• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The first complete organellar genomes of an Antarctic red alga,Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales,Rhodophyta)*

    2018-08-02 02:51:04XUKuipeng徐奎鵬TANGXianghai唐祥海BIGuiqi畢桂萁CAOMin曹敏WANGLu王璐MAOYunxiang茅云翔
    Journal of Oceanology and Limnology 2018年4期
    關(guān)鍵詞:王璐

    XU Kuipeng (徐奎鵬) , TANG Xianghai (唐祥海) , , BI Guiqi (畢桂萁) ,CAO Min (曹敏), WANG Lu (王璐) , MAO Yunxiang (茅云翔) ,

    1 Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

    Abstract Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes (ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome (195 784 bp, 33.28%GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome (34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization.Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show signi ficant differences, mainly because of the different copy numbers of rDNA operons in the ptDNA and group II introns in the mtDNA. The other Pyropia species have 2–3 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.

    Keyword: Antarctic; Pyropia endiviifolia; plastid and mitochondrial genomes; genome structure; phylogenetic

    1 INTRODUCTION

    The evolution of plastids and mitochondria by endosymbiosis is a central dogma of modern eukaryotic cell biology. Both plastids and mitochondria possess their own genomes. Plastids are the lightgathering organelles of algae and plants responsible for photosynthesis, whose origin can be traced back to cyanobacteria (Reyes-Prieto et al., 2007). This photosynthetic organelle is commonly believed to have a single origin in the common ancestor of the Archaeplastida, which comprises glaucophytes, red algae (Rhodophyta), and Viridiplantae (Rodríguez-Ezpeleta et al., 2005). Red algae have the most generich and cyanobacteria-like plastid genomes, followed by glaucophytes and green algae. The mitochondrial genome is a remnant of a eubacterial genome, derived speci fically from within the α-Proteobacteria (Gray et al., 2001). Mitochondria play a crucial role in providing cellular energy (Ogihara et al., 2005). During the course of evolution, this endosymbiont has transferred many of its important genes to the nuclear genome(Taanman, 1999).

    The Bangiales order of red algae consists of more than 190 species (Guiry and Guiry, 2017), which are distributed worldwide from tropical seas to polar seas.It is divided into at least fifteen genus-level taxa( Bangia, ‘ Bangia’ 1, ‘ Bangia’ 2, ‘ Bangia’ 3,Boreophyllum, Clymene, Dione, Fuscifolium, Lysithea,Minerva, Miuraea, Porphyra, Pseudobangia, Pyropia,and Wildemania) (Sutherland et al., 2011). The coldwater seaweed genus Pyropia includes the most economically important marine crops grown in intertidal habitats, among which Py ropia haitanensis and Py. yezoensis are widely harvested and traded in East Asian countries, such as China, Korea and Japan(Mumford and Miura, 1988). Pyropia endiviifolia (A.Gepp & E. Gepp) H. G. Choi & M. S. Hwang grows on the Antarctic islands and has been recorded on the Antarctic Peninsula, the South Orkney Islands, the South Shetland Islands and South Georgia Island (Wiencke and Clayton, 1998). This species is olive-green in color, which led to its first speci fic name, Monostroma endiviifolium A & E Gepp (Chamberlain, 1963); this was later revised to Pyropia (Sutherland et al., 2011).

    Previous studies have revealed that a limited number of available DNA sequences results in relatively little genetic variation, which can present difficulties in phylogenetic resolution or species identi fication (Dutcher and Kapraun, 1994; Niwa et al., 2004; Xie et al., 2010; Sutherland et al., 2011). In recent decades, with the rapid development of nextgeneration DNA sequencing technologies, it has become convenient to assemble complete organelle genomes from total genomic DNA sequences at relatively low cost, especially for Pyropia species,which have a high proportion of organellar DNA relative to nuclear DNA (Wang et al., 2013). Complete organellar genome sequence information is not only important for genetic breeding but also for evolutionary studies. Phylogenomics is a useful tool for providing evolutionary information for species identi fication,taxonomy and phylogenetic analysis (Henry, 2005;Verbruggen et al., 2010; Janou?kovec et al., 2013;Yang et al., 2015; Lee et al., 2016). However, most of the available information about Pyropia ptDNAs and mtDNAs is limited to Northern Hemisphere species,and surprisingly little is known about the organellar genomes of Southern Hemisphere species.

    Here, we present the complete organellar genomes of the Antarctic species Py. endiviifolia, which were obtained using the Illumina sequencing technology,and examine its genomic features. Through comparative genomics and phylogenomic analyses,we sought to explore the genome structure and reconstruct the phylogenetic relationships among representative species.

