• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mining Frequent Sets Using Fuzzy Multiple-Level Association Rules

    2018-07-27 07:03:34QiangGaoFengLiZhangandRunJinWang

    Qiang Gao, Feng-Li Zhang, and Run-Jin Wang

    Abstract—At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms that used the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route.Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.

    1. Introduction

    Now we are facing an increasingly wide range of data types from the original single Boolean attribute data sets to the current mixed type attribute data sets. There are many association rule algorithms based on the Boolean data and improved algorithms[1]-[3]. For association rules[4],denotes attributesAandBwould recommendC, andmeans that the attribute might be the quantitative data, and it may have some parameters such as the frequency. So in the,although the attribute Sunny belongs to the Boolean attribute,the attributes temperature and wind speed are quantitative attributes which have different domains such asThe values of these quantitative attributes will influence the result of data mining:

    Researchers have applied the fuzzy theory, founded by Professor L. A. Zadeh, to data mining. Take the following records as an example to illustrate the fuzzy theory, {(Pathe horror movie, 8.9, 1), (Imagenes horror movie, 8.7, 4)}.Each record has three parts, the first part is the name of attribute’s ID, the second part is the evaluated point from people, and the third part is the frequency. If we suppose that the profit of Imagenes horror movie is much more than that of Pathe horror movie, the fact could not be neglected that there are different weights even if their frequencies are low. These attributes should have their own weights, which are the key of the method using association rules to find the potential relationship. In real world, we are usually interested in approximate description of attributes rather than pointing out the detailed description of some attributes to recommend other attributes.

    In this paper, we propose an algorithm called fuzzy multiple-level association (FMA) rules. The rules of algorithm to solve non-Boolean attributes are as follows: 1) We use the approach based on weight and use the fuzzy theory to deal with the frequency of attribute and the value of attribute,respectively. 2) We use the concept hierarchy theory to encode concept trees and divide them into different levels. 3) This paper proposes the algorithm FMA that uses the improved Eclat algorithm as a basic model to deal with frequent sets called CH_Eclat. CH_Eclat uses non-frequent 2-itemset to cut down a large number of useless candidate sets. CH_Eclat also uses a method based on lost support values called Lost_Support to cut down times to count support. Therefore we can get frequent sets more fast according to the verification of experiment.

    2. Related Works

    In 1993, R. Agrawalet al.first proposed the concept of association rules[5]. R. Agrawalet al.proposed a famous algorithm Apriori[6]to count the support, and J.-W. Hanet al.[7]put forward the Fp-growth algorithm to solve the problem of generating a large number of candidate sets. These two methods are based on the horizontal format of data. References[8], [9], and [10] used the Apriori algorithm to mine multi-level rules. M. J. Zaki[11]proposed the Eclat algorithm to use the vertical data to store database’s records. This algorithm’s performance is generally better than horizontal format data.And many papers have improved the Eclat algorithm[12]-[14].Reference [15] improved the Apriori algorithm to mine real data compared with the Fp-tree algorithm, but their ways of counting support were not appropriate to deal with non-Boolean data. Reference [16] discussed some algorithms in association rules mining in recent years such as fuzzy Fp-tree.

    References [8], [9], and [10] proposed several methods for the multi-level association rules mining, and the fuzzy theory is applied to the association rules in [8] and [10], which describes the attributes’ frequency by using the fuzzy set.Reference [8] proposed a fuzzy multiple-level mining algorithm for items which have different minimum supports.Reference [9] presented a partition technique for the multilevel association rule mining problem, it improves the cost of I/O and central processing unit (CPU) runtime. Reference [10] also used different support values at each level as well as different membership functions for each item, it adopts a top-down progressively deepening approach to derive large sets. But these algorithms only consider the frequency of the attributes,they do not consider that some factors may also affect the mining efficiency, such as the evaluation by people or its quantitative features.

    Some other researchers also concerned about quantitative rules and multi-level mining[17]-[19]. In [20], M. Kaya proposed effective mining of fuzzy multi-cross-level weighted association rules. It invented a fuzzy data cube facilitating for handling quantitative values of dimensional attributes, and as a result, mining fuzzy association rules can be used at different levels. Since it is based on the traditional Apriori mining algorithm, it inevitably costs much CPU runtime and makes it difficult to deal with massive sparse data.

    3. Basic Model of FMA Algorithm

    The traditional Eclat algorithm uses the vertical format to find the frequency set. It uses the depth-first search strategy and bases on the concept lattice theory. And it divides the search space by the relationship of prefix equivalence, using crosscounting to count the support. In this paper, instead of applying the basic Eclat algorithm, we propose an improved algorithm CH_Eclat, which is more suitable for FMA.

    3.1 Theorem and Basic Concepts

    Theorem 1.1.A superset of the non-frequent set is certainly a non-frequent itemset.

