謝迎新,劉宇娟,張偉納,董 成,趙 旭,賀德先, 王晨陽,郭天財(cái),王慎強(qiáng)
?
潮土長(zhǎng)期施用生物炭提高小麥產(chǎn)量及氮素利用率
謝迎新1,劉宇娟1,張偉納1,董 成1,趙 旭2※,賀德先1, 王晨陽1,郭天財(cái)1,王慎強(qiáng)2
(1. 河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/國家小麥工程技術(shù)研究中心/河南糧食作物協(xié)同創(chuàng)新中心,鄭州 450046;2. 中國科學(xué)院南京土壤研究所/土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室,南京 210008)
該文于2011年起在黃淮海典型潮土區(qū)建立的秸稈炭化還田定位試驗(yàn)的基礎(chǔ)上,系統(tǒng)觀測(cè)了2011至2017年時(shí)間段秸稈生物炭連續(xù)施用下小麥生長(zhǎng)及氮吸收情況,分析了產(chǎn)量構(gòu)成因素,地上干物質(zhì)及氮累積,關(guān)鍵生育期葉面積指數(shù)(LAI)、葉綠素相對(duì)含量(SPAD值)和群體數(shù)量等與小麥增產(chǎn)的關(guān)系,并監(jiān)測(cè)了長(zhǎng)期生物炭施用下土壤有機(jī)碳(SOC)與全氮(TN)含量的變化。該試驗(yàn)采用小麥/玉米周年輪作,設(shè)每季0、2.25、6.75和11.25 t/hm2四個(gè)秸稈生物炭處理(分別表示為BC0(對(duì)照)、BC2.25(低)、BC6.75(中)和BC11.25(高))。結(jié)果表明,與BC0相比,BC2.25僅在2015/2016季提高小麥產(chǎn)量,對(duì)其他5季無明顯效果;BC6.75則在2014/2015、2015/2016和2016/2017的后3季顯著提高小麥產(chǎn)量;而BC11.25提高了2014/2015和2015/2016季小麥產(chǎn)量。盡管生物炭處理對(duì)各季小麥產(chǎn)量影響各異,但6季各處理平均產(chǎn)量數(shù)據(jù)顯示低、中、高量生物炭處理均可提高小麥產(chǎn)量7.0%~8.5%、生物量5.2%~10.8%和氮肥偏生產(chǎn)力6.8%~8.6%,且3個(gè)處理間并無差異;中、高量生物炭處理還可提高小麥秸稈產(chǎn)量11.4%~12.6%、穗數(shù)10.1%~11.2%、籽粒氮積累量9.4%~11.2%、秸稈氮積累量17.4%~23.8%、地上部氮積累量13.3%~20.9%。生物炭施用在促進(jìn)小麥生長(zhǎng)和氮吸收利用的作用方面與其增加小麥生育期LAI和SPAD值一致,具體表現(xiàn)為低、中、高量生物炭處理均可明顯增加2015/2016和2016/2017兩季小麥主要生育期群體數(shù)量以及增加兩季拔節(jié)期、抽穗期SPAD值和LAI值。3個(gè)生物炭處理對(duì)提高2011/2012土壤SOC含量和2011—2014年土壤TN含量無明顯效果,中、高量生物炭處理可增加2012—2017年土壤SOC含量32.6%~215.6%和2014—2017年土壤TN含量20.0%~36.8%。研究表明,合理施用生物炭能夠促進(jìn)黃淮區(qū)潮土農(nóng)田冬小麥籽粒產(chǎn)量和氮肥偏生產(chǎn)力以及促進(jìn)小麥生長(zhǎng)和地上部氮素吸收,進(jìn)而起到提高土壤肥力和增加土壤固碳的作用。
氮;生物炭;潮土;冬小麥;籽粒產(chǎn)量
生物炭是一種生物質(zhì)原料經(jīng)氣化或熱裂解轉(zhuǎn)化而來的含碳量高達(dá)60%以上[1]的固態(tài)難溶物質(zhì)[2],具有較大的比表面積和孔隙度[3],一般呈堿性。施用生物炭能夠顯著改善土壤肥力,如降低酸性土壤的作物鋁毒害[4],改善土壤耕層結(jié)構(gòu)、降低土壤容重[5]以及增大土壤孔隙度等。王艷陽等[6]在黑龍江黑土區(qū)的研究表明,添加生物炭可提高土壤飽和導(dǎo)水率14.3%~52.4%,促進(jìn)作物生長(zhǎng)并且減少地表徑流和水土流失。張燕輝[7]連續(xù)4年施用生物炭的試驗(yàn)結(jié)果表明,土壤pH、全碳、全氮含量隨著生物炭用量的增加而升高。另有研究報(bào)道,生物炭具有改善農(nóng)田生態(tài)環(huán)境的效果,尤其在土壤固碳和溫室氣體減排方面發(fā)揮著重要作用[8-9]。李露等[10]研究報(bào)道,20、40 t/hm2的生物炭施用量均可降低稻麥輪作系統(tǒng)中CH4和N2O的排放。Warnock等[11]研究表明,施用生物炭可減少土壤硝化細(xì)菌和反硝化細(xì)菌的可用氮源,進(jìn)而改變農(nóng)田生態(tài)系統(tǒng)的氮循環(huán),減少N2O的排放。
受制備生物炭的材料、生物炭施用量、生物炭施用年限以及土壤條件的影響,作物生長(zhǎng)和產(chǎn)量對(duì)生物炭施用的響應(yīng)效果不盡相同。葉英新[12]試驗(yàn)結(jié)果表明,與不施生物炭相比,20和40 t/hm2的生物炭在施用2 a后,對(duì)小麥和玉米的籽粒產(chǎn)量均無顯著影響。Kerré等[13]研究表明,在施用生物炭的肥沃土壤上的玉米產(chǎn)量較相鄰常規(guī)耕作土壤地塊的玉米產(chǎn)量3 a平均增加23%。當(dāng)前關(guān)于生物炭的報(bào)道多集中在其影響作物產(chǎn)量及固碳減排方面,而在黃淮海潮土農(nóng)田多年連續(xù)施用生物炭對(duì)小麥產(chǎn)量及其生理機(jī)制方面的研究報(bào)道相對(duì)較少,缺乏長(zhǎng)期的田間監(jiān)測(cè)。鑒于上述,本文通過連續(xù)6 a小麥/玉米輪作種植下生物炭施用對(duì)冬小麥生長(zhǎng)、產(chǎn)量、地上部干物質(zhì)積累、氮素吸收利用及土壤有機(jī)碳和全氮含量影響的研究,探究生物炭施用影響小麥產(chǎn)量和氮素吸收的生理機(jī)制,以期為黃淮海潮土農(nóng)田秸稈炭化還田可行性評(píng)估提供一定科學(xué)依據(jù)。