    2 MATERIAL AND METHOD

    2.1 Collection of samples and morphological observations

    Fresh thalli of Py. endiviifolia were collected on February 22, 2014 from intertidal transects along a rocky coastline at Fildes Peninsula, King George Island, Antarctica (62°12′S, 58°57′W). Morphological characters including thallus shape, color, texture and reproductive tissues of the specimens were examined and photographed using an Olympus BX51 microscope (OLYMPUS, Tokyo, Japan).

    2.2 DNA extraction, sequencing and genome assembly

    Total DNA was extracted from 10 g of frozen thallus material according to the CTAB method(Porebski et al., 1997). Puri fied DNA (5 μg) was fragmented and used to construct short-insert PCR-free libraries following the instructions of the Illumina TruseqTMDNA Sample Preparation Kit (Illumina, San Diego, CA, USA) and was sequenced on an Illumina Genome Analyzer. Adapters and low-quality reads(with ambiguous bases, N; length < 100 bp) were removed using the NGS QC Toolkit (Patel and Jain,2012). The pre-processed sequences were first assembled into non-redundant contigs using Edena with default settings (Hernandez et al., 2008). Then,all contigs were mapped to the reference genomes of Py. haitanensis (NC_007932.1 and NC_017751)using the BLAST program (http://blast.ncbi.nlm.nih.gov/) with an e-value of 1e-5 and the order of the aligned contigs was veri fied. Finally, gaps between the contigs were filled by iterative contig extension using the PRICE software (Ruby et al., 2013). To evaluate the quality of the organelle genome sequences,especially the junctions, validation through intensive PCR-based sequencing was carried out on ABI 3730 instrument by randomly designing 20 pairs of primers(Table S1). The PCR sequences and assembled genomes were aligned using MEGA 6.0 to determine the accuracy of the assembly (Tamura et al., 2013).The complete Py. endiviifolia plastid and mitochondria genomes are available for download via GenBank with accession numbers KT716756 and KU356193.

    Fig.1 Pyropia endiviifolia

    2.3 Genome annotation and analysis

    The organellar genomes were annotated using ORF- finder (http://www.ncbi.nlm.nih.gov/projects/gorf/) and aligned via BLASTX and BLASTN searches at the NCBI website (http://blast.ncbi.nlm.nih.gov/). tRNAs were identi fied using the tRNAscan-SE 1.21 web server (http://lowelab.ucsc.edu/tRNAscan-SE/) and rRNAs were identi fied using the RNAmmer 1.2 server (http://www.cbs.dtu.dk/services/RNAmmer/). Genome maps were drawn with OGDraw (Lohse et al., 2007). Multiple genomes were aligned using MAFFT version 5 and visualized using the mVISTA tool (Mayor et al., 2000; Katoh et al.,2005). A structure comparison was generated by Mauve with the ‘Use seed families’ option (Darling et al., 2004).

    2.4 Phylogenetic analyses

    To elucidate the phylogenetic position of Py.endiviifolia, the concatenated protein-coding amino acid sequences from both the plastid and mitochondrial genomes were used to construct a phylogenetic tree(Table S2). The genome sequences were aligned using the program MAFFT version 5 and were adjusted manually (Katoh et al., 2005). The aligned sequences were trimmed using trimAl with the option‘a(chǎn)utomated1’ (Capella-Gutiérrez et al., 2009).Maximum likelihood (ML) analysis was conducted using RaxML-8.2.4 (Stamatakis, 2014). The best model and parameter settings were chosen according to the Akaike information criterion by ProtTest 3.0 for ML analysis (Abascal et al., 2005). The ML searches used the cpREV+G+I substitution model for plastid sequences and JTT+G+I substitution model for mitochondrial sequences (-f a, 1 000 bootstrap replicates). Bayesian analyses were carried out using MrBayes3.2 with the best ProtTest model noted above(Huelsenbeck and Ronquist, 2001). Four independent Markov Chain Monte Carlo chains were run simultaneously and sampled every 100 generations for a total of 1 000 000 generations. The first 10% of the trees were discarded as a “burn-in.”

    3 RESULT

    3.1 Morphological analysis

    On the basis of morphology and life history observations (Wang et al., 2008; Guiry, 2015), the specimen was identi fied as Py. endiviifolia(Chamberlain, 1963; Wiencke and Clayton, 1998).This species was very distinctive in the local region because of its position high in the inter-tidal zone, its rough texture compared with other Pyropia species and its dark greenish color, which became blackish on drying (Fig.1a). The gametophyte blades measured5–20 cm in length and 4–15 cm in width and were monostromatic (Fig.1b, c). They attached to the rocks via abundant rhizoidal cells at the base of the thallus(Fig.1d). The almost colorless spermatangia around the margins of the gametophytes were formed by repeated division of vegetative cells (Fig.1e). The red carposporangia were formed by direct transformation of the vegetative cells while the fertilized zygotosporangium divided mitotically (Fig.1f).