    Theorem 1.2.Non-empty subsets of any frequent itemsets are also frequent itemsets.

    3.2 Improved Algorithm

    1) The traditional Eclat algorithm uses the depth-first search strategy, while CH_Eclat uses the breadth-first search method to connect attribute sets. We fully use Apriori’s transcendental nature to prune the candidate sets by non-frequent 2-itemset. And non-frequent 2-itemset uses the vertical format to store the relationship of attributes.According to Theorem 1.1, non-frequent 2-itemset will greatly cut down the generation of non-frequentk-itemsets (k>2). For example, a transaction databaseZhas six attributes, by mining frequent 2-itemset simultaneously,we will obtain a non-frequent 2-itemset, such as

    Fig. 1. Non-frequent set.

    2) Combined with [21], using a missing threshold called Lost-Support based on cross-counting computing. The crosscounting method reduces the times of comparisons. For example, this attribute set {A,B}, pointerp1points toA’s first data and pointerp2points toB’s first data. Firstly, we compare the value of (*p1) with the value of (*p2), judging that if (*p1) is equal to (*p2). If they are equal, thenp1=p1+1 andp2=p2+1. If they are not equal and (*p1) > (*p2), thenp2=p2+1 and preparing the next comparison operation, where * is the pointer. In this method, the operation times are determined by

    .

    So we can make full use of Lost_Support to reduce unnecessary comparisons. For Table. 1, we get

    Table 1: Example of vertical-style data

    When the value ofAis not matched to that ofB, the Lost_Support ofAwill be cut down by 1, so asB. If any Lost_Support is less than 0, we will break the counting and delete this relationship {A,B}, and the operation of counting is shown in Fig. 2.

    Fig. 2. Cross-counting method of Lost_Support.

    3.3 Description of CH_Eclat Algorithm

    The CH_Eclat algorithm is descripted as Table 2.

    Table 2: CH_Eclat algorithm

    4. FMA Algorithm Model

    4.1 Theorem and Basic Concepts

    Definition 2.1.A databaseis consisted ofnrecordsmeans it is in the vertical format. Each record TIDjof databaseZcan define as

    Each record has a unique tag named idthat is attribute’s frequency in record TIDj.is the value of attribute,, wheremis the number of TIDj’s attributes.

    Definition 2.2.Set fuzzy record about.We getkabstract concepts from frequency, and it is corresponding to(s=1, 2, ··,k), so,and we callas a frequency membership function for attributeon TIDj.Then we getqabstract concepts from,and we know that it is corresponding to(h=1, 2, ··,q), soAnd we callas the value membership function for attributeon TIDj.

    4.2 Model Description

    The proposed algorithm FMA use the hierarchical coding method to get the coding tree and fuzzy set to deal with frequency of attributes and attributes’ value, with which we can get frequent sets. The concrete steps are shown as following:

    Step 1. Concept hierarchy

    The concept is usually expressed in the form of a hierarchical structure tree, each node is representing for a concept, the root node ANY is a special node. A given multi-dimensional attribute has many functions, including constructing many views, generating concept hierarchy,explaining the partial order and total order of attributes by patterns, and defining the construction of hierarchical tree.There are many ways to construct the tree, we can divide concept by data set’s own feature and hierarchical model.

    First, we should encode the concept from the concept tree. And we can use (1) to calculate the concept’s code value,

    whereΩis the hierarchical level,iis the position of the current level of the layer to its ancestor node, the value of attribute coding is incremented by one from left to right,andis to encode the predefined taxonomy.Fig. 3 shows a simple case.

    After using (1), the hierarchy coded tree is gotten, as shown Fig. 4.

    Fig. 3. Hierarchy original tree.

    Fig. 4. Hierarchy coded tree.

    Step 2. Convert the frequency of attribute to fuzzy set

    First, define the membership functions of attributes’frequencies, then membership functions are set according to the results of root node’s sub node classification. The corresponding frequent fuzzy set ofis obtained as

    Step 3. Get representative fuzzy domain for frequency

    Obtain the statistics of the number from every item fuzzyFind every item’s maximum cardinal number which hassfuzzy domain, and use the maximum cardinal number to represent the fuzzy domain of this item. Use (2) to calculate the maximum:

    Step 4. Dealing with value of attribute

    Define the membership function of attributes’ value,divide intogattribute areas, and calculate their membership. We will get the fuzzy set of

    forming as

    Delete the fuzzy set that is not belong to certain conditions andwill be divided into regional attributes.

    Step 5. Add the weight coefficients

    Calculate every fuzzy attribute’s final supportby the weight coefficients table. The judgment of weight is based on the expert opinion or other ways such as market rules for sales:

    Finally, we will get the handled database which we need.

    Step 6. Getting frequent itemsets by CH_Eclat.