試驗(yàn)地位于河南省封丘縣潘店鄉(xiāng)中國科學(xué)院封丘農(nóng)業(yè)生態(tài)實(shí)驗(yàn)站(35°00' N, 114°24' E),該站位于黃淮海平原中部,屬暖溫帶大陸性季風(fēng)氣候,年均氣溫13.5~14.5 ℃,無霜期214 d,年均蒸發(fā)量1 860 mm,年均降水量625 mm,是典型的小麥/玉米輪作區(qū)。試驗(yàn)地耕層(0~20 cm)土壤質(zhì)地為砂質(zhì)潮土,土壤基礎(chǔ)養(yǎng)分為有機(jī)質(zhì)11.2 g/kg、全氮0.79 g/kg、有效磷10.5 mg/kg、速效鉀92.1 mg/kg、pH值8.30。生物炭為水稻秸稈在500 ℃條件下,以沼氣為能源的炭化爐下熱解制備[14],全碳含量為514.8 g/kg、全氮含量為10.3 g/kg、有效磷1.71 g/kg、速效鉀49.2 mg/kg、灰分含量為37.1%,pH值10.5。
試驗(yàn)于2011年10月開始,至2017年6月,已完成6 a小麥/玉米輪作種植。生物炭在農(nóng)田的施用量目前并無統(tǒng)一標(biāo)準(zhǔn)。通常,中國小麥玉米秸稈每季產(chǎn)量約為7.5 t/hm2,如將每季秸稈在下季作物開始前全部炭化還田,按照秸稈炭化率30%計(jì)算得到的生物炭(500 ℃,8 h)還田量為2.25 t/hm2[15]。因此,本研究從秸稈炭化還田的角度出發(fā),圍繞每季秸稈全部炭化后還田的量(2.25 t/hm2)設(shè)置不施生物炭(對(duì)照0 t/hm2,BC0)、低量(秸稈全量炭化還田2.25 t/hm2,BC2.25)、中量(3倍量秸稈炭化還田6.75 t/hm2,BC6.75)和高量(5倍量秸稈炭化還田11.25 t/hm2,BC11.25)4個(gè)處理。各處理重復(fù)3次,隨機(jī)排列,小區(qū)面積16 m2(4 m×4 m)。在小區(qū)四周水泥澆筑以防止小區(qū)間水肥互串。各小區(qū)N、P、K肥全生育期施用量保持一致,分別為N(常規(guī)尿素,含氮量46%)240 kg/hm2、P2O5(重過磷酸鈣,P2O544%)150 kg/hm2和K2O(硫酸鉀,K2O 50%)90 kg/hm2。P、K肥作為基肥在播種前隨翻地一次性施用,N肥按照6∶4比例分別作為基肥和小麥拔節(jié)期追肥施用。生物炭與肥料在播種前均勻撒施在每個(gè)小區(qū)內(nèi),經(jīng)人工翻地與耕層土壤(0~20 cm)充分混合。其他栽培管理措施同當(dāng)?shù)剞r(nóng)田。
1.3.1 小麥籽粒產(chǎn)量及構(gòu)成因素
成熟期整個(gè)小區(qū)小麥單打單收全部收獲,充分風(fēng)干后稱質(zhì)量,并測(cè)定含水量(105 ℃殺青30 min,80 ℃烘干至恒質(zhì)量)計(jì)算籽粒產(chǎn)量、秸稈產(chǎn)量和生物量。并調(diào)查1 m雙行(在小麥三葉期選取各處理均勻一致1 m雙行作為定苗樣點(diǎn))計(jì)算單位面積成穗數(shù),取20株小麥植株進(jìn)行考種,記錄穗粒數(shù)和千粒質(zhì)量。
1.3.2 葉綠素相對(duì)含量(SPAD值)及葉面積指數(shù)(LAI)
在小麥越冬期和拔節(jié)期,于上午8:00-10:00,用SPAD–502 Chlorophyll Meter Model儀測(cè)定小麥最上部完全展開葉SPAD值。LAI與SPAD值測(cè)定同步,各處理隨機(jī)選取10株生長(zhǎng)一致的小麥植株,采用長(zhǎng)寬系數(shù)法測(cè)定LAI。
1.3.3 群體動(dòng)態(tài)
與SPAD值測(cè)定同步,調(diào)查1 m雙行樣點(diǎn)小麥群體數(shù)量變化情況。
1.3.4 氮素相關(guān)指標(biāo)
將烘干籽粒、秸稈樣品粉碎,采用H2SO4-H2O2催化劑消煮,半微量凱氏定氮法測(cè)定全氮含量。計(jì)算方法如下:
籽粒氮積累量(kg/hm2)=籽粒含氮量(%)/100×籽粒產(chǎn)量(kg/hm2)(1)
秸稈氮積累量(kg/hm2)=秸稈含氮量/100×秸稈產(chǎn)量(kg/hm2)(2)
地上部氮積累量(kg/hm2)=籽粒氮積累量+秸稈氮積累量(kg/hm2) (3)
氮素收獲指數(shù)(%)=籽粒氮積累量(kg/hm2)/地上部氮積累量(kg/hm2)×100 (4)
氮肥偏生產(chǎn)力(kg/kg)=籽粒產(chǎn)量(kg/hm2)/施氮量(kg/hm2) (5)
1.3.5 土壤有機(jī)碳和全氮
在每季小麥?zhǔn)斋@后,采用五點(diǎn)取樣法取每個(gè)小區(qū)0~20 cm混合土壤樣品,風(fēng)干后過0.15 mm篩,采用重鉻酸鉀氧化-外加熱法測(cè)定有機(jī)碳(SOC, Soil organic carbon)含量,采用濃硫酸-混合催化劑消煮后凱氏定氮法測(cè)定全氮(TN,total nitrogen)含量。
采用Excel 2016處理和計(jì)算數(shù)據(jù)、SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行多重比較(采用LSD法),顯著性水平設(shè)定為=0.05,采用Origin 8.0制圖。