    Table 1 Plastid gene content for Pyropia endiviifolia

    3.2 Organellar genome features of Py. endiviifolia

    The plastid genome of Py. endiviifolia was 195 784 base pairs (bp) long and contained two direct nonidentical repeat (DR) regions encoding 16S, 23S, 5S rRNA and two tRNA genes (trnI, trnA). These two repeats divided the circular molecule into a 150.6-kb large single copy (LSC) region and a 35.6-kb small single copy (SSC) region (Fig.2a). The overall GC content was 33.28%. The plastid genome encoded a total of 253 genes, consisting of 210 protein-coding genes (including 23 hypothetical protein genes ( ycf s)and 22 function-unknown open reading frames( orf s)), 37 tRNA genes and 6 rRNA genes, which comprised 75.83%, 1.44% and 4.58% of the total sequence, respectively (Table 1). Similar to other Bangiales species ( Py. haitanensis, 254 genes; Py.yezoensis, 256 genes; Bangia fuscopurpurea, 250 genes), all the genes in the LSC and SSC regions were single copy without introns, and 14 genes overlapped( psb C–psb D, atp D–atp F, ycf 24–ycf 16, rps 19–rpl 2,rpl 23–rpl 4, car A–orf 238 and rpl 24–rpl 14).

    The mitochondrial genome of Py. endiviifolia contained 53 genes, was 34 603 bp in length and had 30.46% GC content (Fig.2b). The genome contained 2 ribosomal RNA genes (1 large subunit and 1 small subunit), 25 transfer RNAs, 3 orf s, 2 secY-independent transporter proteins ( ymf s), 4 ribosomal proteins, and 17 genes related to electron transport and oxidative phosphorylation (Table 2). The protein-coding, tRNA and rRNA genes comprised 58.41%, 5.44% and 18.65% of the whole sequence, respectively.

    3.3 Genome conservation and dissimilarities

    Multiple alignment of 10 plastid sequences of Bangiales was conducted to further understand the structure and sequence similarity of the Py. endiviifolia plastid genome. Using Py. yezoensis as a reference,the sequence identity alignment results were plotted(Fig.3a). The results revealed high similarity across the Pyropia ptDNAs. The majority of variationsresulted from small insertions or deletions in intergenic regions. As expected, the rDNA regions were more conserved than the single-copy regions,and the coding regions were more conserved than the intergenic regions. Pyropia showed some differences when compared with other genera of Bangiales. For example, the intergenic regions between the pet G-rps 14 genes were longer in the Pyropia ptDNAs.Notably, the similarity of orf 621 was very low between Pyropia and other groups. Collinearity analysis showed that the architecture of the ptDNAs was highly conserved without any large rearrangements, despite their evolutionary distance(Fig.4a). The only apparent distinction was a single

    copy rDNA region in the species Py. perforate and Wildemania schizophylla. By contrast, Py. endiviifolia,Py. yezoensis, Py. haitanensis, Porphyra and Bangia possessed two direct non-identical rDNA repeats ( Py.fucicola and Py. kanakaensis had partial genomes).

    Table 2 Mitochondrial gene content for Pyropia endiviifolia

    Fig.2 Genome maps of the Pyropia endiviifolia plastid (a) and mitochondrion (b)

    Fig.3 Visualization of the alignment of Bangiales organelle genomes sequences

    Fig.4 Local collinear block (LCB) analysis of 10 plastid genomes (a) and 12 mitochondrial genomes (b)

    Table 3 General characteristics of Bangiales plastid and mitochondrial genomes

    Collinearity analysis of 12 mtDNAs showed that most sequence blocks were conserved co-linearly, but the genome contents and lengths were signi ficantly different (Fig.3b; Fig.4b). The observed structural differences mainly arose from the number and organization of mitochondrial group II introns in the large subunit ribosomal RNA ( rnl) gene and the cox 1 gene (Table 3). The mitochondrial genomes of Bangiales possessed different numbers of introns and intronic ORFs ( orf 111, orf 543, orf 544, orf 546,orf 550) in the rnl gene. The mtDNA of Py. endiviifolia had only one intron, which contained one intronic ORF ( orf 546), in the rnl gene. The other genomes of Pyropia contained at least two introns with 0–3 different intronic ORFs. The Pyropia species had 2–3 distinct introns and intronic ORFs ( orf 693, orf 729,orf 789, orf 813) in the cox 1 gene, except Py.endiviifolia, whose cox 1 gene had no introns. An absence of introns in the cox 1 gene was also observed in the Porphyra and Wildemania mtDNAs. The low number of introns resulted in Py. endiviifolia having the smallest mtDNA within Pyropia. B. fuscopurpurea had the most intronic ORFs in the cox 1 gene ( orf 652,orf 693, orf 780 and orf 813).

