• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial

    2018-07-27 07:03:22LanJuLiangZhangZhangXinYanXinDingDeQuanWeiQiLiYangZhenHuaLiandJianQuanYao

    Lan-Ju Liang, Zhang Zhang, Xin Yan, Xin Ding, De-Quan Wei, Qi-Li Yang,Zhen-Hua Li, and Jian-Quan Yao

    Abstract—A novel patterned metamaterial,composed of graphene layer and metal periodic array of split ring resonators (SRRs) and cross-shaped resonators (CSRs), with broadband terahertz (THz)wave modulation was proposed and theoretically studied. It demonstrated that a broad passband high transmission of over 96.1% in the frequency range from 1.02 THz to 1.66 THz and two narrow band resonance frequencies f1 and f2 could be generated. The modulation depth of transmission was 29.2% when the graphene layer was covered on the metal metamaterial surface,and the modulation depth could be further increased by increasing the Fermi energy of graphene layer and reached approximately 79.5% at 1.0 eV in a broadband THz frequency range. The resonance frequencies of f1 and f2 were blue-shifted, and their modulation depths reached about 63.2% and 18%, respectively. These results show that the ultrathin graphene-metal metamaterial exhibits potential to achieve highperformance active THz devices and may offer widespread applications.

    1. Introduction

    A metamaterial, consisting of a two-dimensional patterned metal structure, has been proposed and studied recently, whose electromagnetic properties are determined by subwavelength resonant elements[1]-[4]. It is a promising material for engineering novel devices, such as reflection devices, biosensors, tunable filters, and polarization modulators due to the unique optical physics and control of incident electromagnetic waves[5]-[9]. In recent years, terahertz (THz) waves have attracted increasing interests for its promising future in applications of communications, military radar, biology, and medical sciences[10]-[16]. Many kinds of THz devices have been proposed to exploit potential applications especially for active modulators[17]-[23]. However, the complicated manufacturing and lower modulation efficiency have been constraints on the developments of metamaterials to obtain tunable performance devices in practical applications operated at THz frequencies.

    Graphene, a single-layer with hexagonally arranged carbon atoms, has attracted much attention due to its excellent properties such as high carrier mobility and charge carrier densities, which offers a superior solution to the modulation device[24]-[30]. On the basis of graphene structure, active THz modulators were proposed and characterized over the past several years. Liet al. proposed a graphene metamaterial hybrid structure and the modulation depth of transmission was 29.0% in the frequencies from 0.6 THz to 0.9 THz[31]. Liet al.proposed a graphene-silicon hybrid metamaterial and the modulation depth of transmission was 61% at the 0.67 THz[32].For current THz modulators, there are still many shortcomings,such as small modulation depth and narrowband width.Therefore, performance characteristics of tunable devices should be further improved for practical applications in THz technology.

    In this paper, we numerically investigated on the transmission modulation devices in the THz range based on a hybrid graphene metamaterial deposed on the flexible substrate by using finite integration time domain (FITD). Although,some researches have studied the graphene-modulated split ring resonators (SRRs) devices[33], the active modulation characteristics of the hybrid structure of the graphene-metal metamaterial are still needed studying extensively. In our designed structure, the metal metamaterial is covered with graphene layer, leading to a flat band in transmission.Meanwhile, graphene allows the control on voltagemodulated surface plasmon at the interface, which can tune the transmission characteristics of incident waves at THz frequencies. By varying graphene’s Fermi energy (EF)levels, the flat-band transmission decreases from 68.0% to 19.7%, and the resonance frequencies are also changed. WhenEFis 1.0 eV, the transmission modulation depth reaches 79.5%in broadband THz frequencies, ranging from 1.05 THz to 1.65 THz. Moreover, the modulation depths are 63.2% and 18.0%for the resonance frequenciesf1andf2, respectively. This proposed hybrid graphene metamaterial presents better features compared with conventional THz modulation because of its flat-broadband range and large range modulation.