由表1可知,與對(duì)照相比,生物炭處理在前3季(2011/2012、2012/2013和2013/2014)對(duì)小麥籽粒產(chǎn)量、秸稈產(chǎn)量和生物量均無明顯影響,但自第4季(2014/2015)始逐漸表現(xiàn)出顯著性影響。其中,BC2.25處理籽粒產(chǎn)量、秸稈產(chǎn)量、生物量和收獲指數(shù)在2015/2016分別較BC0處理顯著(<0.05)提高24.5%、14.8%、18.8%和4.8%;與BC0處理比較,BC6.75處理,在2014/2015、2015/2016和2016/2017季,分別顯著提高籽粒產(chǎn)量14.6%、8.8%和11.9%,顯著提高秸稈產(chǎn)量14.9%、7.5%和33.3%,顯著提高生物量14.8%、8.1%和24.7%。而對(duì)于BC11.25處理,在2014/2015和2015/2016季分別較BC0處理顯著提高籽粒產(chǎn)量11.8%和9.1%,2014/2015季顯著提高秸稈產(chǎn)量13.4%,2014/2015和2015/2016季顯著提高生物量12.7%和6.1%。同時(shí),通過對(duì)各處理6季平均值多重比較分析結(jié)果表明,低、中、高量生物炭處理分別較BC0處理顯著提高籽粒產(chǎn)量7.0%、8.5%和8.6%,顯著提高生物量5.2%,10.8%和9.5%。試驗(yàn)結(jié)果表明,連續(xù)施用生物炭具有提高小麥生物產(chǎn)量和籽粒產(chǎn)量的效果。
通過對(duì)產(chǎn)量構(gòu)成分析發(fā)現(xiàn),與BC0處理比較,連續(xù)6季施用生物炭處理對(duì)小麥千粒質(zhì)量均無明顯影響,而對(duì)成穗數(shù)和穗粒數(shù)的影響在不同年際間存在差異。如,低量生物炭BC2.25處理,在2011/2012和2015/2016年度,成穗數(shù)分別較BC0處理顯著提高14.9%和22.9%,穗粒數(shù)在2011/2012季顯著提高9.0%,而在其他季節(jié)BC2.25處理未對(duì)小麥成穗數(shù)和穗粒數(shù)產(chǎn)生顯著影響。對(duì)于中量生物炭BC6.75處理,成穗數(shù)和穗粒數(shù)在2015/2016分別較BC0處理顯著提高31.4%和9.7%。而對(duì)于高量生物炭BC11.25處理成穗數(shù)在2015/2016和2016/2017分別較BC0處理顯著提高32.2%和12.3%。同時(shí),通過連續(xù)6季生物炭處理產(chǎn)量構(gòu)成平均值分析表明,BC6.75和BC11.25處理分別較對(duì)照顯著提高成穗數(shù)10.1%和11.2%,而對(duì)穗粒數(shù)和千粒質(zhì)量無顯著影響。該結(jié)果表明,施用生物炭具有提高小麥成穗數(shù)和穗粒數(shù)的作用,但不同年際間可能存在差異,分析原因可能與不同年際間小麥生育期降雨量存在差異進(jìn)而影響了小麥成穗數(shù)和穗粒數(shù)有關(guān)。
表1 不同生物炭施用量對(duì)小麥產(chǎn)量、生物量及收獲指數(shù)的影響
注:BC0、BC2.25、BC6.75和BC11.25分別表示秸稈炭化還田量為0, 2.25, 6.75, 11.25 t×hm-2。多重比較分別在不同處理及同一年份間進(jìn)行,不同小寫字母表示在0.05水平上差異顯著,下同。
Note: BC0, BC2.25, BC6.75 and BC11.25 denote the amount of straw carbonization returning to the field were 0, 2.25, 6.75, 11.25 t×hm-2, respectively. Different letters in one column indicate significant difference among different treatments in the same year at 0.05 level, the same as below.
此外,通過對(duì)年份、生物炭處理兩因素分析發(fā)現(xiàn),生物炭處理、年份及二者的交互作用均顯著影響小麥籽粒產(chǎn)量及生物量,年份顯著影響小麥成穗數(shù)、穗粒數(shù)和千粒質(zhì)量,而生物炭處理僅對(duì)成穗數(shù)有顯著影響。該結(jié)果進(jìn)一步表明,施用生物炭處理可影響小麥籽粒產(chǎn)量和生物量,而年份間存在差異可能與不同年份小麥生育期降雨量不同有關(guān),施用生物炭主要是通過提高小麥成穗數(shù)進(jìn)而實(shí)現(xiàn)產(chǎn)量提高的。
由表2可知,與未施用生物炭BC0處理比較,試驗(yàn)開始后連續(xù)3個(gè)小麥生長(zhǎng)季(2011/2012、2012/2013和2013/2014)生物炭處理均不能明顯提高小麥氮素積累量、氮素收獲指數(shù)及氮肥偏生產(chǎn)力,而自2014/2015年度開始,施用生物炭對(duì)提高小麥氮素積累、氮素收獲指數(shù)及氮肥偏生產(chǎn)力才具有明顯效果,特別是在生物炭施用量≧6.75 t /hm2時(shí)更是如此。同時(shí),通過對(duì)6季施用生物炭對(duì)小麥氮積累、吸收及利用的平均值結(jié)果分析表明,BC6.75和BC11.25籽粒氮積累量分別較對(duì)照提高9.4%和11.2%,秸稈氮積累量分別提高17.4%和23.8%,地上部氮積累量分別提高20.9%和13.3%,低、中、高量生物炭處理氮肥偏生產(chǎn)力分別較BC0處理提高8.6%、8.3%和6.8%。通過對(duì)年份、生物炭處理兩因素分析表明,年份和生物炭處理均顯著影響小麥氮素積累和氮肥偏生產(chǎn)力,而年份與生物炭處理的交互作用則無明顯效果。該試驗(yàn)結(jié)果表明,大田條件下,生物炭處理對(duì)提高作物氮素吸收具有明顯的后效作用,而短期生物炭施用可能效果不理想,且生物炭處理存在明顯的年際差異。
表2 生物炭對(duì)收獲期氮素積累量、氮素收獲指數(shù)及氮肥偏生產(chǎn)力的影響
注:NHI,氮素收獲指數(shù);NPP,氮肥偏生產(chǎn)力。
Note: NHI means nitrogen harvest index; NPP means nitrogen partial productivity.