    3.4 Phylogenetic analyses

    Fig.5 Phylogenetic relationships within the Bangiales clade

    Trees were constructed using a dataset of 160 amino acid sequences of ptDNAs and 22 amino acid sequences of mtDNAs selected from eight representative species to examine the evolutionary position of Py. endiviifolia, and all of the nodes were inferred with strong support by the ML and BI methods (Fig.5). Within Pyropia, the close relationship between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis was con firmed. The species Py. haitanensis and Py.perforate also formed a separate clade. These two clades clustered together with a sister relationship.The remaining species Py. yezoensis and Py. fucicola grouped together at the base of the Pyropia group.

    Fig.6 Maximumlikelihoodrootedtree for rbcLsequences of Pyropia

    To verify the phylogenetic relationships of this group, the rbc L genes from the Py. endiviifolia plastid genome and 81 species of Pyropia (Table S3)downloaded from GenBank were used for phylogenetic tree reconstruction (Fig.6). The overall topologies were consistent with the trees constructed using whole organellar genomes. The inconsistencies resulted from the low number of available organellar genomes of Pyropia. The phylogenetic tree topology demonstrated that Py. endiviifolia formed a wellsupported clade together with the unidenti fied Pyropia sp. Antar 68 from Admiralty Bay, King George Island,South Shetlands Archipelago, Antarctica. The sequence similarity between Py. endiviifolia and Pyropia sp. Antar 68 was 100%, which indicated that they might be the same species.

    4 DISCUSSION

    The first plastid and mitochondrial genomes of the Antarctic red algae Py. endiviifolia were determined in this study. The organellar genomes of Py.endiviifolia have large protein-coding gene repertoires and a compact genome organization. Comparative genomic analysis revealed highly conserved collinearity across the whole organellar genomes. The differences in size among mitochondrial genomes were related to the number and organization of mitochondrial group II introns of the large subunit of the ribosomal RNA gene and the cox 1 gene. Typically,eukaryotes possess inserted sequences termed group II introns, but these sequences are only observed in organellar genomes (Michel et al., 1982). A previous study indicated that horizontal transfers have taken place from the mitochondrial genomes of diatoms to the alga Chattonella (Kamikawa et al., 2009). Pyropia endiviifolia had no introns in its cox 1 gene, which was unique among Pyropia species. The number of introns in the rnl gene was also lower than in other Pyropia species. This lack of introns could lead to a convergent and stabilized mtDNA structure. It could also be used as a basis for designing molecular markers for species identi fication. The structure and number of rnl and cox 1 introns in Py. endiviifolia implies a speci fic evolutionary mechanism in this Antarctic species.

    We identi fied two direct non-identical repeats in the Py. endiviifolia plastid genomes. By comparison,there was only one copy in Py. perforate and W.schizophylla, a phenomenon that has also been found in some Florideophyte species ( Calliarthron tuberculosum and Chondrus crispus). Typically, most plastid genomes possess two large inverted repeats containing the rRNA genes. However, with the number of sequenced genomes increasing, more and more variations have been found (Hagopian et al.,2004). Analysis of the rDNA operons in Guillardia and Porphyra suggests that the directly repeated rDNA genes of the ancestral Rhodophyte were transformed into inverted repeats in Guillardia(Douglas, 1998). Lee et al. detected three minor structural types (R1-, R2-, and R3-type) in the Florideophyceae group, which were explained by recombination events of the duplicated rDNA operons(Lee et al., 2016). The two rDNA operons have been only partially retained or one copy has been completely lost in some red algae species. This process could lead to structural stabilization of the plastid genomes. The ancestral R1-type rDNA operon was retained in Py.endiviifolia, which implies slow evolution of the ptDNA structure.

    Studies have shown that multigene phylogenies can elucidate phylogenetic relationships more exactly when the different evolutionary rates of the genes are considered (Yoon et al., 2006; Verbruggen et al.,2010). We utilized a set of ptDNA and mtDNA genes to explore the phylogenetic relationships of Pyropia.In this study, the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis grouped together with high support in the phylogenetic analysis, rather than all the of Northern Hemisphere species clustering together first. Despite their geographical isolation, all members of this group are cold-water adapted (Brodie and Irvine, 2003), which has led to almost identical environmental selection pressure. The fixation rate in genome evolution depends on the purifying selection of the environment(Buschiazzo et al., 2012). This result implies that the selection pressure the Antarctic species has experienced was more similar to that of Py.kanakaensis than other species. However,inconsistencies in phylogenetic analysis can occur when there is sparse taxon sampling (Zhao et al.,2016). The current evidence is insufficient to interpret the origin and evolution of Py. endiviifolia, because it is the only Southern Hemisphere species with complete organellar genomes available. Therefore,more taxon information needs to be obtained and further studies combining the nuclear, plastid and mitochondrial genomes need to be performed to better understand the relationship of this algal group.

