window is actually (–V/2, +V/2) if the Fermi level is set to zero. Theoretically, the transmission is determined by the molecular electronic structure modified by the applied bias and the coupling between molecule and electrode,. Fig. 5 illustrates the transmission spectra of the two-probe systems N~N4 in the energy range from –2 to +2 eV at their bias voltages of the highest rectification ratios.

    Fig. 5. Transmission spectra of two-probe systems N to N4 at special bias of each highestrectification ratio. Red, blue and green dashed lines indicate positive bias voltage,negative bias voltage and bias windows at each bias voltage, respectively

    It is noted that transmission spectra of systems N~N4 exhibit a very large difference at positive and negative bias voltages. The transmission resonance peaks within each bias window of systems N~N4at negative biasare much higher than those at the positive bias, except N system. In system N,the transmission peak partly enters the bias window when the negative bias voltage is applied. Applied by the positive bias voltage, there are three peaks within the bias window. From the diagram of N in Fig. 5, the transmission coefficient under –2.0 V is 20 times that at +2.0 V, so the integral area of transmission peak at –2.0 V is about 10 times larger than that at +2.0 V. The negative current is about 10 times that of the forward current at 2.0 V bias because the current is determined by the integral area of the transmission peak of the bias window and the transmission coefficient. In system N1,one broad transmission peak partly goes into the bias window when the positive bias voltage is applied. Applied by the negative bias voltage, there is a narrow peak in the bias window. From the diagram of N1 in Fig. 5, because the transmission coefficient at –0.98 V is 500 times that at +0.98 V, the integral area of transmission peak at –0.98 V is over 100 times larger than that at +0.98 V. Then the negative current is over 100 times that of the forward current, which is in line with the RR of N1 at 0.98 V bias. In system N2, there are one narrow peak and one broad peak in the bias window corresponding to –1.28 and +1.28 V; In systems N3 and N4, there are one complete peak and one half peak in the bias window under the negative bias; There is a little transmission wave within the bias window at +1.47 V in system N3. However, one broad wave completely enters the bias window at +1.6 V in system N4. Without considering transmission coefficient, the integral area is the largest both at –1.6 and +1.6 V in system N4, and the integral area in system N2 is smaller than that in system N3 under negative bias, and the integral area in system N2 is slightly larger than that in system N3 under positive bias. For N2 to N4 systems, their transmission coefficients under negative bias voltage are 1000 times those under positive bias voltage, it can be concluded that the rectifier ratio in N3 system is the largest among the three systems by rough estimates of the integral areas under positive and negative bias.

    4 CONCLUSION

    The introducing alkyl groups into the thiol-ended PBTDT-CH=N molecule hassignificantly obvious effects on the current at –2.0 to +2.0V bias voltage. The maximum currents of molecular junctions N2, N3 and N4 are much lower than that of system N. Systems N1~N4 exhibit obvious negative dif- ferential resistance behavior (NDR).The electronic structures of the isolated molecules have been investigated before the electron-transport calcula- tions are performed.Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducingalkyl chain. According to the transmission coefficient ratio of positive and negative voltages, it can be concluded that the maxi- mum rectifying ratios of systems N2~N4 are stronger than those of systems N and N1. The Nmolecular junction exhibits the weakest rectifying effect, and its maximum rectifying ratiois 9.6. The N3 molecular junctionexhibits the best rectifying effect. Its maximum rectifying ratiois 878, which is 80 times more than that of the molecular junction based on the original thiol-endedPBTDT-CH=N.On the basis of the resonances in the transmission spectra and the states of the PDDOS spectra under zero bias, it can be concluded that the HOMO states mainly contribute to the current of the systems.

    (1) Metzger, R. M.Unimolecular electrical rectifiers.2003,103, 3803–3834.

    (2) Shankara Gayathri, S.; Patnaik, A. Electrical rectification from a fullerene[60]-dyad based metal-organic-metal Junction.2006, 1977–1979.

    (3) Kubatkin, S.; Danilov, A.; Hjort, M.; Cornil, J.; Brédas, J. L.; Stuhr-Hansen, N.; Hedeg?rd, P.; Bjórnholm, T. Single-electron transistor of a single organic molecule with access to several redox states.2003, 425, 698–701.

    (4) Yu, L. H.; Natelson, D. The Kondo effect in C60 single-molecule transistors.2004, 4, 79–83.

