• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigation of EDFA transient effects in variable duty cycle pulsed signals

    2019-07-16 11:58:14MeenSrthFredyFrnisDipinSrinivs
    Defence Technology 2019年3期

    D. Meen , K.T. Srth , Fredy Frnis , E. Dipin , T. Srinivs

    a Electronics and Radar Development Establishment (LRDE), DRDO, Bangalore, Karnataka, 560093, India

    b Model Engineering College, Thrikkakara, Cochin, Kerala, 682021, India

    c Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India

    Keywords:EDFA Transients WDM Variable duty cycle Suppression

    A B S T R A C T We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles.The work includes the analysis using three different duty-cycles,10%,20%and 50%.A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals.We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.

    1. Introduction

    WDM systems have enabled the transmission of multiple data streams, each modulating a separate optical carrier, along a single optical link. The broad gain spectrum of Erbium Doped Fiber Amplifier (EDFA) is particularly useful in amplifying the WDM signal. Advancements in microwave photonics technology have enabled the efficient transmission of high frequency RF signals through optical links. This have opened up a wide array of novel applications in phased array radar, microwave photonic etc. As Phased array radars require distribution of various signals to more than thousand transmit/receive modules, sufficient signals levels must be ensured before splitting,which can be easily accounted for by using optical amplifiers, EDFA is being the most common used.Additionally, they require the simultaneous transmission of low bitrate variable duty-cycle pulses for control and synchronisation between the elements.The synchronised operation of all Transmit/Receive modules is of greater importance during the operation of a radar system.These low bitrate duty cycle pulses when transmitted through an EDFA, give rise to transients along with distortion [1].This leads to misinterpretation of data at the receiver side. In the case of cascaded EDFA configurations, the transients can accumulate over length and can worsen the scenario. As synchronisation signals used in radars are critical in nature, it is very important to suppress these transients and restore faithful distribution of signals. The objective of this study is to analyze the effect of EDFA transients observed during the amplification of variable duty-cycle signals and propose methods to mitigate these effects.

    Transients are the result of slow gain characteristics of EDFA,which induces saturation and recovery effects to low bit rate signals.This is because,the input signal drains the population off the upper level during its ON time and EDFA takes times to replenish the population by pumping. The gain saturation and recovery effects lead to transients and distortion of amplified output. But as the on-time of high bit rate pules are rather short, the change in population inversion and hence gain are rather small. This work reports the simulation and experimental results for EDFA transient effects with different duty-cycle pulsed signals. A transient suppression technique using a complementary signal is also introduced.

    Low bit rate pulse causes input signal saturation, which effectively decreases the population inversion by stimulating ions to lower level in large numbers, hence causing the gain to decrease(saturation phase).After the input pulse is removed,the population inversion and hence gain, returns to the initial state (recovery phase).This effect,known as saturation induced gain modulation,is a main source of cross talk in EDFA. The effect was studied and numerically analyzed [2]. Gain saturation and recovery times are discussed with different bit rates and pump levels. It was also proved that the recovery times were reduced with higher pump power.As the saturation and recovery times are rather long,higher bit rate systems are practically unaffected by transient effect. A numerical model of transient response of an EDFA pumped at 1.48 μm, while also considering the gain-saturation effects due to Amplified Spontaneous Emission (ASE) is discussed [3]. Also the paper considered variation in gain with EDFA length. It was again proved that the gain saturation and recovery effects have long time periods of ~2 ms and is dependent on pump power.Pulse distortion due to the recovery time effects are also studied.Additionally,EDFA gain variation for different pulse repetition rate, with high input power and relatively low pump powers, is simulated and 3-dB point of gain saturation was found to be at 20 kHz. EDFA pulse transients for very short, high power, pulses (100ns) have been studied [4], which is expected to be useful for optical memory devices.Pump power(CW,980 nm)dependence of gain saturation for a high power 100ns pulse input pulse is discussed.Pump power dependency of small signal gain and saturation power is also discussed. A pump probe technique is introduced to measure the population recovery in CW pumped EDFA [5]. A double exponent recovery profile was obtained in both their test cases.The change in population inversion caused by the pump signal is probed by the probe signal. A pump-probe technique to obtain the temporal evolution of population inversion in a CW pumped EDFA system is discussed [6]. Temporal profiles for amplified pulses are obtained for different pump and signal power levels. Pump power control can also be used to control the transients [7,8]. Pulse distortion caused by transient effects in a cascaded EDFA configuration is analyzed by altering different parameters like number of cascaded EDFA,peak power and extinction ratio of input pulse[9].In phased array radar applications, low bitrate digital signals are used as reference signals and these signals when transmitted over fiber optic links will have transient effects with respect to dutycycle variations [10]. Control system techniques can be used to control the transients [11,12]. Also, transients create problems in Optical Burst Switching (OBS) networks due to the abrupt power changes in EDFA input power.A feed-forward method to suppress the EDFA transients is discussed [13].