葉面積指數(shù)(LAI)是反映植物群體生長(zhǎng)狀況的一個(gè)重要指標(biāo),其數(shù)值大小直接與最終產(chǎn)量高低密切相關(guān)。由圖1可以看出,與BC0相比,在2015/2016和2016/2017小麥生長(zhǎng)季,高量(11.25 t/hm2)生物炭處理可明顯提高小麥越冬期LAI,中量(6.75 t/hm2)和高量(11.25 t/hm2)生物炭處理可顯著提高小麥抽穗期LAI,而低、中、高量生物炭處理(2.25~11.25 t/hm2)均可明顯提高小麥抽穗期LAI。該研究表明,施用生物炭在某種程度上具有提高小麥LAI的作用,進(jìn)而可為籽粒產(chǎn)量的提高奠定基礎(chǔ)。
圖1 生物炭施用對(duì)小麥LAI的影響
葉綠素是植物進(jìn)行光合作用的基礎(chǔ)物質(zhì),而SPAD值是由SPAD-502葉綠素儀測(cè)定的小麥葉色值,即葉綠素相對(duì)含量,也是反映小麥生長(zhǎng)狀況和氮素吸收的重要指標(biāo)[16]。圖2表明,與BC0比較,低、中、高量生物炭處理均能顯著提高小麥拔節(jié)期和抽穗期葉片SPAD值,但生物炭處理間越冬期SPAD值無明顯差異。
此外,合理的群體結(jié)構(gòu)是小麥奪取高產(chǎn)的重要保證,也是相關(guān)研究人員普遍關(guān)心的問題之一。由圖3可以看出,與BC0對(duì)照相比,兩年度施用低、中、高量生物炭處理均可明顯增加小麥越冬期、拔節(jié)期、抽穗期及成熟期(該期群體數(shù)量也為成穗數(shù))莖蘗群體數(shù)量,特別是BC6.75和BC11.25處理更是如此。試驗(yàn)結(jié)果表明,施用生物炭可在一定程度上提高小麥生育期莖蘗群體數(shù)量,進(jìn)一步可提高最終成穗數(shù),可為小麥籽粒產(chǎn)量的提高奠定基礎(chǔ)。
圖2 生物炭施用對(duì)小麥葉片SPAD值的影響
注:SS- 苗期;OS-越冬期;JS-拔節(jié)期;HS-抽穗期;MS-成熟期。
由圖4可知,生物炭持續(xù)施用可以穩(wěn)定提高土壤耕層有機(jī)碳(SOC)含量。與對(duì)照相比,BC6.75處理耕層SOC含量在后5季分別顯著增加32.6%、73.3%、126.9%、127.9%和169.1%。BC11.25耕層SOC含量在后5季分別顯著增加62.0%、136.5%、200.7%、179.6%和215.6%。
圖4 生物炭施用對(duì)小麥季土壤耕層有機(jī)碳含量的影響
同樣,與土壤有機(jī)碳含量相似,土壤全氮含量也是反映土壤肥力的另一個(gè)重要理化指標(biāo)。由圖5可以看出,前3季,生物炭處理對(duì)耕層全氮(TN)含量無明顯影響,但隨生物炭施用季節(jié)的延續(xù),BC6.75和BC11.25處理TN含量較對(duì)照顯著增加。與BC0相比,BC6.75處理耕層土壤TN含量在后3季分別顯著增加20.0%、25.4%和24.3%,BC11.25全氮含量在后3季分別顯著增加36.8%、30.5%和36.4%。
圖5 生物炭施用對(duì)小麥季土壤耕層全氮含量的影響
上述試驗(yàn)結(jié)果表明,短期施用生物炭在提高潮土地區(qū)土壤肥力方面效果不明顯,至少需要連續(xù)施用3 a后才初具效果。因此,生物炭在提高土壤肥力方面的作用是一個(gè)漫長(zhǎng)且復(fù)雜的過程,需要長(zhǎng)期連續(xù)試驗(yàn)才能對(duì)生物炭的效果做出正確合理的評(píng)價(jià)。
秸稈生物炭施用到土壤中勢(shì)必會(huì)影響土壤理化性質(zhì)從而影響作物生長(zhǎng)[17]。Niu等[18]在與本研究相同土壤類型上的試驗(yàn)表明,3~12 t/hm2的生物炭處理可增加小麥籽粒產(chǎn)量16.6%~25.9%。趙進(jìn)[19]研究表明,BC2.25生物炭處理可增加紅壤小麥籽粒產(chǎn)量5.6%~174.0%,增加潮土小麥籽粒產(chǎn)量39.8%。本研究結(jié)果表明,低、中、高生物炭處理均可提高小麥籽粒產(chǎn)量,進(jìn)一步分析發(fā)現(xiàn),生物炭主要通過增加小麥單位面積成穗數(shù)進(jìn)而實(shí)現(xiàn)小麥籽粒產(chǎn)量的提高。張燕輝等[7]研究表明,生物炭添加對(duì)小麥單株成穗數(shù)無顯著影響,可通過提高小麥出芽率增加單位面積成穗數(shù),這與本試驗(yàn)生物炭處理均可明顯提高小麥主要生育期群體數(shù)量的研究結(jié)果不太一致。本研究認(rèn)為,生物炭處理可通過增加小麥莖蘗群體數(shù)量從而增加單位面積成穗數(shù),進(jìn)而提高小麥籽粒產(chǎn)量。王勇等[20]研究報(bào)道返青期追肥可促進(jìn)春季小麥分蘗,增加穗數(shù)。在本研究相同氮肥水平下,生物炭處理下的土壤供氮能力高于對(duì)照(生物炭處理硝態(tài)氮含量顯著高出對(duì)照,未發(fā)表數(shù)據(jù)),可能是增加小麥群體的原因之一。張娜[21]研究結(jié)果則表明,生物炭對(duì)小麥穗數(shù)、穗粒數(shù)和千粒質(zhì)量的提升作用均未達(dá)到顯著性水平,與本研究結(jié)果略有差異差異原因可能在于土壤類型、施肥狀況等因素的不同,導(dǎo)致生物炭的增產(chǎn)效應(yīng)不同。