    (5) Parashar,S.; Srivastavaa, P.; Pattanaik,M.; Jain, S. K. Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance.2014,87, 220–10.

    (6) Yuan, S.D.; Wang, S.Y.; Mei, Q.B. Theoretical studies of electron transport in thiophene dimer:effects of substituent group and heteroatom.2011, 115, 9033–9042.

    (7) Coben, R.; Stokbro, K.; Martin, J. M. L.; Ratner, M. A. Charge transport in conjugated aromatic molecular junctions: molecular conjugation and molecule-electrode coupling.2007, 111, 14893–14902.

    (8) Yang, E.; Lin, X.; Lin, Z.; Ling, Q. The first principle study on C-doped armchair boron nitride nanoribbon rectifier.2016, 35, 1483–1490.

    (9) Zhang, R.; Yang, E.; Li, Y.; Lin, L.; Ling, Q. First principle study on the rectificationof molecular junctions based onthe thiol-ended oligosilane..2015, 34813–821.

    (10) Singh, M. K.; Kumar, A.; Prakash, R. Self-assembly of regioregular poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene], pBTTT-C14 in solvent-mixture and study ofits junction behaviour.2017, 50,138–146.

    (11) Koyanagi, Y.; Kawaguchi,S.; Fujii, K.; Kimura,Y.; Sasamori, T.; Tokitoh, N.; Matano, Y. Effects of counter anions, P-substituents, andsolvents on optical and photophysical propertiesof 2-phenylbenzo[b]phospholium salts..2017, 46, 9517–9527.

    (12) Dadashi-Silab, S.; Pan, X.; Matyjaszewski, K. Phenyl benzo[b]phenothiazine as a visible light photoredox catalyst for metal-free atom transfer radical polymerization.2017, 23, 5972–5977.

    (13) Yuan, S.; Wang, S.; Mei, Q.; Ling, Q.; Wang, L.; Huang, W. First-principles study of rectification in bis-2-(5-ethynylthienyl) ethyne molecular junctions.2011, 115, 9033–9042.

    (14) George, C. B.; Ratner, M. A.; Lambert, J. B. Strong conductance variation in conformationally constrained oligosilane tunnel junctions.2009, 1133876–3880.

    (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;Hratchian,H.P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford CT.2004.

    (16) Becke, A. D. A new mixing of hartree-fock and local density functional theories.1993, 98, 1372–1377.

    (17) Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density.Phys. Rev. B1988, 37, 785–789.

    (18) Yin, X.; Li, Y.W.; Zhang, Y.; Li, P.; Zhao, J.W. Theoretical analysis of geometry-correlated conductivity of molecular wire.2006, 422, 111–116.

    (19) Brandbyge, M.; Mozos, J.; Ordejon, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport.2002, 65, 165401–17.

    (20)Trial Version13.8.0. QuantumWise A/S 2013 (www.quantumwise.com).

    (21) Hu, Y. B.; Zhu, Y.; Gao, H. J.; Guo, H.Conductance of an ensemble of molecular wires: a statistical analysis.2005, 95, 156803–4.

    (22) Soler, J.M.; Artacho, E.; Gale, J.D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez Portal, D.The SIESTA method fororder-N materials simulation.2002, 14, 2745–2779.

    (23) Bu?ttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings.1985, 31, 6207–6215.

    (24) Coben, R.; Stokbro, K.; Martin, J. M. L.; Ratner, M. A. Charge transport in conjugated aromatic molecular junctions: molecular conjugation and molecule-electrode coupling.2007, 111, 14893–14902.

    1 February 2018;

    8 May 2018

    ①This work was supported by the National Natural Science Foundation of China (21401023)

    . Yang E. E-mail: yangeli66@fjnu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1973