    Defining the minimum support as min_supp, calculate every fuzzy attribute’s support. And we know every value of fuzzy attribute is between [0, 1], because it ensures the downward closed property. According to [22], we do not need to calculate the ancestor nodes’ supports, because we can get them from their children. Finally, we will get the frequent item set.

    5. Simple Example for FMA

    In this part, we show an example of films to explain the application of FMA. In Table 3, the first of item is something which users buy, the second is the purchase quantity, and the third is the score of its evaluation. We divide films into three parts: Movies, serials, and documentaries. And each type has its specific attribute. So we make them have their own membership functions according to the frequency of every attribute. Finally, we can make data mining deeply by our algorithm. The original database is showed in Table 3.

    Table 3: Original database

    Step 1. First, we set the relationship between a schema, and then calculate it according to (1). In this original database, the weight of each item attributes corresponds to their price and profit. And we have been normalizing the data to ensure the downward closed property. The weighting factor is showed in Table 4.

    Table 4: Weighting coefficient table

    We get the stratification model from the original database,and then the concept tree and coded tree will be gotten as shown in Fig. 5, and Fig. 6, respectively.

    Step 2. We predefine their membership functions according to goods’ quantity and attributes classification,which are showed in Figs. 7, 8, and 9.

    Then we convert the fuzzy frequent attribute according to predefining membership functions. We only show some of the data in Table 5.

    Fig. 5. Hierarchy concept tree.

    Fig. 6. Hierarchy coded tree.

    Fig. 7. Membership functions for number of serials.

    Fig. 8. Membership functions for number of movies.

    Fig. 9. Membership function for number of documentary.

    Table 5: Fuzzy attribute table of frequency

    Step 3. Calculate all of the transactions and find every item’s maximum cardinal number. For example, as the first transaction, we can count the number of {(111, Low)},Count111.Low=1+0.6+0.8+0.6=2.4, which is the maximum cardinal number. After counting, we will get the preprocessing the fuzzy candidate 1-itemset as Table 6.

    Table 6: Fuzzy candidate 1-item set

    Step 4. We construct the fuzzy concept of every attribute by score, thus we can set the fuzzy concept {Very Good,Common, Bad}. It means that the film is good, or it is common, or I do not like this film. The membership is showed in Fig. 10.

    Fig. 10. Membership function.

    We use (1) to convert the score to the vertical format:

    whereimeans the level of attribute,jmeans the child node number, andmeans the number of child node. It calculates the higher level attribute’s score, getting Table 7.

    Table 7: Overall rating table

    Step 5. The details of this step will be shown in the following.

    1) Convert Table 7 to the membership table according to Fig. 10 and exclude the item that the sum of membership is zero. We can get Table 8.

    2) Combining with the fuzzy support in Table 5, the support of quantitative value of the fuzzy attribute is found as Table 9.

    3) According to Tables 9 and 4, we multiply the weight.Then we get the final support of every fuzzy attribute as Table 10.

    Table 8: Membership list

    Table 9: Fuzzy support table

    Table 10: Final fuzzy support degree table

    Step 6. Set min_supp=0.8, delete {Bad} evaluation of fuzzy attribute, we will get 1-frequent item set as Table 11.

    The 2-frequent itemset mining: To avoid redundancy, the child node should not connect to its ancestor node, for example,node 111 should not connect to 11, 12, and 1. The minimum fuzzy attribute set can be generated as the new set from two fuzzy attributes since every attribute set connects to another attribute set. The final mining results are shown in Table 12. In Table 12, itemconnects to. We can get from this rule: The set which includes low frequency of {Pathe horror movie} and high frequency of {Wild Life Documentary} is a frequent set,and we find their evaluation is good according to the proposed method.

    Table 11: 1-frequent item set

    Table 12: 2-frequent set

    6. Experiment Results

    6.1 CH_Eclat Experiment

    In this paper, we propose the FMA algorithm which is based on the CH_Eclat algorithm. We use the CH_Eclat model to count the support of database, and the performance of getting support does well affect on the effectiveness of the overall data mining. We improve the original Eclat algorithm to adapt our FMA algorithm. We use three kinds of standard data set to test our CH_Eclat algorithm and get the performance of it. The algorithm test lab environment is: CPU is AMD A8-7650K Radeon R7, 10 Compute Cores4C+6G 3.30GHz, 8G Memory,and Windows 7 OS. The CH_Eclat algorithm uses JAVA language and debugs in the Eclipse development platform. We set different support to get their run time. The console of experiment is showed in Table 13.

    Table 13: Standard data set

    In Figs. 11, 12, and 13, the CH_Eclat algorithm is compared with the standard Eclat algorithm and algorithm proposed by Z.-Y. Xiong[12]named as h_Eclat. In data set retail, the standard Eclat’s time is overflow, so we do not line it. After comparing, we find CH_Eclat has the better performance especially for the large data set and sparse data. We can quickly find the association rules with the FMA algorithm because of better support from CH_Eclat.