冬小麥葉片、莖稈等營(yíng)養(yǎng)器官進(jìn)行光合作用,合成有機(jī)物后向籽粒運(yùn)轉(zhuǎn),是小麥產(chǎn)量形成的主要機(jī)制[22]。而生物炭具有較強(qiáng)的吸水能力,適量生物炭施用能夠顯著提高土壤含水量[5],提高土壤熱容[9],為作物根系生長(zhǎng)提供良好環(huán)境,有利于水分和營(yíng)養(yǎng)物質(zhì)向葉片輸送,進(jìn)而促進(jìn)植株生長(zhǎng)[23]。其中,干物質(zhì)是是衡量植物有機(jī)物積累、營(yíng)養(yǎng)成分多寡的一個(gè)重要指標(biāo)[24],小麥最終的籽粒產(chǎn)量受干物質(zhì)積累、轉(zhuǎn)運(yùn)的重要影響[25]。有研究指出,開花期至成熟期是小麥籽粒產(chǎn)量形成的關(guān)鍵時(shí)期,小麥籽粒產(chǎn)量的高低取決于花后干物質(zhì)的積累[26]。而施用生物炭基肥料可顯著提高小麥干物質(zhì)重[27]。在本研究中,生物炭處理可顯著增加小麥秸稈產(chǎn)量11.4%~12.6%、生物量5.2%~10.8%,這可能由于生物炭具有良好的孔隙性,促進(jìn)了作物根系生長(zhǎng),為地上部營(yíng)養(yǎng)積累提供了保障[28],進(jìn)而增加同化作用[20]。然而生物炭處理下的小麥籽粒產(chǎn)量占生物量的比重較對(duì)照并未增加,說明生物炭盡管增加小麥干物質(zhì)積累,但并未促進(jìn)花后干物質(zhì)向籽粒的轉(zhuǎn)運(yùn)。因此,干物質(zhì)積累提高并不是生物炭提高小麥籽粒產(chǎn)量的主控因素,而小麥籽粒千粒質(zhì)量主要依賴于花后至灌漿階段,這可能也是各處理下小麥千粒質(zhì)量無顯著性差異的原因之一。故而在本研究中,小麥莖蘗群體數(shù)量的提高是生物炭提高小麥籽粒產(chǎn)量的主導(dǎo)原因。
有研究表明,施用生物炭具有提高氮肥利用率的作用[29-30],主要原因得益于生物炭提高了潮土的保水性能和陽離子交換能力,進(jìn)而促進(jìn)地上部吸氮量的提高[31]。另外,生物炭因其較大的比表面積和孔隙度,可增加土壤中有益菌群數(shù)量[32],且對(duì)土壤硝態(tài)氮具有較強(qiáng)的吸附作用,從而減少氮素在土壤中的損失[33]。Zhao等[34]研究發(fā)現(xiàn),施用生物炭能夠增加土壤全氮含量以及有效元素含量,進(jìn)而增加作物對(duì)氮素營(yíng)養(yǎng)的吸收利用。本研究結(jié)果表明,生物炭施用具有提高小麥葉片光合作用面積和葉綠素相對(duì)含量的積極作用。而小麥葉面積系數(shù)和葉綠素含量與氮效率存在顯著正相關(guān)關(guān)系[35],故而葉面積系數(shù)和葉綠素含量的增加可提高莖葉對(duì)氮的吸收利用。施用生物炭可提高小麥植株不同地上部位氮積累量,但氮素收獲指數(shù)并未增加,此結(jié)果表明,中、高量生物炭處理下,6季平均籽粒氮積累量的增加則是由于生物炭處理增加籽粒產(chǎn)量,而未能增加秸稈中氮向籽粒中的轉(zhuǎn)移和運(yùn)輸,而氮肥偏生產(chǎn)力提高的原因同樣在于生物炭處理對(duì)小麥籽粒產(chǎn)量的提高。
生物炭具有較強(qiáng)的穩(wěn)定性,不易被礦化和分解,在潮土上的年平均分解率為3.52%~5.68%[19]。本研究表明,生物炭在連續(xù)施用2 a后即可顯著增加土壤SOC含量,迅速提升土壤碳庫,進(jìn)而改善土壤肥力。本研究中土壤耕層C/N比可達(dá)26.0,但較高的C/N比抑制小麥生長(zhǎng)的現(xiàn)象在本研究中并未出現(xiàn)(2014/2015,BC11.25籽粒產(chǎn)量較BC0顯著增加11.8%),生物炭依然保持小幅增產(chǎn)作用,與Lemann等[36]提出的過高的C/N比會(huì)引起氮素固定以及生物炭帶入過多的碳組分會(huì)促使土壤中微生物產(chǎn)生固氮的現(xiàn)象[37]有所差異。當(dāng)每季生物炭用量增加至6.75~11.25 t/hm2時(shí),土壤SOC含量較對(duì)照最高增幅可達(dá)215.6%,生物炭6年累積用量為81~135 t/hm2,相當(dāng)于450 t/hm2的秸稈消納量,每年可消納37.5 t/hm2秸稈,而當(dāng)前秸稈每季產(chǎn)量約為7.5 t/hm2。相較于秸稈直接還田帶來的整地質(zhì)量差、病蟲草害嚴(yán)重,進(jìn)而影響下季作物種植等系列問題[38],秸稈炭化還田不僅可以小幅增加籽粒產(chǎn)量,而且具有穩(wěn)定持續(xù)增加土壤固碳的效果,為秸稈資源綜合利用提供了新的有效途徑。
通過6季連續(xù)施用生物炭對(duì)小麥生長(zhǎng)發(fā)育、氮素吸收及土壤肥力等指標(biāo)影響的研究,主要結(jié)論如下:
1)施用2.25~11.25 t/hm2生物炭,可起到提高小麥籽粒產(chǎn)量以及提高氮肥偏生產(chǎn)力的效果,但低、中、高量生物炭處理間無顯著差異。同時(shí)2.25~11.25 t/hm2生物炭可提高小麥葉面積指數(shù)、葉綠素相對(duì)含量,進(jìn)而起到提升小麥光合作用和增加小麥生物量的作用。
2)施用6.75~11.25 t/hm2生物炭可顯著增加地上部氮素吸收量,明顯提高耕層土壤有機(jī)碳和全氮含量,進(jìn)而使研究地區(qū)土壤碳庫顯著增加,土壤肥力得到提升。
3)與未施用生物炭比較,生物炭在連續(xù)施用多年后對(duì)小麥籽粒產(chǎn)量、秸稈產(chǎn)量、生物量、氮素吸收以及土壤肥力的提升效果逐漸增強(qiáng)。
[1] 高德才,張蕾,劉強(qiáng),等.生物黑炭對(duì)旱地土壤CO2、CH4、N2O排放及其環(huán)境效益的影響[J].生態(tài)學(xué)報(bào),2015,35(11):3615-3624.Gao Decai, Zhang Lei, Liu Qiang, et al. Effects of biochar on CO2, CH4, N2O emission and its environmental benefits in dryland soil[J]. Acta Ecologica Sinica, 2015, 35(11): 3615-3624. (in Chinese with English abstract)
[2] Lemann J. A handful of carbon[J]. Nature, 2007, 447: 143-144.