    Thus to best of our knowledge, the single shot properties of EDFAs for varied pulse width have not been actively studied.So this work focuses on transient effects of EDFA caused by signals with different duty-cycle and bitrates. Additionally, EDFA transient effects on WDM links are also discussed. We also propose two different Feed forward transient suppressing methods.

    2. Experimental set up

    Schematic of experimental set up used for single wavelength pulsed signal analysis is shown in Fig.1. Except EDFA, the setup is made from components (shaded) available as part of commercial WDM test unit. A 1530 nm laser diode (1 mw) is modulated by a variable duty-cycle digital signal of 2 kHz. The laser output is amplified using an EDFA operating in the saturation region with a pump power of 70 mW (980 nm). The output is then fed to photodetector of WDM unit and electrical signal is observed using Digital Phosphor Oscilloscope (DPO).

    To evaluate dependency of transient effects on duty cycle, we used signals of 3 different duty-cycles 10%, 20% and 50%. The measured recovery time(a few hundred microseconds)was found to vary with pump power and input signal frequency. But the dependency of EDFA transients on duty-cycle and bit rate variations alone is considered within the scope of this paper.

    A typical transient obtained for a signal of 2 kHz pulse signal is shown in Fig. 2. The spikes at the output signal (yellow, below)caused due to transients are clearly visible. For analysis of EDFA transients with WDM configuration, the schematic as shown in Fig.3 was setup.Pulse signals of frequency 10 kHz and 2.4 MHz are used to modulate the laser sources. A high bitrate(2.4 MHz) pulse signal modulates l510 nm laser source and another a low bitrate(10 kHz) signal modulates a laser source at 1530 nm. An Array Waveguide (AWG) based multiplexer is used for multiplexing of signals. Further this multiplexed output is passed through a 3 dB coupler,where one of the outputs is fed to a photo detector(PD)as reference channel and the other is fed to EDFA.After amplification the signal is fed to another PD for observation.Both PD outputs are analyzed with Tektronix DPO70404B.

    Fig.1. Block schematic of experimental setup for transient measurement (with single wavelength source).

    3. Results and discussions

    EDFA transient effects in variable duty-cycle(10%,20%and 50%)pulsed signals are analyzed using setup shown in Fig.1.Initially,the transient effects were simulated in a standard simulation environment (OptiSystem). The transients obtained with 10%, 20% and 50% pulsed signals are shown in Fig. 4.

    Time dependent population inversion ΔN21(t)is obtained[5]as

    where α is the normalized pump power,expressed as Pp/Pth;where Ppand Pthare the pump power and the pump threshold respectively;β is the normalized signal power,expressed as Ps/Psat,where Psand Psatare the signal power and the signal saturation power respectively;τ21is the spontaneous emission lifetime from level 2 to 1.

    Also,the dependence of ΔN21(t)on input and output intensities is [5],where Ioutand Iinare input and output intensities respectively. As per equation (2) the power relation can be derived as,

    From (1), (2) and (3), Poutcan be expressed as

    Fig. 2. Transient effect observed at EDFA output (blue) due to a signal input of 2 kHz (yellow). The pulse width is 350μs. The reading values 200 μs per division horizontal and 500 mV per division vertical.