    久久久国产一区二区| 亚洲av电影在线观看一区二区三区 | 国产伦在线观看视频一区| 国产亚洲一区二区精品| 国产av国产精品国产| 嫩草影院精品99| 菩萨蛮人人尽说江南好唐韦庄| 91aial.com中文字幕在线观看| 久久国产乱子免费精品| 婷婷色综合大香蕉| 身体一侧抽搐| 99久久中文字幕三级久久日本| 亚洲成人中文字幕在线播放| 一区二区av电影网| 97人妻精品一区二区三区麻豆| 少妇人妻 视频| 日本午夜av视频| 我的女老师完整版在线观看| 欧美精品国产亚洲| 亚洲av欧美aⅴ国产| 久久精品久久久久久噜噜老黄| av网站免费在线观看视频| 亚洲精品日韩在线中文字幕| 亚洲精品成人久久久久久| av国产免费在线观看| 欧美精品国产亚洲| 亚洲高清免费不卡视频| 精品久久久精品久久久| 久久久久性生活片| 新久久久久国产一级毛片| 人人妻人人看人人澡| 高清午夜精品一区二区三区| 欧美日韩在线观看h| eeuss影院久久| 亚洲精品国产色婷婷电影| 欧美一区二区亚洲| 久久影院123| 最后的刺客免费高清国语| 人妻系列 视频| 精品久久久噜噜| 夫妻性生交免费视频一级片| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| 日韩电影二区| 高清午夜精品一区二区三区| 亚洲成人精品中文字幕电影| 国产色婷婷99| 80岁老熟妇乱子伦牲交| 精品酒店卫生间| 2022亚洲国产成人精品| 国产精品久久久久久精品电影| 高清日韩中文字幕在线| 91在线精品国自产拍蜜月| 在线观看三级黄色| 成人黄色视频免费在线看| 国产黄色免费在线视频| 国产黄频视频在线观看| 国产精品无大码| 日韩中字成人| 爱豆传媒免费全集在线观看| 夫妻午夜视频| av国产精品久久久久影院| 久久久久九九精品影院| 亚洲精品第二区| 亚洲国产成人一精品久久久| 免费少妇av软件| 国产成人一区二区在线| 在线a可以看的网站| 精品人妻偷拍中文字幕| 国产成人91sexporn| 激情五月婷婷亚洲| 午夜福利视频精品| 国产老妇伦熟女老妇高清| 国产亚洲av片在线观看秒播厂| 成年版毛片免费区| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 伊人久久国产一区二区| 日韩欧美 国产精品| 一级片'在线观看视频| 国产淫片久久久久久久久| 联通29元200g的流量卡| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 久久精品夜色国产| 亚洲国产日韩一区二区| 高清日韩中文字幕在线| 黄色视频在线播放观看不卡| 精品少妇黑人巨大在线播放| 欧美bdsm另类| 欧美日韩国产mv在线观看视频 | 色网站视频免费| 美女国产视频在线观看| 下体分泌物呈黄色| 久久久久久久久久成人| 亚洲综合色惰| 男人和女人高潮做爰伦理| 亚洲三级黄色毛片| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| av在线app专区| 三级男女做爰猛烈吃奶摸视频| 日日撸夜夜添| 97精品久久久久久久久久精品| 看黄色毛片网站| 蜜臀久久99精品久久宅男| 青青草视频在线视频观看| 美女视频免费永久观看网站| 日本免费在线观看一区| 久久ye,这里只有精品| 亚洲成人一二三区av| 人妻制服诱惑在线中文字幕| 久久久久久伊人网av| 久久久久九九精品影院| 欧美日本视频| 精品久久久久久电影网| 99久国产av精品国产电影| 亚洲丝袜综合中文字幕| 成人黄色视频免费在线看| 国产精品久久久久久av不卡| 精品视频人人做人人爽| 黄片wwwwww| 国模一区二区三区四区视频| 国产午夜精品一二区理论片| 黄片无遮挡物在线观看| 国产在视频线精品| 尾随美女入室| 日韩大片免费观看网站| 久久99热6这里只有精品| 日本熟妇午夜| 成人国产av品久久久| 1000部很黄的大片| 日本av手机在线免费观看| 亚洲久久久久久中文字幕| 亚洲成人av在线免费| 又粗又硬又长又爽又黄的视频| 午夜激情福利司机影院| 天天一区二区日本电影三级| 啦啦啦在线观看免费高清www| 最近2019中文字幕mv第一页| 白带黄色成豆腐渣| 最近最新中文字幕免费大全7| 在线 av 中文字幕| 精品少妇黑人巨大在线播放| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 天堂中文最新版在线下载 | 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 日韩强制内射视频| 在线亚洲精品国产二区图片欧美 | 麻豆乱淫一区二区| .