    5 DATA AVAILABILITY STATEMENT

    The authors declare that all data supporting the findings of this study are available within the methods and appendix sections.

    猜你喜歡
    王璐
    Wave nature of Rosensweig instability
    Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
    Atmospheric pressure pulsed modulated arc discharge plasma
    Bandgap evolution of Mg3N2 under pressure:Experimental and theoretical studies
    交互式教學(xué)在英語(yǔ)專業(yè)閱讀課改中的應(yīng)用研究
    Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
    公路橋梁設(shè)計(jì)中的隱患及解決措施
    Improved Fibroblast Adhesion and Proliferation by Controlling Multi-level Structure of Polycaprolactone Microfiber
    A m,p-Laplacian Parabolic Equation with Nonlinear Absorption and Boundary Flux
    Divergence time, historical biogeography and evolutionary rate estimation of the order Bangiales (Rhodophyta) inferred from multilocus data*
    网址你懂的国产日韩在线| 国产爱豆传媒在线观看| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 女人被狂操c到高潮| 人人妻人人看人人澡| 久久国产精品影院| 久久天堂一区二区三区四区| 丝袜人妻中文字幕| 精品一区二区三区av网在线观看| 亚洲欧美精品综合一区二区三区| av中文乱码字幕在线| 深夜精品福利| 日本一二三区视频观看| 国产久久久一区二区三区| 亚洲av中文字字幕乱码综合| 一进一出抽搐gif免费好疼| 美女黄网站色视频| 亚洲精品久久国产高清桃花| 99热这里只有是精品50| 悠悠久久av| 日韩欧美三级三区| 麻豆成人午夜福利视频| 国产激情欧美一区二区| 精品不卡国产一区二区三区| 一a级毛片在线观看| 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 怎么达到女性高潮| 成人国产一区最新在线观看| 成在线人永久免费视频| 国产单亲对白刺激| 日本熟妇午夜| 国产一区二区在线观看日韩 | 国产精品,欧美在线| 91久久精品国产一区二区成人 | 国产精品永久免费网站| 一区二区三区激情视频| 亚洲精品色激情综合| 天天躁日日操中文字幕| 国产成人欧美在线观看| 国产黄片美女视频| 国产免费av片在线观看野外av| 性色av乱码一区二区三区2| 日本撒尿小便嘘嘘汇集6| 国产1区2区3区精品| av在线蜜桃| 国产精品一区二区三区四区久久| 麻豆国产av国片精品| 精品一区二区三区av网在线观看| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 美女cb高潮喷水在线观看 | 国产成人福利小说| 三级毛片av免费| 日日夜夜操网爽| 国产一区二区三区视频了| 深夜精品福利| 老司机午夜十八禁免费视频| 亚洲国产欧美网| 国产精品综合久久久久久久免费| 久久久久久大精品| 国产成人欧美在线观看| 日韩精品中文字幕看吧| 在线永久观看黄色视频| 两个人视频免费观看高清| 久久精品国产99精品国产亚洲性色| netflix在线观看网站| 91字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区| 美女高潮的动态| 亚洲国产日韩欧美精品在线观看 | 最近视频中文字幕2019在线8| 一进一出抽搐动态| 国产aⅴ精品一区二区三区波| 99热精品在线国产| a级毛片a级免费在线| 日韩欧美国产一区二区入口| 两个人的视频大全免费| 国内精品美女久久久久久| 免费无遮挡裸体视频| 激情在线观看视频在线高清| 99国产精品一区二区三区| 国产熟女xx| 国产亚洲av高清不卡| 日韩人妻高清精品专区| 少妇丰满av| 亚洲精品粉嫩美女一区| 成人午夜高清在线视频| av欧美777| 午夜a级毛片| 久久久国产精品麻豆| a级毛片在线看网站| 欧美色欧美亚洲另类二区| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 久久欧美精品欧美久久欧美| 观看美女的网站| 成年免费大片在线观看| 婷婷亚洲欧美| 精品乱码久久久久久99久播| 99久久国产精品久久久| 99国产精品一区二区三区| 在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 美女午夜性视频免费| 91久久精品国产一区二区成人 | 免费一级毛片在线播放高清视频| 