    Fig. 3. Block schematic of experimental setup for WDM link transient measurement(with low and high bitrate signals).

    Fig. 4. Transients variations for 50% (Green), 20% (Red) and 10% (black) single wavelength input.

    where K1and K2are constants. So, it can be seen that Poutis following an exponential curve proportional to exp(exp(-K2t)).The results obtained in Fig. 4 was further curve fitted using an exponential function of degree 2. The fitted curve was found to have a very low RMSE (Root Mean Square Error) of order 10-3, proving simulation results to be exponential and hence correlating well with equation (3) and (4). The simulated transient curves (Black)and fitted curve (blue) for 50% duty-cycle pulse signal is given as shown in Fig. 5.

    It was further observed that the transient curves of 20%and 10%duty-cycle overlap with that of 50% up to their corresponding ON time. This means that transient response for any lower duty-cycle can be predicted from that of higher duty-cycle output signal.This shows that the curve fitted equation of 50% signal can in general be used for finding transients of any lesser pulse widths.Table 1 gives a comparison of output signal obtained from actually fitted curves of 10% (Fig. 6) and 20% (Fig. 7) signals along with corresponding values deduced from curvefit equation of 50%dutycycle signal transient.

    It can be observed that the error between predicted and individual curve fits values are of the order of 10-4.

    Another analysis is performed to validate the simulation results against experimental results by plotting the duty cycle vs decay rate as shown in Fig.8.It can be observed that decay rate decreases with experimental results also as in the case of modeling results.

    4. Transient suppression technique

    As transient effects negatively impact the pulse shape at the output of the link, it can lead to misinterpretation of data. Also, in cascaded EDFA applications, the transients can accumulate over length and can cause problems at detector. The objective of transient suppression technique is to enable the faithful detection of the input signal at the output. The proposed methods intent to do this by trying to avoid signal distortion at EDFA stages by keeping the net input through EDFA constant all the time. To accomplish this, an additional signal having a complementary shape is also multiplexed in to the link at a different wavelength which ensures the EDFA input power remains constant.But the previous work[9]mentions about a single pulse of duty-cycle of the order 10-4only.Fig. 9 shows the block schematics of the setup which can be used for suppression of transient associated with variable duty cycle signals.

    Fig. 5. Transient effect with 50% duty-cycle signal (blue) and corresponding fitted curve (black).

    Table 1Comparison of individual curvefit amplitude (10%and 20% signal) with predicted values obtained from 50% signal curvefit.

    Fig. 6. Transient effect with 10% duty-cycle signal (blue) and corresponding fitted curve (black).

    Fig. 7. Transient effect with at 20% duty-cycle (blue) and corresponding fitted curve(black).

    Fig. 8. Comparison of Experimental and modeling results - Decay rate vs Duty cycle.

    The effects of compensation on signals with different dutycycles are shown in Fig.10. It can be observed that the transients settle down rather quickly after the first pulse with the presence of complementary pulse. This might affect the amplitude of the output signal, but as digital pulses are relatively insensitive to signal to noise ratio,it can easily be regenerated and amplified.The effect of complementary signal will be prominent from the negative edge of first transmitted pulse.

    Fig. 9. Block schematic of the setup for EDFA transient suppression using complementary signal.

    Fig.10. Transient suppression by complementary pulse for different duty-cycles.

    Fig.11 shows the block schematic that can be used for transient suppression of 50% duty cycle signal. The delay introduced should be equivalent to the ON/OFF time of transmitted signal. The experimental result obtained for compensation using optical delay line is shown in Fig.12.

    We also found that the wavelength of compensation signal affects the actual transient suppression process. The closer the compensation wavelength (to the signal wavelength), the better the compensation will be. This is clearly visible in Fig. 13, where compensation pulse at 1570.8 nm (black) was found to be more effective than those at 1575 nm(red)and 1590 nm(Green).In this case the signal wavelength was at 1570 nm.