[3] Braida W J, Pignatello J J, Lu Y F, et al. Sorption hystersis of benzene in charcoal particles[J]. Environment Science Technology, 2003, 37: 409-417.
[4] Haefele S, Konboon Y, Wongboon W, et al. Effects and fate of biochar from rice residues in rice-based system[J].Field Crops Research, 2011, 121: 430-440.
[5] 劉園,M Jamal Khan,靳海洋,等.秸稈生物炭對(duì)潮土作物產(chǎn)量和土壤性狀的影響[J].土壤學(xué)報(bào),2015,52(4): 849-858.Liu Yuan, M Jamal Khan, Jin Haiyang, et al. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols[J]. Acta Pedologica Sinica, 2015, 52(4): 849-858. (in Chinese with English abstract)
[6] 王艷陽,魏永霞,孫繼鵬,等. 不同生物炭施加量的土壤水分入滲及其分布特性[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):113-119.Wang Yanyang, Wei Yongxia, Sun Jipeng, et al. Soil water infiltration and distribution characteristics under different biochar addition amount[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 113-119. (in Chinese with English abstract)
[7] 張燕輝. 生物炭連續(xù)四年還田對(duì)小麥產(chǎn)量和土壤固碳減排的中長(zhǎng)期效應(yīng)[D]. 淮北:淮北師范大學(xué),2015.Zhang Yanhui. Medium Term Effects of Biochar Application for 4 Years on Wheat Yield and Soil Carbon Sequestration[D]. Huaibei: Huaibei Normal University. 2015. (in Chinese with English abstract)
[8] 張阿鳳,潘根興,李戀卿. 生物黑炭及其增匯減排與改良土壤意義[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(12):2459-2463.Zhang A’feng, Pan Genxing, Li Lianqing. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation[J]. Journal of Agro-Environment Science, 2009, 28(12): 2459-2463. (in Chinese with English abstract)
[9] 張玉銘,胡春勝,張佳寶,等.農(nóng)田土壤主要溫室氣體(CO2、CH4、N2O)的源/匯強(qiáng)度及其溫室效應(yīng)研究進(jìn)展[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(4):966-975.Zhang Yuming, Hu Chunsheng, Zhang Jiabao, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. (in Chinese with English abstract)
[10] 李露,周自強(qiáng),潘曉健,等.氮肥與生物炭施用對(duì)稻麥輪作系統(tǒng)甲烷和氧化亞氮排放的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(5):1095-1103.Li Lu, Zhou Ziqiang, Pan Xiaojian, et al. Combined effects of nitrogen and biochar incorporation on methane and nitrous oxide emissions from paddy fields in rice-wheat annual rotation system[J]. Journal of Plant Nutrition and fertilizer, 2015, 21(5): 1095-1103. (in Chinese with English abstract)
[11] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and soil, 2007, 300: 9-20.
[12] 葉英新.生物質(zhì)炭施用兩年后黃淮海平原黃潮土土壤性質(zhì)、作物產(chǎn)量及溫室氣體排放的變化[D].南京:南京農(nóng)業(yè)大學(xué),2014.Ye Yingxin. Changes in Soil Properties, Crop Yield and Greenhouse Gas Emission Two Years After Biochar Amendment in a Calcareous Entisol from North China[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English abstract)
[13] Kerré B, Willaert B, Corneli Y, et al.Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability[J]. European Journal of Agronomy, 2017, 91: 10-15.
[14] Wang Shenqiang, Zhao Xu, Xing Guangxi, et al. Large-scale biochar production from crop residue: A new idea and the biogas-energy pyrolysis system[J]. Bioresources, 2013, 8: 8-11.
[15] Zhao Xu, Wang Jiangwei, Wang Shenqiang, et al. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil[J]. Plant & Soil, 2014, 378(1-2): 279-294.
[16] 薛香,吳玉娥.小麥葉片葉綠素含量測(cè)定及其與SPAD值的關(guān)系[J].湖北農(nóng)業(yè)科學(xué),2010,49(11):2701-2702.Xue Xiang, Wu Yu’e. Chlorophyll content determination and its relationship with SPAD value in wheat[J]. Hubei Agricultural Sciences, 2010, 49(11), 2701-2702. (in Chinese with English abstract)
[17] Mohan D, Abhishek K, Sarswat A, et al. Biochar production and applications in soil fertility and carbon sequestration:A sustainable solution to crop-residue burning in India[J]. Rsc Advances, 2018, 8(1): 508-520.
[18] Niu Yuhui, Chen Zengming, Müller C, et al. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize - wheat rotation in the North China Plain[J]. Atmospheric Environment, 2017, 170: 58-70.
[19] 趙進(jìn).秸稈黑炭連續(xù)施用下紅壤和潮土性質(zhì)及肥力變化的對(duì)比研究[D].北京:中國科學(xué)院大學(xué),2017.Zhao Jin. Comparision of Soil Properties and Fertility in an Agricultural Oxisols and Cambosols with Five-year Successive Straw Biochar Aoolications[D]. Beijing: Chinese Academy of Sciences, 2017. (in Chinese with English abstract)
[20] 王勇,孫本普,李秀云,等.栽培條件對(duì)小麥穗數(shù)的影響[J].小麥研究,2004(3):11-20.