久久人人精品亚洲av| 午夜亚洲福利在线播放| 精品99又大又爽又粗少妇毛片 | 亚洲人成电影免费在线| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三| a在线观看视频网站| 黑人欧美特级aaaaaa片| 久久久久亚洲av毛片大全| 日韩欧美免费精品| 久久久久精品国产欧美久久久| 小说图片视频综合网站| 长腿黑丝高跟| 在线免费观看不下载黄p国产 | 给我免费播放毛片高清在线观看| 国产成人精品久久二区二区免费| 精品人妻1区二区| 久久中文字幕一级| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 国产精品精品国产色婷婷| 首页视频小说图片口味搜索| 手机成人av网站| 国产免费av片在线观看野外av| 毛片女人毛片| 9191精品国产免费久久| 日韩欧美精品v在线| 99国产精品一区二区蜜桃av| 国产精品永久免费网站| 久久久久亚洲av毛片大全| 日本a在线网址| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 亚洲国产欧美人成| 免费看日本二区| 亚洲午夜精品一区,二区,三区| 一区福利在线观看| 麻豆成人午夜福利视频| 欧美乱色亚洲激情| 亚洲,欧美精品.| 久99久视频精品免费| 香蕉久久夜色| 97超视频在线观看视频| 成年免费大片在线观看| h日本视频在线播放| 深夜精品福利| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女| 国产一区二区三区在线臀色熟女| 在线播放国产精品三级| 神马国产精品三级电影在线观看| 最近最新免费中文字幕在线| 亚洲av中文字字幕乱码综合| av欧美777| 成年人黄色毛片网站| 国产成人av激情在线播放| 精品电影一区二区在线| 男女视频在线观看网站免费| xxx96com| 亚洲乱码一区二区免费版| 91久久精品国产一区二区成人 | 搡老熟女国产l中国老女人| 欧美在线黄色| 99在线视频只有这里精品首页| 久久精品国产综合久久久| 亚洲成人中文字幕在线播放| 给我免费播放毛片高清在线观看| 超碰成人久久| 国产欧美日韩一区二区三| 成人性生交大片免费视频hd| 亚洲国产精品合色在线| 日韩三级视频一区二区三区| 精品久久久久久成人av| 国产爱豆传媒在线观看| 搡老妇女老女人老熟妇| 精品国内亚洲2022精品成人| 丁香欧美五月| 黄片大片在线免费观看| 午夜日韩欧美国产| 99久久精品热视频| 国产亚洲欧美98| 网址你懂的国产日韩在线| 天堂√8在线中文| 国产97色在线日韩免费| 亚洲精品在线美女| 香蕉丝袜av| 99久久成人亚洲精品观看| 国产高潮美女av| 免费观看人在逋| 在线播放国产精品三级| 婷婷精品国产亚洲av在线| 欧美成人性av电影在线观看| 国产高清videossex| 日韩人妻高清精品专区| 性色avwww在线观看| 一级毛片高清免费大全| 精品国产美女av久久久久小说| 成人av在线播放网站| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 国产单亲对白刺激| 国内少妇人妻偷人精品xxx网站 | 免费av不卡在线播放| 国产成年人精品一区二区| aaaaa片日本免费| 曰老女人黄片| 视频区欧美日本亚洲| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| 香蕉丝袜av| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 嫩草影院入口| 国产免费男女视频| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 999精品在线视频| 性色av乱码一区二区三区2| 两个人看的免费小视频| 啦啦啦免费观看视频1| 国产亚洲精品久久久com| 香蕉久久夜色| 免费看a级黄色片| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 成人无遮挡网站| 成人精品一区二区免费| 18禁国产床啪视频网站| 免费看日本二区| 亚洲一区二区三区色噜噜| 国产精品av久久久久免费| 在线播放国产精品三级| 国产精品久久久av美女十八| 男插女下体视频免费在线播放| 香蕉久久夜色| 亚洲精品粉嫩美女一区| 两个人看的免费小视频| 草草在线视频免费看| 在线看三级毛片| 女同久久另类99精品国产91| 91在线精品国自产拍蜜月 | 91字幕亚洲| 亚洲精品久久国产高清桃花| 国内精品一区二区在线观看| 久久久久久大精品| 99热精品在线国产| 美女黄网站色视频| 蜜桃久久精品国产亚洲av| 此物有八面人人有两片| 亚洲精华国产精华精| 中文资源天堂在线| 床上黄色一级片| www.