    We also analyzed transient effect with WDM signals. Additionally,as a part of experimental verification of the simulation results,a WDM configuration as in Fig.3 was setup.In this case,two laser sources of wavelengths 1510 nm and 1530 nm signals are used.Laser Source of wavelength 1510 nm is modulated by a high frequency signal of 2.4 MHz and source with 1530 nm is modulated by a low frequency signal of 10 kHz respectively. Snapshot of setup is shown in Fig.14.

    Fig.11. Block schematic of the setup for EDFA transient suppression using optical delay line.ODL-Optical Delay Line,VOA-Variable Optical Attenuator,DPO-Digital Phosphor Oscilloscope.

    Fig. 12. Experimental result of suppressed transients (blue) for low bit rate input(green) using delay line method.

    Fig.13. Variation in transient suppression with different wavelengths.

    Fig.15 shows results obtained with DPO, the high to low transition shown is the 10 kHz signal's negative edge.Up to the negative edge,the effect of 10 kHz signal is more prominent,as shown by the absence of oscillations at 2.4 MHz. During the negative cycle of 10 kHz signal,the amplifications are obtained for 2.4 MHz signal as shown by the oscillation in the lower part of the signal.

    Simulation results obtained for the same setup in Fig. 14 is shown in Fig.16.It can be seen that the results are similar too.The low bit rate pulse is found to suppress the amplification of higher bit rate pulse during its ON period. So the 2.4 MHz signal have output only during the OFF period of 10 kHz signal.

    Fig. 14. Experimental Setup showing transients in WDM multiplexed high and low frequency signals.

    Fig.15. Transients in WDM link: WDM input (blue) and output (yellow-zoomed).

    Fig.16. Transient effect in high bit rate channel WDM link: Simulation result.

    5. Conclusion

    Many applications,like radar distribution network,demand the transmission of pulses with different duty-cycles. It's known that the slow gain response of EDFA leads to transients effects at the amplified signal.We analyzed the variation of transients for signals with different duty-cycles and found that the transients can in fact be predicted by knowing the transient curve of a larger duty-cycle pulse.Additionally,we have analyzed the transient effect in a WDM link consisting of high and low bitrate pulse signals, each modulating lasers at different wavelengths and multiplexed into EDFA.The observed transient effect was particularly prominent during the negative edge of low bit rate pulse as proved by simulation and experimental studies. We also bring out two methods to suppress transient effect which uses complementary signal pulse modulating a laser at a different wavelength. It was also found that the nearer the compensation wavelength, the better the transient suppression.