    2. Computational Methods

    The structure design of metamaterial and the full wave numerical simulations are performed by commercial finite element package computer simulation technology (CST)microwave studio. Fig. 1 (a) shows the schematic of the proposed hybrid graphene-metal metamaterial deposited on top of SiO2/Si. The thicknesses of SiO2and Si layers are 300 nm and 1 μm, respectively. In our simulation, SiO2is considered as a nondispersive dielectric with a relative permittivityThe bottom layer is polyimide film, and the thickness of polyimide is 30 μm, as shown in Fig. 1 (b). The dielectric constant and loss tangent of polyimide are 3.10 and 0.05, respectively. The designed metal structure is composed of SRRs and cross-shaped resonators (CSRs), the thickness of the metal structure is 200 nm. The geometrical parameters are as follows:P=120 μm,w1=5 μm,w2=6 μm,d=6 μm,L=90 μm,andL2=40 μm, as shown in Fig. 1 (c). All the simulation results are calculated by using the frequency domain solver, and the unit-cell boundary conditions in thex-yplane and floquet ports in thezdirection are adopted for the designed structure.

    Fig. 1. Structure of hybrid graphene-metal metamaterial: (a) 3D view, (b) side view, and (c) the unit cell of the metal metamaterial with the geometrical parameters of P=120 μm, w1=5 μm, w2=6 μm,d=6 μm, L=90 μm, and L2=40 μm.

    Graphene layer can be modeled as a two-dimensional material and can be described by surface conductivity. Its surface conductivity can be retrieved by the Drude model at the THz region, as follows[34]:

    whereZ0=377 Ω andare the vacuum and substrate impedances, respectively, andis the complex impedance of the graphene-metamaterial layer.According to (1), graphene’s surface conductivity can be controlled by varying itsEF, thereby changing the impedance and transmission efficiency of the metamaterial.Thus, the transmission amplitude can be modulated through the hybrid graphene-metal metamaterial with differentEFlevels.

    3. Results and Discussion

    3.1 Broad Flat-Band Transmission of the Designed Metal Metamaterial

    First, in order to clarify the modulation mechanism of the hybrid metamaterial structure, we investigated the transmissions of the designed metal metamaterial (sold line),SRRs (dash line), and CSRs (dot line) using CST Microwave Studio without graphene layer of three structures, as shown in Fig. 2 (a). When the polarization of the incident THz waves was perpendicular to the gap-bearing side of SRRs, a flat region emerged as a wide passband with a transmission efficiency over 96.1% from 1.02 THz to 1.66 THz, and two resonance frequencies were generated at 0.71 THz and 1.90 THz, respectively. From the transmission spectra of the SRRs(dash line) and CSRs (dot line) structure and the surface current distributions atf1andf2, it can be seen that the strong surface current distributions in two side lengths of SRRs atf1demonstrated an enhanced dipolar coupling, which is closely related to the polarization of the incident waves. To verify this polarization dependent effect, the according electric field distributions along different directions (ExandEy) are also presented in Figs. 2 (d) and (e). It is clearly seen that the electric field distributions change largely with the polarization of the incident waves transforming fromx- toy-direction. On the other hand, the electric field distributions atf2are similar with that atf1, indicating the same dipolar resonance due to the anisotropic electric field distribution (not shown here). It is worthy note that there is no evidenced inductance-capacitance(LC) resonance which will drive the circulating surface currents in the SRRs loop as reported in other research works[38],[39]. This may be interpreted by the SRRs-CSRs coupling effect. It can be seen from Figs. 2 (b) and (c) that the surface currents also appear in the CSRs structure, the interactions of higher mode resonances for SRRs and the dipolar resonance for CSRs produce a mixed-mode resonance, which would prevent the formation of circulating currents in the SRRs structure,resulting in the decrease, even elimination of LC resonance mode.

    Fig. 2. Transmission, surface electric field, and charge density distribution of the designed metamaterial, SRRs, CSRs structure without graphene: (a) THz transmission spectra; simulated surface current distribution at (b) f1=0.71 THz and (c) f2=1.90 THz, and simulated electric field distributions at f1 along (d) x-direction and(e) y-direction.