[21] 張娜.生物炭對(duì)麥玉復(fù)種體系作物生長(zhǎng)及土壤理化性質(zhì)的影響[D].楊凌:西北農(nóng)林科技大學(xué),2015.Zhang Na. Effects of Biochar on Crop Growth, Soil Physical and Chemical Properties in Wheat-maize Multiple Cropping System[D]. Yangling: Northwest A & F University, 2015. (in Chinese with English abstract)
[22] 王玉杰,王永華,韓磊,等.不同栽培管理模式對(duì)冬小麥花后干物質(zhì)積累與分配特征及產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2011,31(5):894-900.Wang Yujie, Wang Yonghua, Han Lei, et al. Effect of different cultivation and management mode on the characteristics of accumulation and distribution of dry matter and the yield of winter wheat after anthesis[J].Journal of Triticeae Crops, 2011, 31(5): 894-900. (in Chinese with English abstract)
[23] 趙進(jìn),趙旭,王慎強(qiáng),等.長(zhǎng)期秸稈黑炭施加對(duì)石灰性潮土肥力、固碳以及氨揮發(fā)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2018,29(1):176-184.Zhao Jin, Zhao Xu, Wang Shenqiang, et al. Effects of successive incorporation of rice straw biochar into an alkaline soil on soil fertility, carbon sequestration and ammonia volatilization[J]. Chinese Journal of Application Ecology, 2018, 29(1): 176-184. (in Chinese with English abstract)
[24] 石祖梁,顧克軍,楊四軍.氮肥運(yùn)籌對(duì)稻茬小麥干物質(zhì)、氮素轉(zhuǎn)運(yùn)及氮素平衡的影響[J].麥類作物學(xué)報(bào),2012,32(6):1128-1133.Shi Zuliang, Gu Kejun, Yang Sijun. Effect of nitrogen application on translocation of dry matter and nitrogen, and nitrogen balance in winter wheat under Rice-wheat rotation[J]. Journal of Triticeac Crop, 2012, 32(6): 1128-1133. (in Chinese with English abstract)
[25] 孟凡德,馬林,石書兵,等.不同耕作條件下春小麥干物質(zhì)積累動(dòng)態(tài)及其相關(guān)性狀的研究[J].麥類作物學(xué)報(bào),2007,27(4):693-698.Meng Fande, Ma Lin, Shi Shubing, et al. Dynamics changes of dry matter accumulation and relative characteristics of spring wheat under different tillage[J]. Journal of Triticeae Crops, 2007,27(4): 693-698. (in Chinese with English abstract)
[26] 王月福,于振文,李尚霞,等.氮素營(yíng)養(yǎng)水平對(duì)小麥開花后碳素同化、運(yùn)轉(zhuǎn)和產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2002,22(2):55-59.Wang Yuefu, Yu Zhenwen, Li Shangxia, et al. Effect of nitrogen nutrition on carbon assimilation and transfer and yield after wheat anthesis[J]. Journal of Triticeae Crops, 2002, 22(2): 55-59. (in Chinese with English abstract)
[27] 高海英.一種生物炭基氮肥的特征及其對(duì)土壤作物的效應(yīng)研究[D].楊凌:西北農(nóng)林科技大學(xué),2012.Gao Haiying. Research on Characteristics of a Biochar-based Nitrogenous Fertilizer and Its Effects on Soils and Crops[D]. Yangling: Northwest Agricultural and Forest University, 2012. (in Chinese with English abstract)
[28] 張偉明,孟軍,王嘉宇,等.生物炭對(duì)水稻根系形態(tài)與生理特征及產(chǎn)量的影響[J].作物學(xué)報(bào),2013,39(8):1445-1451.Zhang Weiming, Meng Jun, Wang Jiayu, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice[J]. Acta Agronomica Sinica, 2013, 39(8): 1445-1451. (in Chinese with English abstract)
[29] 曲晶晶,鄭金偉,鄭聚鋒,等.小麥秸稈生物質(zhì)炭對(duì)水稻產(chǎn)量及晚稻氮素利用率的影響[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2012,28(3):288-293.Qu Jingjing, Zheng Jinwei, Zheng Jufeng, et al. Effects of wheat-straw based biochar on yield of rice and nitrogen use efficiency of late rice[J]. Journal of Ecology and Rural Environment, 2012, 28(3): 288-293. (in Chinese with English abstract)
[30] 張愛平,劉汝亮,高霽,等.生物炭對(duì)寧夏引黃灌區(qū)水稻產(chǎn)量及氮素利用率的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(5):1352-1360.Zhang Aiping, Liu Ruliang, Gao Ji, et al. Effects of biochar on rice yield and nitrogen use efficiency in the Ningxia Yellow River irrigation region[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1352-1360. (in Chinese with English abstract)
[31] 劉園.秸稈生物炭連續(xù)施用對(duì)潮土肥力和固碳減排的影響研究[D].鄭州,河南農(nóng)業(yè)大學(xué),2015.Liu Yuan. Effects of Successive Application of Crop-straw Biochar on Soil Fertility, Carbon Sequestration and Greenhouse Gas Emission in Cambolos[D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese with English abstract)
[32] 陳溫福,張偉明,孟軍. 農(nóng)用生物炭研究進(jìn)展與前景[J].中國農(nóng)業(yè)科學(xué),2013,46(16):3324-3333.Chen Wenfu, Zhang Weiming, Meng Jun. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese with English abstract)
[33] 趙春曉,鄭春海,郜翻身,等.不同處理對(duì)河套灌區(qū)玉米土壤硝態(tài)氮和銨態(tài)氮?jiǎng)討B(tài)及氮肥利用率的影響[J].中國土壤與肥料,2017,54(6):99-104.Zhao Chunxiao, Zheng Chunhai, Gao Fanshen, et al. Effect of different materials on dynamic change of soil nitrate and ammonium nitrogen and N uptake by maize in Hetao irrigation area[J]. Soil and Fertilizer Scinences in China, 2017, 54(6): 99-104. (in Chinese with English abstract)
[34] Zhao Xu, Wang Jiangwei, Xu Haojiang, et al. Effects of crop-straw biochar on crop growth and soil fertility over a wheat-millet rotation in soils of China[J]. Soil Use and Management, 2014, 30: 311-319.