    久久久国产成人精品二区| 欧美乱码精品一区二区三区| 欧美日韩精品网址| 成人三级黄色视频| 国产三级黄色录像| 日本一二三区视频观看| www.精华液| 亚洲国产欧美网| 两个人的视频大全免费| 天堂动漫精品| 两性夫妻黄色片| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 亚洲成人精品中文字幕电影| 长腿黑丝高跟| 欧美成狂野欧美在线观看| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| 女人高潮潮喷娇喘18禁视频| 变态另类丝袜制服| 国产真实乱freesex| 男女那种视频在线观看| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 亚洲七黄色美女视频| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 亚洲 国产 在线| 亚洲精品美女久久久久99蜜臀| 18禁裸乳无遮挡免费网站照片| 精品久久久久久成人av| 国产毛片a区久久久久| 日韩成人在线观看一区二区三区| 成在线人永久免费视频| av片东京热男人的天堂| 久久久久免费精品人妻一区二区| 午夜免费成人在线视频| 亚洲,欧美精品.| 久久久久九九精品影院| 一本精品99久久精品77| 午夜两性在线视频| 欧美黄色片欧美黄色片| 少妇裸体淫交视频免费看高清| 亚洲无线在线观看| 久久久国产成人精品二区| 亚洲av熟女| 免费人成视频x8x8入口观看| 青草久久国产| 久久久色成人| 久久久久国产一级毛片高清牌| 久久午夜综合久久蜜桃| 怎么达到女性高潮| 国产伦在线观看视频一区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久久电影 | 香蕉久久夜色| 久久国产精品影院| 久久精品人妻少妇| 午夜福利欧美成人| 久久中文字幕一级| 婷婷丁香在线五月| 国产精品一区二区精品视频观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩卡通动漫| 日本在线视频免费播放| 麻豆成人av在线观看| 丰满的人妻完整版| 禁无遮挡网站| 啦啦啦韩国在线观看视频| 黄色 视频免费看| 哪里可以看免费的av片| 国产麻豆成人av免费视频| 色综合婷婷激情| 久久久久亚洲av毛片大全| a级毛片a级免费在线| 国产成人一区二区三区免费视频网站| 国产熟女xx| 日韩欧美国产一区二区入口| 免费大片18禁| 人妻久久中文字幕网| 色老头精品视频在线观看| 最新中文字幕久久久久 | 亚洲无线观看免费| 亚洲国产精品sss在线观看| 男女之事视频高清在线观看| 99热这里只有精品一区 | 黄频高清免费视频| www.精华液| 麻豆成人av在线观看| 97超视频在线观看视频| 亚洲色图 男人天堂 中文字幕| 免费在线观看日本一区| 我的老师免费观看完整版| 国产一区二区在线av高清观看| 亚洲成人久久爱视频| 一区二区三区国产精品乱码| 村上凉子中文字幕在线| 亚洲黑人精品在线| 九色国产91popny在线| 日本黄色视频三级网站网址| 国产av不卡久久| 操出白浆在线播放| 国产午夜精品论理片| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 日韩大尺度精品在线看网址| 国产精品久久久久久亚洲av鲁大| 国产伦人伦偷精品视频| 久久伊人香网站| 久久香蕉精品热| www.999成人在线观看| 成人性生交大片免费视频hd| 中文资源天堂在线| 日韩 欧美 亚洲 中文字幕| 日本 欧美在线| 久久人妻av系列| 老汉色∧v一级毛片| 夜夜看夜夜爽夜夜摸| 中文字幕人妻丝袜一区二区| 99热6这里只有精品| 国产精品99久久久久久久久| 国产主播在线观看一区二区| 真人一进一出gif抽搐免费| 99久久精品一区二区三区| 神马国产精品三级电影在线观看| 欧美成人性av电影在线观看| 午夜久久久久精精品| 不卡一级毛片| 舔av片在线| 成人亚洲精品av一区二区| 一级黄色大片毛片| 久久香蕉国产精品| 久久久国产成人精品二区| 国产精品98久久久久久宅男小说| 天堂动漫精品| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲精品粉嫩美女一区| 久久久久国产一级毛片高清牌| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 99热6这里只有精品| 在线十欧美十亚洲十日本专区| 国产伦精品一区二区三区视频9 | 欧美日韩一级在线毛片| 一本精品99久久精品77| 日日摸夜夜添夜夜添小说| 一级毛片女人18水好多| 全区人妻精品视频| 在线永久观看黄色视频| 国产高清有码在线观看视频| 女警被强在线播放| 国产av一区在线观看免费| 精品一区二区三区av网在线观看| 国产精品1区2区在线观看.