    3.2 Graphene-Metal Hybrid Metamaterial

    We also characterized the THz transmission spectra of the designed hybrid metamaterial graphene, as shown in Fig. 3.The broadband transmission decreased from 96.1% to 68.0%,and the flat-transmission bandwidth decreased from 1.10 THz to 1.62 THz when the monolayer graphene was transferred on the metamaterial surface. The THz transmission atf1increased from 0 to 40% (ΔT=0) and showed a strong redshift in the resonant region from 0.71 THz to 0.59 THz (Δf=0.12 THz),while that atf2increased from 10% to 27% (ΔT=17%) and showed no obvious resonant frequency shifts.

    Fig. 3. THz transmission spectra of the bare metal and hybrid graphene-metal metamaterial.

    From the above analysis, we know thatf1is a dipole oscillator model for SRRs. This resonance frequencyf1can be determined byis the average permittivity of the surrounding medium anddis the length of the SRRs arm. When the graphene layer was deposited on the surface of metamaterial, thewas increased, which resulted in the redshift of the resonancef1. Furthermore, the change in transmission was determined onto (4). When graphene layer was deposited on the metamaterialwas increased, resulting in the transmission of graphene metamaterial changing. The simulation results showed that the proposed hybrid ultrathin graphene metamaterial device can modulate the resonance frequency and transmission in the THz frequencies.

    3.3 Hybrid Graphene-Metal Metamaterial with Different Fermi Levels

    In order to further study the characteristics of the hybrid graphene metamaterial, the THz transmission spectra under various Fermi levels of graphene were studied. The carrier concentrationncorresponds to the Fermi energy of graphene,thus we can obtain[40]:

    whereε0andεrare the permittivities of vacuum and silicon dioxide, respectively,tsis the thickness of silicon dioxide,andeis electron charge. Then, based on (5) and (6), we obtain

    Fig. 4 (a) shows the transmission spectra of the bare metamaterial and hybrid graphene metamaterial with variousEFlevels. The transmittance of the bare metamaterial approaches 96.1%. When the metamaterial was covered with graphene layer, the broadband average transmission decreased from 68.1% to 19.7% with the grapheneEFfrom 0.3 eV to 1.0 eV. In addition, the flat-band transmission exhibited little change in bandwidth but the flat band blue-shifted to higher frequencies in the band location. Table 1 shows a detailed description of the transmission performance for different graphene chemical potentials. To demonstrate the flat property of the passband, the transmission ripple was also calculated. In the flat-band region, the ratio of the difference between the maximum and minimum transmissions to the maximum transmission is referred as transmission ripple. It is found that the ripple decreased from 5% to 3% in a broadband THz frequency range, and the flat characteristic becomes much better with the increase of theEFlevel. When theEF=1.0 eV,the transmission is 19.7%. Therefore, the simulation results demonstrate that this hybrid graphene metamaterial can realize on-to-off switching responses of the THz waves.

    Both the resonance frequenciesf1andf2blue-shifted with the increase ofEF. Fig. 4 (b) reveals the resonance frequency with differentEFlevels with simulated data.The straight lines show the exponential fits to the simulation data. The fitting functions forf1andf2are described byrespectively. The resonance frequenciesf1andf2are 1.58 THz and 2.33 THz at 1.0 eV, respectively.

    Fig. 4. Modulated results of the metamaterial under different grapheme EF: (a) THz transmission spectra and (b) resonance frequencies f1 and f2.

    The modulation depths of resonance frequency and transmission are defined asrespectively. Note that to define the modulation depth of transmission strictly, the transmission of the bare metamaterial and graphene-metamaterial at different Fermi energy,TmaxandTrespectively, are adopted as the average values in the range from 1.05 THz to 1.65 THz.Therefore, from Table 1, the transmission modulation depth(ΔT/Tmax) achieves 79.5%, and that of the resonance frequenciesf1andf2are 63.2% and 18.0%, respectively with an applied Fermi energy of 1.0 eV.