熟女人妻精品国产| 国产又色又爽无遮挡免费看| 国产97色在线日韩免费| 亚洲专区中文字幕在线| 久9热在线精品视频| 色老头精品视频在线观看| 深夜精品福利| 久久午夜综合久久蜜桃| 日本 av在线| 在线免费观看不下载黄p国产 | 日本撒尿小便嘘嘘汇集6| 成年女人看的毛片在线观看| 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 日韩av在线大香蕉| 看片在线看免费视频| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 精品国产乱码久久久久久男人| 日本一本二区三区精品| 午夜a级毛片| 成年免费大片在线观看| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 我的老师免费观看完整版| 香蕉丝袜av| 成人欧美大片| 18禁国产床啪视频网站| 丰满人妻熟妇乱又伦精品不卡| 国产野战对白在线观看| 男人和女人高潮做爰伦理| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 两个人看的免费小视频| 91麻豆精品激情在线观看国产| 女警被强在线播放| 成人永久免费在线观看视频| 视频区欧美日本亚洲| 国产高清三级在线| 亚洲真实伦在线观看| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| a级毛片a级免费在线| 欧美一级a爱片免费观看看| 一a级毛片在线观看| 夜夜夜夜夜久久久久| 成年女人看的毛片在线观看| 国产成人影院久久av| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 亚洲午夜理论影院| 视频区欧美日本亚洲| 国产成人av激情在线播放| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 此物有八面人人有两片| 午夜激情欧美在线| 欧美+亚洲+日韩+国产| 男人的好看免费观看在线视频| 国产免费男女视频| 一夜夜www| 欧美日本视频| 久久中文字幕人妻熟女| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 午夜福利成人在线免费观看| 国产成人系列免费观看| 免费在线观看成人毛片| 午夜免费成人在线视频| 免费在线观看亚洲国产| 国产av在哪里看| 午夜精品久久久久久毛片777| 国产一级毛片七仙女欲春2| 日本 欧美在线| 国产精品一区二区三区四区免费观看 | 欧美精品啪啪一区二区三区| а√天堂www在线а√下载| 亚洲一区二区三区不卡视频| 麻豆国产97在线/欧美| 看免费av毛片| 国产精品一区二区三区四区久久| 午夜精品一区二区三区免费看| 少妇丰满av| 精品久久蜜臀av无| 精品久久久久久,| 桃色一区二区三区在线观看| 亚洲精品在线观看二区| 国产97色在线日韩免费| 亚洲成人中文字幕在线播放| 亚洲av电影不卡..在线观看| 18禁观看日本| 色精品久久人妻99蜜桃| 99视频精品全部免费 在线 | 国产野战对白在线观看| xxxwww97欧美| 亚洲自拍偷在线| 国产成人av教育| 香蕉久久夜色| 91在线精品国自产拍蜜月 | 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | av在线天堂中文字幕| 日本一本二区三区精品| 老汉色av国产亚洲站长工具| svipshipincom国产片| av中文乱码字幕在线| 国产亚洲av嫩草精品影院| x7x7x7水蜜桃| 天天躁日日操中文字幕| 午夜久久久久精精品| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 无人区码免费观看不卡| 亚洲欧美日韩东京热| 国产高清激情床上av| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| 好男人电影高清在线观看| 日日干狠狠操夜夜爽| 国产1区2区3区精品| 久久久成人免费电影| 夜夜夜夜夜久久久久| 不卡一级毛片| 亚洲欧美日韩卡通动漫| 99国产精品99久久久久| 日韩欧美一区二区三区在线观看| 久久久色成人| 丰满人妻熟妇乱又伦精品不卡| 欧美一区二区精品小视频在线| 欧美zozozo另类| 国产精品亚洲一级av第二区| 久久中文字幕人妻熟女| 精品久久久久久久久久免费视频| 午夜福利欧美成人| 久久久久性生活片| 久久香蕉精品热| 岛国在线免费视频观看| 国产欧美日韩精品一区二区| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 亚洲激情在线av| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 一本精品99久久精品77| 国产精品久久久av美女十八| 非洲黑人性xxxx精品又粗又长| 国产视频一区二区在线看| 免费人成视频x8x8入口观看| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 99热这里只有精品一区 | 精华霜和精华液先用哪个| 国产成人aa在线观看| 亚洲欧美精品综合一区二区三区| 最近视频中文字幕2019在线8| 久久久久久久久免费视频了| 国产不卡一卡二| 国产美女午夜福利| 一本综合久久免费| 国产一区二区激情短视频| 亚洲av成人精品一区久久| 久久精品aⅴ一区二区三区四区| 国产视频内射| 午夜视频精品福利| 又大又爽又粗| 超碰成人久久| 亚洲无线在线观看| 亚洲 欧美一区二区三区| 久久这里只有精品中国| 国产亚洲欧美98| 男女午夜视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99re在线观看精品视频| 午夜久久久久精精品| 精品乱码久久久久久99久播| 99国产精品99久久久久| 91av网站免费观看| 国产精品国产高清国产av| 91久久精品国产一区二区成人 | 999久久久精品免费观看国产| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 国内毛片毛片毛片毛片毛片| 