| 91麻豆精品激情在线观看国产| 国内毛片毛片毛片毛片毛片| 麻豆av在线久日| 国产成人av教育| 99热这里只有是精品50| 亚洲欧洲精品一区二区精品久久久| 亚洲一区二区三区不卡视频| 男人舔奶头视频| 精品福利观看| 国产亚洲av高清不卡| 国产野战对白在线观看| 热99在线观看视频| 亚洲av电影在线进入| 亚洲人成电影免费在线| 欧美大码av| 日韩精品中文字幕看吧| 美女免费视频网站| 国产午夜精品久久久久久| tocl精华| 国产精品野战在线观看| 丰满人妻熟妇乱又伦精品不卡| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 日本黄色片子视频| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 久久久久久久精品吃奶| 黄色丝袜av网址大全| 国产一区二区三区视频了| 国产精品一区二区三区四区久久| 真人一进一出gif抽搐免费| 最新美女视频免费是黄的| 丁香六月欧美| 国产精品1区2区在线观看.| 午夜影院日韩av| 国产一区在线观看成人免费| 岛国视频午夜一区免费看| 久久久久国内视频| 国产高清videossex| 亚洲中文字幕日韩| 国产精品一区二区三区四区久久| 国产精品美女特级片免费视频播放器 | 久久婷婷人人爽人人干人人爱| 免费搜索国产男女视频| 人妻久久中文字幕网| netflix在线观看网站| 午夜免费成人在线视频| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 精品久久久久久久人妻蜜臀av| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 久久天躁狠狠躁夜夜2o2o| 这个男人来自地球电影免费观看| 成人av在线播放网站| 中文字幕精品亚洲无线码一区| 亚洲在线观看片| 亚洲av片天天在线观看| 久久久久久人人人人人| 国产成年人精品一区二区| 黄片大片在线免费观看| 国产又黄又爽又无遮挡在线| 久久香蕉精品热| 宅男免费午夜| 国产淫片久久久久久久久 | 他把我摸到了高潮在线观看| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 婷婷亚洲欧美| 香蕉av资源在线| 国产成人av教育| 国产午夜精品论理片| 国产亚洲精品久久久久久毛片| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 最近最新中文字幕大全电影3| 亚洲熟女毛片儿| 色综合站精品国产| 99久久国产精品久久久| 中文资源天堂在线| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 欧美日韩国产亚洲二区| 亚洲片人在线观看| 亚洲国产色片| www日本在线高清视频| 后天国语完整版免费观看| 亚洲av电影不卡..在线观看| 黄色成人免费大全| 国产欧美日韩一区二区三| 日本 欧美在线| 午夜福利成人在线免费观看| 欧美激情久久久久久爽电影| 亚洲片人在线观看| 给我免费播放毛片高清在线观看| 中文资源天堂在线| 国产私拍福利视频在线观看| 国产成人一区二区三区免费视频网站| 国产毛片a区久久久久| 日韩三级视频一区二区三区| xxxwww97欧美| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 欧美一区二区国产精品久久精品| 亚洲欧美日韩卡通动漫| av片东京热男人的天堂| 99久久99久久久精品蜜桃| www日本黄色视频网| 欧美在线一区亚洲| 色尼玛亚洲综合影院| 黄色成人免费大全| 午夜免费观看网址| 日韩高清综合在线| 国产 一区 欧美 日韩| 久久精品91蜜桃| 亚洲av美国av| 男人的好看免费观看在线视频| 国产探花在线观看一区二区| 午夜视频精品福利| 十八禁网站免费在线| 成年免费大片在线观看| 一个人看的www免费观看视频| 露出奶头的视频| 国产精品一区二区免费欧美| 91av网一区二区| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 中国美女看黄片| 免费看光身美女| 久久久久久久午夜电影| 一级毛片女人18水好多| 色综合亚洲欧美另类图片| 性欧美人与动物交配| 国产高清视频在线播放一区| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 免费看美女性在线毛片视频| netflix在线观看网站| 长腿黑丝高跟| 真实男女啪啪啪动态图| 国产蜜桃级精品一区二区三区| 成年免费大片在线观看| 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 免费av不卡在线播放| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲在线观看片| 欧美午夜高清在线| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月| www国产在线视频色| 