    Table 1: Transmission properties with different EF levels

    Fig. 5 shows the real and imaginary conductivitiesy change of graphene by continuously adjustingEF. It shows that the real and imaginary conductivitie of graphene was increased with increasingEFlevel.

    Fig. 5. Graphene conductivity with different EF levels at THz frequencies: (a) real and (b) imaginary parts.

    Additionally, the resonance frequency shift ofdetermined byfrom (3). Andis negative in the frequency range from 0.4 THz to 2.8 THz with different grapheneEF. Therefore, the resonance frequencies off1andf2were blue-shifted by increasingEF. The modulation depth of the resonance frequencyf1was larger than that off2because of the larger change infor the same change inEF.

    The modulation depth of the resonance frequencyf1was larger than that off2because of the larger change infor the same change inEF. According to the resistor-inductance-capacitance (RLC)-series electrical circuit,the bare metamaterial impedance can be directly written asThe capacitance can be expressed aswhen the monolayer graphene was layered on top of the metamaterial, whereCis the capacitance of the bare metamaterial,σis the graphene layer conductivity, andW0/L0is the effective aspect ratio of the conducting graphene[37]. The conductivity of graphene layer was increased with increasingEF, thereby enhancing theCgand decreasing theZmeta(ω) of the hybrid graphene metamaterial.Simultaneously, the transmission amplitude of the proposed structure can be dynamically controlled according to (4). On the other hand, the graphene layer manifests ‘metallic’properties more obviously with increasingEF, and the transmission efficiency decreases in broad frequencies.

    4. Conclusions

    In conclusion, we have designed a novel ultrathin THz modulator based on hybrid graphene-metal metamaterial.The proposed metamaterial structure exhibited a flat broad passband transmission response in THz frequencies. The modulation depth of transmission was 29.2% when graphene was layered on the metamaterial, meanwhile that of 79.5% was achieved through adjusting the graphene’sEFto 1.0 eV in a broadband THz frequency range. The modulation depths of resonance frequenciesf1andf2were 63.2% and 18.0%, respectively. These results demonstrate that this kind of ultrathin hybrid graphene metamaterial enables effective manipulation of THz waves, and this new modulator may offer widespread applications in the wireless communications, imaging systems, biomedical sensing, and so on.