国产精品久久| 欧美精品国产亚洲| 女的被弄到高潮叫床怎么办| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 国产v大片淫在线免费观看| 三级男女做爰猛烈吃奶摸视频| 日韩av免费高清视频| 国产精品国产三级国产专区5o| 色综合色国产| 日韩av免费高清视频| 99re6热这里在线精品视频| eeuss影院久久| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| 国产黄频视频在线观看| 日本一二三区视频观看| 精品少妇黑人巨大在线播放| 亚洲内射少妇av| 美女高潮的动态| av福利片在线观看| 18禁在线播放成人免费| 国产成人a区在线观看| 国产高潮美女av| 一级二级三级毛片免费看| 久久精品国产亚洲av天美| 黄色日韩在线| 永久网站在线| 亚洲精品国产av蜜桃| videos熟女内射| 波多野结衣巨乳人妻| 白带黄色成豆腐渣| 亚洲精品aⅴ在线观看| 中文欧美无线码| 777米奇影视久久| 午夜福利视频精品| 亚洲精品国产av蜜桃| 国产精品99久久久久久久久| 22中文网久久字幕| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 国产91av在线免费观看| 亚洲欧美日韩东京热| 欧美亚洲 丝袜 人妻 在线| 九色成人免费人妻av| 久久久久九九精品影院| 又爽又黄a免费视频| 99久久九九国产精品国产免费| 亚洲欧美精品专区久久| 久久午夜福利片| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 免费av观看视频| 九九久久精品国产亚洲av麻豆| 水蜜桃什么品种好| 99视频精品全部免费 在线| 男女国产视频网站| 欧美成人午夜免费资源| 只有这里有精品99| 人妻少妇偷人精品九色| 99视频精品全部免费 在线| 听说在线观看完整版免费高清| 精品人妻一区二区三区麻豆| 亚洲成人中文字幕在线播放| 亚洲精品成人av观看孕妇| av福利片在线观看| 一区二区三区四区激情视频| 午夜免费观看性视频| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| 伦精品一区二区三区| 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 国产精品成人在线| 久久久久精品性色| 亚洲经典国产精华液单| 综合色丁香网| 另类亚洲欧美激情| 亚洲自偷自拍三级| 午夜精品国产一区二区电影 | 日韩强制内射视频| 一级毛片aaaaaa免费看小| 99热国产这里只有精品6| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 国产成人免费无遮挡视频| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 人妻系列 视频| av.在线天堂| 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大话2 男鬼变身卡| 日韩欧美精品免费久久| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| 97人妻精品一区二区三区麻豆| 简卡轻食公司| 亚洲av日韩在线播放| 丝袜美腿在线中文| 十八禁网站网址无遮挡 | 亚洲精品乱久久久久久| 亚洲不卡免费看| 插逼视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 久久久久久久久久人人人人人人| 一级片'在线观看视频| 久久精品国产亚洲av天美| 一区二区三区精品91| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 久久久精品94久久精品| 国产淫语在线视频| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 91aial.com中文字幕在线观看| 在线免费十八禁| 三级男女做爰猛烈吃奶摸视频| 校园人妻丝袜中文字幕| 欧美+日韩+精品| 一级a做视频免费观看| 精品人妻一区二区三区麻豆| 最新中文字幕久久久久| 亚洲国产成人一精品久久久| 日本色播在线视频| 国产精品久久久久久精品古装| 亚洲第一区二区三区不卡| 亚洲aⅴ乱码一区二区在线播放| 国产成人午夜福利电影在线观看| 久久久精品94久久精品| 久热这里只有精品99| 一级毛片 在线播放| 亚洲av不卡在线观看| freevideosex欧美| 少妇熟女欧美另类| 亚洲av日韩在线播放| 能在线免费看毛片的网站| 国产一区二区三区综合在线观看 | 亚洲成人一二三区av| 日韩一本色道免费dvd| 亚洲精品国产av成人精品| 亚洲色图av天堂| 天美传媒精品一区二区| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 少妇的逼水好多| 久久人人爽人人爽人人片va| 欧美97在线视频| 久久久久久久久大av| 18禁动态无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| av.