又粗又爽又猛毛片免费看| 青草久久国产| 动漫黄色视频在线观看| 久久性视频一级片| 亚洲 欧美 日韩 在线 免费| 男人的好看免费观看在线视频| h日本视频在线播放| 91在线精品国自产拍蜜月 | 悠悠久久av| 俺也久久电影网| 一个人看的www免费观看视频| 精品免费久久久久久久清纯| 又黄又粗又硬又大视频| 91av网站免费观看| 久久精品亚洲精品国产色婷小说| 亚洲九九香蕉| 91九色精品人成在线观看| 色综合站精品国产| 人人妻人人看人人澡| 国产精品九九99| 亚洲av成人精品一区久久| 免费av毛片视频| 日韩欧美在线二视频| www日本黄色视频网| 国产精品亚洲av一区麻豆| 97碰自拍视频| 精品一区二区三区四区五区乱码| 日韩欧美国产一区二区入口| aaaaa片日本免费| 嫩草影视91久久| 熟女人妻精品中文字幕| ponron亚洲| 午夜精品久久久久久毛片777| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| 久久香蕉精品热| 免费看十八禁软件| 午夜两性在线视频| 欧美乱妇无乱码| 动漫黄色视频在线观看| 1024手机看黄色片| 久久久久久人人人人人| 无人区码免费观看不卡| 99国产极品粉嫩在线观看| 在线免费观看不下载黄p国产 | 老司机福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久草成人影院| 日韩欧美精品v在线| 在线看三级毛片| 国产精品久久久久久亚洲av鲁大| 两人在一起打扑克的视频| www.自偷自拍.com| 欧美色欧美亚洲另类二区| 亚洲精品在线观看二区| 性欧美人与动物交配| 又粗又爽又猛毛片免费看| 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 中文字幕熟女人妻在线| 99热这里只有是精品50| 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 亚洲国产看品久久| 蜜桃久久精品国产亚洲av| 日本 av在线| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 国产人伦9x9x在线观看| 国产高清视频在线观看网站| 看免费av毛片| 淫秽高清视频在线观看| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 淫妇啪啪啪对白视频| 日韩 欧美 亚洲 中文字幕| 男女视频在线观看网站免费| 午夜免费激情av| 久久久精品大字幕| 久久亚洲精品不卡| 国产69精品久久久久777片 | 黄频高清免费视频| 国产激情偷乱视频一区二区| 婷婷六月久久综合丁香| 色综合欧美亚洲国产小说| 精品人妻1区二区| 一级作爱视频免费观看| 动漫黄色视频在线观看| 成人无遮挡网站| 韩国av一区二区三区四区| 成年女人永久免费观看视频| 久久这里只有精品19| 国产成+人综合+亚洲专区| 九色成人免费人妻av| 国产久久久一区二区三区| 五月伊人婷婷丁香| 国产成人av教育| 老熟妇仑乱视频hdxx| 级片在线观看| 一区二区三区激情视频| 两个人视频免费观看高清| 亚洲成av人片在线播放无| 88av欧美| 中文字幕最新亚洲高清| 亚洲美女视频黄频| 99热这里只有精品一区 | 91在线精品国自产拍蜜月 | 成人特级黄色片久久久久久久| 国产精品女同一区二区软件 | 国产高清视频在线播放一区| 亚洲五月天丁香| 国产精品亚洲美女久久久| 国产成人福利小说| 精品久久久久久久久久久久久| 国产又色又爽无遮挡免费看| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 美女cb高潮喷水在线观看 | 丝袜人妻中文字幕| 国产精品99久久久久久久久| 欧美一区二区国产精品久久精品| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 一区福利在线观看| 久久精品国产99精品国产亚洲性色| 一区二区三区高清视频在线| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 亚洲七黄色美女视频| 国产午夜精品论理片| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 91麻豆精品激情在线观看国产| 99热这里只有精品一区 | 日韩av在线大香蕉| 少妇人妻一区二区三区视频| 九九久久精品国产亚洲av麻豆 | 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久精品吃奶| 日韩国内少妇激情av| 嫩草影院精品99| 9191精品国产免费久久| 亚洲精品国产精品久久久不卡| 看免费av毛片| 99在线人妻在线中文字幕| 国产成人av激情在线播放| 国产精品,欧美在线| av女优亚洲男人天堂 | 欧美性猛交黑人性爽| 日本三级黄在线观看| 啦啦啦免费观看视频1| 一级作爱视频免费观看| 精品国产亚洲在线| 桃红色精品国产亚洲av| 成人高潮视频无遮挡免费网站| 亚洲熟妇熟女久久| www.