    免费黄频网站在线观看国产| 欧美黑人精品巨大| 久久精品aⅴ一区二区三区四区| 国产av精品麻豆| 男女高潮啪啪啪动态图| 国产精品一区二区免费欧美 | 男人添女人高潮全过程视频| 欧美xxⅹ黑人| 99热网站在线观看| xxxhd国产人妻xxx| 老熟妇仑乱视频hdxx| 久久天堂一区二区三区四区| 亚洲精华国产精华精| 成人国语在线视频| 亚洲专区字幕在线| 伊人久久大香线蕉亚洲五| 考比视频在线观看| av超薄肉色丝袜交足视频| 首页视频小说图片口味搜索| 高清欧美精品videossex| 男人舔女人的私密视频| 国产精品.久久久| 欧美精品一区二区免费开放| 午夜免费鲁丝| 黄色视频在线播放观看不卡| 人妻 亚洲 视频| 国产成人精品在线电影| 一区二区三区精品91| 黄片大片在线免费观看| 欧美精品av麻豆av| 波多野结衣一区麻豆| 精品国产一区二区三区四区第35| 一个人免费看片子| 国产真人三级小视频在线观看| 男女午夜视频在线观看| 亚洲伊人色综图| 国产xxxxx性猛交| 999久久久国产精品视频| 97人妻天天添夜夜摸| 一级毛片精品| xxxhd国产人妻xxx| 久久国产亚洲av麻豆专区| 欧美激情久久久久久爽电影 | 麻豆乱淫一区二区| 下体分泌物呈黄色| 丝袜脚勾引网站| 久久久久视频综合| 久久九九热精品免费| 成人手机av| 欧美在线一区亚洲| 久久精品成人免费网站| 亚洲精品日韩在线中文字幕| 别揉我奶头~嗯~啊~动态视频 | 热re99久久精品国产66热6| 91老司机精品| 后天国语完整版免费观看| 精品高清国产在线一区| 国产免费视频播放在线视频| 久久国产精品人妻蜜桃| 久久久久久久精品精品| 亚洲欧美精品综合一区二区三区| 久久人人97超碰香蕉20202| 久久精品aⅴ一区二区三区四区| 亚洲av成人不卡在线观看播放网 | 亚洲国产精品999| 男女无遮挡免费网站观看| 人人澡人人妻人| 正在播放国产对白刺激| 久久ye,这里只有精品| 国产片内射在线| 2018国产大陆天天弄谢| 日本wwww免费看| 亚洲成国产人片在线观看| 国产一区二区在线观看av| 色婷婷av一区二区三区视频| 国产成人欧美在线观看 | 欧美老熟妇乱子伦牲交| 国产欧美日韩精品亚洲av| 人人妻人人澡人人爽人人夜夜| 51午夜福利影视在线观看| 日韩制服骚丝袜av| 欧美精品啪啪一区二区三区 | 18在线观看网站| 欧美国产精品一级二级三级| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 午夜老司机福利片| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 最近最新中文字幕大全免费视频| 91麻豆av在线| 一级黄色大片毛片| 99国产精品免费福利视频| 制服诱惑二区| 国产免费视频播放在线视频| 狂野欧美激情性bbbbbb| 美女主播在线视频| 19禁男女啪啪无遮挡网站| 久久久精品免费免费高清| 啦啦啦 在线观看视频| 国产深夜福利视频在线观看| 欧美成人午夜精品| 悠悠久久av| 99久久人妻综合| 亚洲,欧美精品.| 90打野战视频偷拍视频| 国产成人精品无人区| 一区二区三区精品91| av片东京热男人的天堂| 久久午夜综合久久蜜桃| 少妇 在线观看| 久久亚洲精品不卡| 国产成人精品无人区| bbb黄色大片| 狂野欧美激情性xxxx| 一本综合久久免费| 国产欧美日韩一区二区三 | 一本大道久久a久久精品| 精品一区二区三卡| 一级,二级,三级黄色视频| 久久综合国产亚洲精品| 99国产极品粉嫩在线观看| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 三上悠亚av全集在线观看| 视频区欧美日本亚洲| 国产成人免费观看mmmm| 侵犯人妻中文字幕一二三四区| 久久亚洲精品不卡| 亚洲五月婷婷丁香| xxxhd国产人妻xxx| 国产精品影院久久| 久久天躁狠狠躁夜夜2o2o| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 999精品在线视频| 国产精品一区二区在线观看99| 在线av久久热| 亚洲欧美激情在线| 欧美日本中文国产一区发布| 国产极品粉嫩免费观看在线| 中文欧美无线码| 脱女人内裤的视频| 人妻久久中文字幕网| 高清在线国产一区| 91老司机精品| 高清欧美精品videossex| 蜜桃国产av成人99| 欧美午夜高清在线| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 国产福利在线免费观看视频| 中文字幕人妻丝袜制服| 中文字幕人妻熟女乱码| 搡老乐熟女国产| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 亚洲av日韩精品久久久久久密| 日韩人妻精品一区2区三区| 