在线天堂| videossex国产| 看免费成人av毛片| 久久99热这里只频精品6学生| 免费av观看视频| 国产亚洲午夜精品一区二区久久 | 偷拍熟女少妇极品色| 欧美变态另类bdsm刘玥| 久久久国产一区二区| 国产一区有黄有色的免费视频| www.色视频.com| 欧美高清性xxxxhd video| 日本色播在线视频| 国产精品蜜桃在线观看| 亚洲精品成人久久久久久| 日本黄色片子视频| 黄片无遮挡物在线观看| 免费看日本二区| 久久99精品国语久久久| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 老司机影院成人| 人体艺术视频欧美日本| 禁无遮挡网站| 天堂中文最新版在线下载 | 国产毛片a区久久久久| 精品少妇久久久久久888优播| 人妻一区二区av| 青春草亚洲视频在线观看| 亚洲av中文字字幕乱码综合| 国国产精品蜜臀av免费| 免费av观看视频| 丰满乱子伦码专区| 国产精品人妻久久久久久| 亚洲国产欧美人成| 男女无遮挡免费网站观看| 亚洲精品色激情综合| videos熟女内射| www.色视频.com| 亚洲精品一区蜜桃| 一级毛片 在线播放| 新久久久久国产一级毛片| 国产精品久久久久久精品电影| 直男gayav资源| 久久99热这里只有精品18| 九九爱精品视频在线观看| 久久精品久久久久久噜噜老黄| 免费在线观看成人毛片| 黄片无遮挡物在线观看| 晚上一个人看的免费电影| 精品人妻视频免费看| 久久精品久久久久久久性| av播播在线观看一区| 麻豆精品久久久久久蜜桃| 日日啪夜夜撸| 欧美3d第一页| 日韩中字成人| 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 国产淫语在线视频| 日韩强制内射视频| 特级一级黄色大片| 午夜亚洲福利在线播放| 国产成人精品福利久久| 好男人视频免费观看在线| 老司机影院毛片| 丰满少妇做爰视频| 身体一侧抽搐| 少妇人妻精品综合一区二区| 日本与韩国留学比较| 国产精品一二三区在线看| 街头女战士在线观看网站| 国产精品久久久久久精品古装| 97人妻精品一区二区三区麻豆| 18禁动态无遮挡网站| 日韩精品有码人妻一区| 99久久人妻综合| 久久久成人免费电影| 亚洲精品一区蜜桃| 777米奇影视久久| 联通29元200g的流量卡| 激情 狠狠 欧美| 久久久久久久久久成人| 在线观看免费高清a一片| av天堂中文字幕网| 高清欧美精品videossex| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区| 国产 一区精品| 久久久久久久国产电影| 美女国产视频在线观看| 国产探花在线观看一区二区| 亚洲精品国产色婷婷电影| av在线亚洲专区| 久久人人爽av亚洲精品天堂 | 美女主播在线视频| 日日啪夜夜爽| 国产av不卡久久| 日韩一区二区视频免费看| 久久ye,这里只有精品| 国产伦在线观看视频一区| 免费观看性生交大片5| 看十八女毛片水多多多| 国产亚洲精品久久久com| 纵有疾风起免费观看全集完整版| 一级黄片播放器| 黄片无遮挡物在线观看| 亚洲不卡免费看| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 免费大片18禁| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 在线看a的网站| 少妇 在线观看| 国产精品无大码| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 欧美97在线视频| 国产视频首页在线观看| 伊人久久精品亚洲午夜| 国产免费一区二区三区四区乱码| 国内精品美女久久久久久| 国产成人aa在线观看| 一区二区三区精品91| 中文字幕制服av| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 午夜亚洲福利在线播放| 欧美区成人在线视频| 好男人在线观看高清免费视频| 天天躁夜夜躁狠狠久久av| 啦啦啦啦在线视频资源| 久久久成人免费电影| 日韩视频在线欧美| 欧美性猛交╳xxx乱大交人| 久久鲁丝午夜福利片| 六月丁香七月| 在线看a的网站| 99热全是精品| 搡女人真爽免费视频火全软件| av在线老鸭窝| 一级毛片电影观看| 