精华液| 日韩 欧美 亚洲 中文字幕| 欧美3d第一页| 日本免费一区二区三区高清不卡| 成年人黄色毛片网站| 久久国产精品影院| 国产精品 国内视频| 又黄又爽又免费观看的视频| 观看美女的网站| 搡老熟女国产l中国老女人| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 床上黄色一级片| 午夜精品一区二区三区免费看| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产 | 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| 日韩欧美在线乱码| 国产av不卡久久| 欧美大码av| 香蕉av资源在线| 成人三级做爰电影| 美女免费视频网站| 老司机午夜福利在线观看视频| 免费看a级黄色片| 久久精品国产99精品国产亚洲性色| 成人av一区二区三区在线看| 成人午夜高清在线视频| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一区av在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 成人欧美大片| 宅男免费午夜| 欧美中文综合在线视频| www日本黄色视频网| 国产精品亚洲av一区麻豆| 亚洲精品一区av在线观看| 精品熟女少妇八av免费久了| 精品国产亚洲在线| 精品一区二区三区视频在线 | 久久精品人妻少妇| 欧美日韩一级在线毛片| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| 美女 人体艺术 gogo| av天堂在线播放| 首页视频小说图片口味搜索| 亚洲国产精品999在线| 99久国产av精品| 在线观看一区二区三区| 久久午夜综合久久蜜桃| 美女黄网站色视频| 久久久久久久久免费视频了| 天堂动漫精品| 亚洲成av人片在线播放无| 观看美女的网站| 亚洲国产精品合色在线| 成人无遮挡网站| 日韩中文字幕欧美一区二区| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 少妇丰满av| 久久久久久久久免费视频了| 久久久久久久午夜电影| 一本综合久久免费| 亚洲欧美日韩卡通动漫| 熟女电影av网| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 97超级碰碰碰精品色视频在线观看| 色在线成人网| 国产亚洲欧美98| 无遮挡黄片免费观看| 午夜福利成人在线免费观看| 久久婷婷人人爽人人干人人爱| 国产成人一区二区三区免费视频网站| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| av欧美777| 国产 一区 欧美 日韩| 19禁男女啪啪无遮挡网站| 一级毛片高清免费大全| 黄色视频,在线免费观看| 久久久久国产精品人妻aⅴ院| 色精品久久人妻99蜜桃| 午夜福利在线观看免费完整高清在 | 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| 欧美日韩综合久久久久久 | 免费人成视频x8x8入口观看| 精品不卡国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产亚洲av高清不卡| 香蕉国产在线看| 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 欧美3d第一页| 久久这里只有精品中国| 精品久久久久久久久久久久久| 免费av毛片视频| 啦啦啦观看免费观看视频高清| 亚洲国产欧洲综合997久久,| 一级毛片女人18水好多| 免费看美女性在线毛片视频| av福利片在线观看| 麻豆成人午夜福利视频| 无遮挡黄片免费观看| 中文字幕最新亚洲高清| 久久精品综合一区二区三区| 天天一区二区日本电影三级| 国模一区二区三区四区视频 | 性色avwww在线观看| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| 亚洲 国产 在线| 欧美丝袜亚洲另类 | 成在线人永久免费视频| 国产亚洲精品一区二区www| 天天添夜夜摸| 黄色成人免费大全| 后天国语完整版免费观看| 国产男靠女视频免费网站| 校园春色视频在线观看| 波多野结衣高清作品| 亚洲一区二区三区不卡视频| 亚洲国产欧美一区二区综合| 黄色 视频免费看| 久久久国产成人精品二区| 久久这里只有精品中国| 99精品在免费线老司机午夜| 国产精品精品国产色婷婷| 婷婷亚洲欧美| 男插女下体视频免费在线播放| 久久欧美精品欧美久久欧美| 99热这里只有精品一区 | 后天国语完整版免费观看| 村上凉子中文字幕在线| 级片在线观看| 91麻豆精品激情在线观看国产| 真人做人爱边吃奶动态|