狂野欧美激情性xxxx| 丝袜美足系列| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 亚洲中文日韩欧美视频| 激情视频va一区二区三区| 亚洲av美国av| 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月 | 成年女人毛片免费观看观看9 | 欧美黑人欧美精品刺激| 大香蕉久久成人网| 久久久久久久精品精品| 嫩草影视91久久| 丝袜美腿诱惑在线| 男女下面插进去视频免费观看| 精品久久久久久电影网| 黄色a级毛片大全视频| 在线观看免费高清a一片| 一级a爱视频在线免费观看| 99热全是精品| av欧美777| 日本a在线网址| 欧美精品一区二区免费开放| 久久影院123| 亚洲av片天天在线观看| 中文字幕制服av| 亚洲国产欧美日韩在线播放| 亚洲五月色婷婷综合| 久久久久国产一级毛片高清牌| 国产精品一区二区在线不卡| 亚洲av成人一区二区三| 亚洲五月色婷婷综合| 男人爽女人下面视频在线观看| 国产精品一二三区在线看| 亚洲欧美清纯卡通| 91精品国产国语对白视频| 久久久久国产精品人妻一区二区| www.自偷自拍.com| 老汉色∧v一级毛片| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区三区在线| 国产野战对白在线观看| 一区二区日韩欧美中文字幕| 国产伦理片在线播放av一区| 欧美在线一区亚洲| 日韩大码丰满熟妇| 他把我摸到了高潮在线观看 | 大码成人一级视频| 亚洲熟女精品中文字幕| 少妇人妻久久综合中文| 制服人妻中文乱码| 欧美性长视频在线观看| 好男人电影高清在线观看| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区| 性色av乱码一区二区三区2| 午夜福利在线观看吧| 欧美日韩福利视频一区二区| 亚洲avbb在线观看| 久久99热这里只频精品6学生| 一本综合久久免费| 午夜视频精品福利| 日韩精品免费视频一区二区三区| 国产一区二区三区在线臀色熟女 | 午夜福利在线观看吧| 精品一区二区三区四区五区乱码| 一级毛片电影观看| 两个人看的免费小视频| 一级毛片女人18水好多| av电影中文网址| 国产日韩欧美视频二区| 亚洲 国产 在线| 日韩精品免费视频一区二区三区| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜一区二区| 亚洲欧美精品自产自拍| 亚洲精品久久久久久婷婷小说| 制服诱惑二区| 国产精品免费大片| 久久久久久久精品精品| 久久人人爽人人片av| 他把我摸到了高潮在线观看 | 久久天堂一区二区三区四区| 男女下面插进去视频免费观看| 成人国语在线视频| 男女国产视频网站| 一区二区三区精品91| 法律面前人人平等表现在哪些方面 | 在线精品无人区一区二区三| 母亲3免费完整高清在线观看| 悠悠久久av| 亚洲av成人不卡在线观看播放网 | 亚洲久久久国产精品| 美女脱内裤让男人舔精品视频| 亚洲激情五月婷婷啪啪| 操美女的视频在线观看| xxxhd国产人妻xxx| 久久久久网色| 国产一级毛片在线| 欧美av亚洲av综合av国产av| 国产欧美亚洲国产| 日本av免费视频播放| 大码成人一级视频| 91麻豆av在线| 色播在线永久视频| 久久久久久久国产电影| 人人妻人人澡人人爽人人夜夜| 午夜福利在线免费观看网站| 人成视频在线观看免费观看| 一本—道久久a久久精品蜜桃钙片| 一级毛片女人18水好多| 免费日韩欧美在线观看| 午夜精品国产一区二区电影| a级片在线免费高清观看视频| 91av网站免费观看| 别揉我奶头~嗯~啊~动态视频 | 黄片小视频在线播放| av网站在线播放免费| 老汉色∧v一级毛片| 91av网站免费观看| 中国国产av一级| 97精品久久久久久久久久精品| 欧美亚洲日本最大视频资源| 18禁国产床啪视频网站| 叶爱在线成人免费视频播放| 国产欧美日韩综合在线一区二区| 亚洲欧洲日产国产| 一本综合久久免费| 亚洲专区中文字幕在线| 亚洲精品一二三| 中文字幕人妻丝袜制服| 久久这里只有精品19| 亚洲色图综合在线观看| 美女视频免费永久观看网站| 亚洲,欧美精品.| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| 欧美另类一区| 免费在线观看视频国产中文字幕亚洲 | 精品人妻1区二区| 亚洲精品美女久久久久99蜜臀| 亚洲黑人精品在线| 各种免费的搞黄视频| 高清在线国产一区| 国产在视频线精品| 国产一级毛片在线| 日韩电影二区| 亚洲性夜色夜夜综合| 操美女的视频在线观看| 蜜桃国产av成人99| 电影成人av| 精品高清国产在线一区| 18禁国产床啪视频网站| 两人在一起打扑克的视频| 久久国产精品影院| av有码第一页| 高潮久久久久久久久久久不卡| 亚洲精品国产av蜜桃| 国产高清视频在线播放一区 | 他把我摸到了高潮在线观看 | 精品久久久久久久毛片微露脸 | 电影成人av| 亚洲精品国产色婷婷电影| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 久久久水蜜桃国产精品网| 后天国语完整版免费观看| 老司机福利观看| 狂野欧美激情性bbbbbb| kizo精华| 成年美女黄网站色视频大全免费| 久久精品久久久久久噜噜老黄| av国产精品久久久久影院| 中文字幕精品免费在线观看视频| 婷婷成人精品国产| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品亚洲av一区麻豆| 少妇 在线观看| 1024香蕉在线观看| tocl精华| 我的亚洲天堂| 亚洲精品第二区| kizo精华| 免费高清在线观看视频在线观看| 狂野欧美激情性xxxx| 欧美乱码精品一区二区三区| 十八禁高潮呻吟视频| 久久人妻熟女aⅴ| www.熟女人妻精品国产| 精品国产超薄肉色丝袜足j| 深夜精品福利| av福利片在线| av国产精品久久久久影院| 午夜视频精品福利| 五月开心婷婷网| 午夜老司机福利片| 王馨瑶露胸无遮挡在线观看| 精品人妻一区二区三区麻豆| 久久国产精品大桥未久av| 日韩大片免费观看网站| 99国产精品一区二区三区| 在线观看一区二区三区激情| 永久免费av网站大全| 久久综合国产亚洲精品| 热re99久久国产66热| 久久国产精品男人的天堂亚洲| av网站免费在线观看视频| 夫妻午夜视频| 久久国产精品影院| 在线精品无人区一区二区三| 国产国语露脸激情在线看| 热re99久久国产66热| 亚洲精品国产av蜜桃| kizo精华| 一级,二级,三级黄色视频| 国产男女内射视频| 一边摸一边抽搐一进一出视频| 免费少妇av软件| 亚洲,欧美精品.| 又紧又爽又黄一区二区| 亚洲国产毛片av蜜桃av| 成人免费观看视频高清| 免费观看a级毛片全部| 欧美乱码精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 视频在线观看一区二区三区| 亚洲色图综合在线观看| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 亚洲av美国av| 国产高清videossex| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o| 啦啦啦在线免费观看视频4| 国产精品香港三级国产av潘金莲| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 成人免费观看视频高清| 丁香六月欧美| 久久中文看片网| 国产成人啪精品午夜网站| 久久精品国产a三级三级三级| 亚洲国产欧美一区二区综合| 男女高潮啪啪啪动态图| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 99久久综合免费| 少妇裸体淫交视频免费看高清 | 十八禁高潮呻吟视频| 国产欧美日韩一区二区精品| 国产在线一区二区三区精| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 一区在线观看完整版| 嫩草影视91久久| 欧美黄色淫秽网站| 国产在线观看jvid| 国产精品欧美亚洲77777| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 久久国产精品男人的天堂亚洲| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久成人aⅴ小说| 高清av免费在线| 久久久欧美国产精品| 正在播放国产对白刺激| 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| 美女中出高潮动态图| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| 亚洲国产av影院在线观看| 亚洲精品一区蜜桃| 亚洲成国产人片在线观看| 亚洲精品久久成人aⅴ小说| 高清av免费在线| 国产高清视频在线播放一区 | 亚洲中文字幕日韩| 69av精品久久久久久 | 97在线人人人人妻| 亚洲 国产 在线| 最黄视频免费看| 飞空精品影院首页| 国产区一区二久久| 97在线人人人人妻| e午夜精品久久久久久久| 久久久久久久大尺度免费视频| 免费在线观看黄色视频的| 久久久久久人人人人人| 日本vs欧美在线观看视频| 国产精品影院久久| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 十分钟在线观看高清视频www| 三上悠亚av全集在线观看| 一进一出抽搐动态| 一区二区三区激情视频| 