亚洲国产日韩欧美精品在线观看 | 欧美日韩亚洲国产一区二区在线观看| 男人舔女人下体高潮全视频| 最新在线观看一区二区三区| av欧美777| 真实男女啪啪啪动态图| 亚洲av日韩精品久久久久久密| 又黄又粗又硬又大视频| 欧美xxxx黑人xx丫x性爽| 亚洲中文字幕一区二区三区有码在线看 | 成人高潮视频无遮挡免费网站| 天堂√8在线中文| 亚洲午夜理论影院| 夜夜爽天天搞| 我的老师免费观看完整版| 亚洲人与动物交配视频| av国产免费在线观看| 制服人妻中文乱码| 19禁男女啪啪无遮挡网站| 好看av亚洲va欧美ⅴa在| 精品久久久久久久毛片微露脸| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 亚洲成av人片免费观看| 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| 久久这里只有精品中国| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 亚洲专区字幕在线| 欧美成人性av电影在线观看| 一区二区三区激情视频| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品sss在线观看| 国产v大片淫在线免费观看| 国产高清激情床上av| 亚洲在线自拍视频| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看视频国产中文字幕亚洲| 欧美zozozo另类| 国产亚洲精品久久久久久毛片| 国产真实乱freesex| 亚洲av成人不卡在线观看播放网| 国产单亲对白刺激| 国产私拍福利视频在线观看| 日日夜夜操网爽| 精品国产乱码久久久久久男人| 国产精品一区二区精品视频观看| 99在线视频只有这里精品首页| 亚洲精品在线观看二区| svipshipincom国产片| 在线免费观看的www视频| 国产欧美日韩精品一区二区| 叶爱在线成人免费视频播放| 亚洲午夜精品一区,二区,三区| 国产亚洲av嫩草精品影院| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| 精品乱码久久久久久99久播| 国产熟女xx| 欧美xxxx黑人xx丫x性爽| 999久久久国产精品视频| 欧美丝袜亚洲另类 | 99久久精品一区二区三区| 香蕉丝袜av| 国产精品亚洲一级av第二区| 很黄的视频免费| 在线观看一区二区三区| 精品国内亚洲2022精品成人| 黄频高清免费视频| 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 国产成人系列免费观看| 黑人欧美特级aaaaaa片| 久久中文字幕人妻熟女| 精品不卡国产一区二区三区| 精品一区二区三区四区五区乱码| avwww免费| 国产伦精品一区二区三区四那| 国产黄色小视频在线观看| 久久精品91蜜桃| 黄色片一级片一级黄色片| 美女免费视频网站| 一级毛片女人18水好多| 狠狠狠狠99中文字幕| 久久精品91蜜桃| 欧美3d第一页| 久久久久久久久久黄片| 两性午夜刺激爽爽歪歪视频在线观看| 成年人黄色毛片网站| 亚洲欧美日韩无卡精品| 国内精品久久久久精免费| 国产精品av久久久久免费| 日本黄色视频三级网站网址| 97超级碰碰碰精品色视频在线观看| 国产蜜桃级精品一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美一区二区综合| 嫩草影视91久久| 人妻久久中文字幕网| 亚洲精品国产精品久久久不卡| 人人妻人人看人人澡| 亚洲九九香蕉| 老司机深夜福利视频在线观看| 久久中文字幕一级| 老司机深夜福利视频在线观看| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| 99riav亚洲国产免费| 免费看a级黄色片| 最近最新中文字幕大全电影3| 在线观看美女被高潮喷水网站 | 欧美一级a爱片免费观看看| 搡老妇女老女人老熟妇| 老汉色∧v一级毛片| 成熟少妇高潮喷水视频| 亚洲av日韩精品久久久久久密| 黄色成人免费大全| 中文字幕精品亚洲无线码一区| 国产免费av片在线观看野外av| 亚洲成av人片在线播放无| 午夜免费激情av| 国产精品久久久av美女十八| 国产激情欧美一区二区| 日本 欧美在线| 婷婷精品国产亚洲av在线| 黑人欧美特级aaaaaa片| 国产高清有码在线观看视频| 黄色 视频免费看| 91麻豆av在线| 麻豆国产97在线/欧美| 婷婷精品国产亚洲av| x7x7x7水蜜桃| 中文字幕人妻丝袜一区二区| 久久久久国产精品人妻aⅴ院| 亚洲成人久久爱视频| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲| 精品一区二区三区视频在线 | 成人无遮挡网站| 国产野战对白在线观看| 精品国内亚洲2022精品成人| 嫩草影院入口| 2021天堂中文幕一二区在线观| 很黄的视频免费| 91av网一区二区| 制服人妻中文乱码| 久久精品综合一区二区三区| 一二三四在线观看免费中文在| 欧美黄色淫秽网站| 亚洲精品美女久久久久99蜜臀| 日韩精品中文字幕看吧| 亚洲人成伊人成综合网2020| 免费av毛片视频| 两性午夜刺激爽爽歪歪视频在线观看| 可以在线观看的亚洲视频| av国产免费在线观看| 亚洲av中文字字幕乱码综合| 又大又爽又粗| 欧美在线黄色| 亚洲国产欧美网| 久久午夜亚洲精品久久| 草草在线视频免费看| 国产伦在线观看视频一区| 精品欧美国产一区二区三|