[35] 張旭,田中偉,胡金玲,等.小麥氮素高效利用基因型的農(nóng)藝性狀及生理特性[J].麥類作物學(xué)報(bào),2016,36(10):1315-1322.Zhang Xu, Tian Zhongwei, Hu Jinling, et al. Agronomic and physiological characteristis of high efficeint nitrogen utilization in wheat[J]. Journal of Triticeae Crops, 2016, 36(10): 1315-1322. (in Chinese with English abstract)
[36] Lehmann J, Jr J P D S, Steiner C, et al.Nutrient availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2): 343-357.
[37] Liang Feng, Li Guitong, Lin Qimei, et al. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil[J]. Journal of Integrative Agricultural, 2014, 13: 525-532.
[38] 孫建飛,鄭聚鋒,程琨,等.基于可收集的秸稈資源估算及利用潛力分析[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(2):404-413.Sun Jianfei, Zheng Jufeng, Cheng Kun, et al. Estimate of the quantity of collectable straw resources and competitive utilization potential[J]. Journal of Plant Nutrition and Fertilizer,2018, 24(2): 404-413. (in Chinese with English abstract)
Long-term application of biochar in fluvio-aquatic soil improving wheat yield and nitrogen utilization
Xie Yingxin1, Liu Yujuan1, Zhang Weina1, Dong Cheng1, Zhao Xu2※, He Dexian1, Wang Chenyang1, Guo Tiancai1, Wang Shenqiang2
(1.450046,; 2.210008,)
Biochar, which is produced by the thermochemical decomposition of organic material under a limited supply of oxygen at temperatures between 300 and 1000 ℃, has been the focus of researchers for the past several years. Each year straw of about 0.6-0.7 billion tons is produced in China, however less than half fails to reasonable use, which has resulted in a series of problems such as resource waste and environmental pollution. Converting cheap, abundant crop straw into biochar applied to soils may have significant agricultural and environmental benefits. Crop-straw biochar returned into soil not only can significantly increase carbon sequestration and reduce emission of greenhouse gases as well as protect soil quality, improve soil fertility, decrease soil bulk density and reduce the aluminum toxicity of crop in acid soil, but also provides effective way for comprehensive utilization of straw resource. In order to find out a rational solution for more and more straw in the farmland to provide scientific basis for comprehensive utilization of straw in the Huanghuai region, a field location experiment on straw biochar application was performed in the typical fluvio-aquatic soil of the Huanghuai region since 2011. Effects of continuous biochar application in 2011-2017 on growth and nitrogen absorption of winter wheat were studied. The yield components, accumulation of dry matter and nitrogen, LAI (leaf area index), chlorophyll relative content (SPAD (soil and plant analyzer development) value), and population number at the key growth stage of winter wheat, and the changes of soil organic carbon (SOC) and total nitrogen (TN) under the long-term biochar application were also observed in the test. Four treatments in the experiment were set, including BC0 (control), BC2.25 (low), BC6.75 (middle) and BC11.25 (high), which were 0, 2.25, 6.75 and 11.25 t/hm2biochar added to the soil, respectively. The results showed that, compared with BC0, the BC2.25 increased grain yield of wheat only in 2011/2012, the BC6.75 increased grain yield in 2014/2015, 2015/2016 and 2016/2017, and the BC11.25 increased grain yield in 2014/2015 and 2015/2016. The average yield across 6 wheat seasons showed that 3 biochar application treatments markedly increased grain yield, biomass, and nitrogen partial productivity by 7.0%-8.5%, 5.2%-10.8%, and 6.8%-8.6%, respectively compared with the CK treatment, but no significant difference was found among 3 biochar treatments. In addition, biochar application treatments with middle and high addition amount also significantly increased straw yield, spike number, nitrogen accumulation of grain, straw nitrogen accumulation and plant nitrogen accumulation by 11.4%-12.6%, 10.1%-11.2%, 9.4%-11.2%, 17.4%-23.8% and 13.3%-20.9%, respectively. The roles of biochar in improving grain yield and nitrogen uptake were in accordance with response in increasing LAI and SPAD value of wheat leaves. We also found that 3 biochar application treatments increased population amount at the key growth stage of winter wheat in 2015/2016 and 2016/2017, and also increased the SPAD value and LAI at the jointing stage and heading stage in 2015/2016 and 2016/2017. Moreover, 3 biochar treatments also significantly increased SOC content in topsoil by 32.6%-215.6% in 2012-2017 and TN content by 20.0%-36.8% in 2014-2017. In conclusion, reasonable biochar application can increase grain yield and nitrogen partial productivity with promoting the growth and nitrogen absorption of winter wheat in the Huanghuai region, and also improve the soil fertility and carbon sequestration.
nitrogen; biochar; fluvio-aquatic soil; winter wheat; grain yield
謝迎新,劉宇娟,張偉納,董 成,趙 旭,賀德先,王晨陽,郭天財(cái),王慎強(qiáng). 潮土長(zhǎng)期施用生物炭提高小麥產(chǎn)量及氮素利用率[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):115-123. doi:10.11975/j.issn.1002-6819.2018.14.015 http://www.tcsae.org
Xie Yingxin, Liu Yujuan, Zhang Weina, Dong Cheng, Zhao Xu, He Dexian, Wang Chenyang, Guo Tiancai, Wang Shenqiang. Long-term application of biochar in fluvio-aquatic soil improving wheat yield and nitrogen utilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 115-123. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.14.015 http://www.tcsae.org
2018-02-28
2018-06-05
國家自然科學(xué)基金(41771338);國家科技支撐計(jì)劃項(xiàng)目(2015BAD26B00)聯(lián)合資助
謝迎新,博士,副研究員,主要從事植物營(yíng)養(yǎng)與農(nóng)業(yè)生態(tài)環(huán)境方面的研究。Email:xieyingxin@tom.com
趙 旭,研究員,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)生態(tài)環(huán)境方面的研究。Email:zhaoxu@issas.ac.cn
10.11975/j.issn.1002-6819.2018.14.015
S156
A
1002-6819(2018)-14-0115-09