大香蕉久久网| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 免费看av在线观看网站| 国内精品美女久久久久久| 五月天丁香电影| av在线观看视频网站免费| 女的被弄到高潮叫床怎么办| 国产一区亚洲一区在线观看| 亚洲精品一二三| 亚洲欧美日韩卡通动漫| 欧美三级亚洲精品| 麻豆精品久久久久久蜜桃| 日韩精品有码人妻一区| 国产探花在线观看一区二区| 午夜免费鲁丝| 插逼视频在线观看| 色婷婷久久久亚洲欧美| 国产老妇女一区| 美女内射精品一级片tv| 欧美激情久久久久久爽电影| 久久久久久久精品精品| 亚洲成人av在线免费| 午夜爱爱视频在线播放| 日本午夜av视频| 国产色爽女视频免费观看| 精品一区在线观看国产| 久久久久久久久久久免费av| 久久久久精品性色| 精华霜和精华液先用哪个| 国产 一区 欧美 日韩| 精品一区在线观看国产| 亚洲经典国产精华液单| 乱系列少妇在线播放| 少妇人妻一区二区三区视频| 最近最新中文字幕大全电影3| 精品一区在线观看国产| 白带黄色成豆腐渣| 简卡轻食公司| 婷婷色综合大香蕉| 欧美一级a爱片免费观看看| 深爱激情五月婷婷| 国产高清不卡午夜福利| 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 夜夜爽夜夜爽视频| 日本av手机在线免费观看| 你懂的网址亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 少妇被粗大猛烈的视频| 免费人成在线观看视频色| 久久久久久久精品精品| 亚洲欧美精品自产自拍| 一级av片app| 日韩大片免费观看网站| 尾随美女入室| 久久久久九九精品影院| 国产精品偷伦视频观看了| 中文字幕人妻熟人妻熟丝袜美| 精品一区在线观看国产| 欧美最新免费一区二区三区| 久久久久国产精品人妻一区二区| 国产伦精品一区二区三区视频9| 男女无遮挡免费网站观看| 久久精品久久精品一区二区三区| 国内精品美女久久久久久| 成人二区视频| 亚州av有码| 欧美人与善性xxx| 久久久久九九精品影院| 2021天堂中文幕一二区在线观| 高清在线视频一区二区三区| 国产亚洲最大av| av福利片在线观看| 韩国av在线不卡| 久久久久久伊人网av| 亚洲欧美成人精品一区二区| 亚洲国产最新在线播放| 一区二区三区精品91| 观看免费一级毛片| 久久人人爽av亚洲精品天堂 | 777米奇影视久久| 日韩国内少妇激情av| 色婷婷久久久亚洲欧美| 少妇被粗大猛烈的视频| av专区在线播放| 国产成人免费无遮挡视频| 国内少妇人妻偷人精品xxx网站| 国产成年人精品一区二区| 亚洲,欧美,日韩| 日本欧美国产在线视频| 亚洲精品,欧美精品| 直男gayav资源| 搡老乐熟女国产| 国产老妇女一区| 色视频www国产| 亚洲精品乱久久久久久| 不卡视频在线观看欧美| av女优亚洲男人天堂| 日韩伦理黄色片| 午夜视频国产福利| videossex国产| 国产亚洲5aaaaa淫片| 国产 一区 欧美 日韩| 午夜亚洲福利在线播放| 日韩欧美 国产精品| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 九九在线视频观看精品| 美女高潮的动态| 777米奇影视久久| 少妇高潮的动态图| 亚洲精品成人av观看孕妇| 免费播放大片免费观看视频在线观看| 小蜜桃在线观看免费完整版高清| 18禁裸乳无遮挡免费网站照片| 欧美日韩在线观看h| 大又大粗又爽又黄少妇毛片口| 日日摸夜夜添夜夜爱| 亚洲精品亚洲一区二区| 老师上课跳d突然被开到最大视频| 欧美性感艳星| 两个人的视频大全免费| 99热这里只有精品一区| 成人特级av手机在线观看| 精品国产露脸久久av麻豆| 国产精品伦人一区二区| 亚洲欧洲日产国产| 99精国产麻豆久久婷婷| 嘟嘟电影网在线观看| 麻豆国产97在线/欧美| 在线a可以看的网站| 免费看av在线观看网站| 国产黄a三级三级三级人| 老司机影院毛片| 超碰97精品在线观看| 久久久国产一区二区| 免费av不卡在线播放| 国产69精品久久久久777片| 精品午夜福利在线看| 大香蕉久久网| 麻豆精品久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 少妇熟女欧美另类| 精品午夜福利在线看| 亚洲av二区三区四区| 国产精品一二三区在线看| 久久人人爽人人爽人人片va| 波野结衣二区三区在线| 免费看av在线观看网站| 亚洲国产欧美人成| 日本免费在线观看一区| 亚洲精品国产av蜜桃| 久久影院123| 国产女主播在线喷水免费视频网站| 久久精品国产亚洲av天美| 国产亚洲最大av| 免费av不卡在线播放| 久久久久国产精品人妻一区二区|