国产黄频视频在线观看| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 五月天丁香电影| 最近最新中文字幕大全免费视频| 男人爽女人下面视频在线观看| 亚洲人成电影观看| av免费在线观看网站| 伊人亚洲综合成人网| 国产成+人综合+亚洲专区| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| 国产成人精品无人区| 国产精品久久久久久精品电影小说| 91国产中文字幕| 黄色 视频免费看| 久久久国产成人免费| 侵犯人妻中文字幕一二三四区| 国产av又大| 啦啦啦啦在线视频资源| 国产黄频视频在线观看| 国产无遮挡羞羞视频在线观看| av福利片在线| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 国产一级毛片在线| 三级毛片av免费| 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| 亚洲少妇的诱惑av| 极品人妻少妇av视频| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 久久久久精品人妻al黑| 91大片在线观看| 亚洲人成77777在线视频| 美国免费a级毛片| 丁香六月天网| 大香蕉久久成人网| 国产精品秋霞免费鲁丝片| 正在播放国产对白刺激| 丝瓜视频免费看黄片| 国产精品av久久久久免费| 法律面前人人平等表现在哪些方面 | 成人影院久久| 十八禁高潮呻吟视频| 久久性视频一级片| 亚洲一区中文字幕在线| 女性生殖器流出的白浆| 国产一区二区 视频在线| 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| 在线观看免费视频网站a站| 日日爽夜夜爽网站| 国产av精品麻豆| 亚洲国产精品成人久久小说| 欧美成狂野欧美在线观看| 亚洲国产成人一精品久久久| 国产国语露脸激情在线看| 亚洲精品一区蜜桃| 欧美另类一区| 99re6热这里在线精品视频| 久久国产精品人妻蜜桃| 亚洲九九香蕉| a 毛片基地| 国产色视频综合| 亚洲欧美色中文字幕在线| √禁漫天堂资源中文www| 欧美黑人精品巨大| 丝袜美足系列| 黄色视频不卡| 亚洲av电影在线观看一区二区三区| 亚洲三区欧美一区| 超碰97精品在线观看| 国产成人精品久久二区二区91| 9191精品国产免费久久| 欧美午夜高清在线| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 操出白浆在线播放| 国产成+人综合+亚洲专区| 亚洲精品粉嫩美女一区| 国产男女内射视频| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 97精品久久久久久久久久精品| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 久久国产精品男人的天堂亚洲| 一级片'在线观看视频| 国产精品久久久av美女十八| 高潮久久久久久久久久久不卡| 久久久久精品人妻al黑| 精品少妇内射三级| 最新的欧美精品一区二区| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 精品欧美一区二区三区在线| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 国产福利在线免费观看视频| 国产精品国产三级国产专区5o| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 午夜免费鲁丝| 最近中文字幕2019免费版| 一二三四在线观看免费中文在| 少妇人妻久久综合中文| 国产真人三级小视频在线观看| 精品第一国产精品| 在线看a的网站| 精品少妇一区二区三区视频日本电影| 日本一区二区免费在线视频| 国产欧美日韩一区二区三 | 国产欧美日韩综合在线一区二区| 手机成人av网站| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 亚洲自偷自拍图片 自拍| 五月天丁香电影| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 97在线人人人人妻| 国产成人欧美在线观看 | 亚洲欧美一区二区三区黑人| 国精品久久久久久国模美| 宅男免费午夜| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 老司机福利观看| 国产免费av片在线观看野外av| 国产男人的电影天堂91| 一级毛片电影观看| 国产男女超爽视频在线观看| 动漫黄色视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产av精品麻豆| 国产极品粉嫩免费观看在线|