    Fig. 11. Result of T10I4D100K.

    Fig. 12. Result of retail.

    Fig. 13. Result of mushroom.

    6.2 Using FMA Mining Beijing Logistics Route

    We verified the validity of FMA according to the real data about the Beijing logistics route. It has 4799 logistics routes and uses different logistics modes to send their goods. We will mine the frequent route line, get potential information through peoples’ comments, and then give scores. Through the processing of the original data, the logistics send to 32 regions including several provinces,autonomous regions, and Hong Kong. It uses six types of different logistics transportation tools to send the goods to 362 municipal areas, in other words, 2453 counties in all.Due to the sparse feature of the county logistics route data,it is not conducive to analyze the frequent routes. According to the regional features and FMA, we use the province-citycounty order to construct multi-level mining. With the support of the logistics routes among different areas, we can find the frequent levels of different routes, and the result is shown in Fig. 14. We find that the route from Beijing to Sichuan is the most frequent. A lot of goods sent to Sichuan from Yanqing District, Beijing.

    Fig. 14. Frequent routs under different support.

    According to the different transportation tools used in logistics, we are able to find out the frequent levels of the use of different logistics transportation tools. The result is showed in Fig. 15. We find that a lot of goods sent to Yunan Province and Sichuan Province by Xingtie, and we also find that the goods sent to Hebei Province can get good comments by Xingtie.

    Fig. 15. Frequent logistics under different support.

    After getting the frequent rules, we analyze the performance of the algorithm compared with M. Kaya’s method[20]which is based on Apriori. We set it as B_Apriori showing in Fig. 16. The result shows that the proposed algorithm has higher efficiency.

    Fig. 16. Performance comparison.

    7. Conclusions

    In this paper, we proposed an algorithm of multi-level quantitative attributes by using the weight and combining with fuzzy theory. It is used to deal with different weights and different frequencies. With this method, we improved the data mining and got potential rules. This algorithm is much closer to the real environment. So we can do data mining by setting different conditions to obtain the target information. Our example well explained the usage of this algorithm and generated the potential rules. This algorithm is also fit for the mixed type attributes including the Boolean attribute. The good performance has been demonstrated through the data of the Beijing logistics route. It can quickly tap the frequent route. In the future, we will explore the applications of the fuzzy theory and association rules. It will promote the development of association rules.

    这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 国产精品偷伦视频观看了| 国产91精品成人一区二区三区 | 少妇人妻久久综合中文| 亚洲中文av在线| 亚洲成人免费av在线播放| 美女视频免费永久观看网站| 午夜日韩欧美国产| 亚洲avbb在线观看| 色精品久久人妻99蜜桃| 亚洲精品中文字幕一二三四区 | 桃花免费在线播放| 亚洲一码二码三码区别大吗| 国产伦理片在线播放av一区| 久久久精品区二区三区| 国精品久久久久久国模美| 极品人妻少妇av视频| 丝袜人妻中文字幕| 国产一区二区三区在线臀色熟女 | 国产成人免费无遮挡视频| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美一区二区三区黑人| 日韩欧美一区二区三区在线观看 | 精品亚洲成a人片在线观看| 老司机影院成人| 美女福利国产在线| 久久久久国产一级毛片高清牌| 亚洲精品久久久久久婷婷小说| 国产三级黄色录像| 亚洲久久久国产精品| 精品一区二区三卡| 妹子高潮喷水视频| 一本久久精品| 久久影院123| 一进一出抽搐动态| 天天操日日干夜夜撸| 91精品三级在线观看| 久久精品国产亚洲av香蕉五月 | 国产免费视频播放在线视频| 国产区一区二久久| 国产av精品麻豆| 亚洲国产欧美日韩在线播放| a级毛片黄视频| 岛国在线观看网站| 99久久综合免费| 国产一区二区 视频在线| 人人妻人人澡人人看| 这个男人来自地球电影免费观看| 亚洲九九香蕉| 美女午夜性视频免费| 亚洲精品一区蜜桃| 18禁观看日本| 啦啦啦啦在线视频资源| 777久久人妻少妇嫩草av网站| 欧美性长视频在线观看| 国产人伦9x9x在线观看| 在线av久久热| 99国产精品免费福利视频| 嫩草影视91久久| 不卡一级毛片| 在线观看www视频免费| 亚洲专区国产一区二区| 欧美成人午夜精品| 在线十欧美十亚洲十日本专区| 亚洲色图综合在线观看| av天堂久久9| 国产一区二区 视频在线| 久久久久国产一级毛片高清牌| tocl精华| 亚洲国产精品一区二区三区在线| 国产av精品麻豆| 国产在线视频一区二区| 91精品三级在线观看| 亚洲男人天堂网一区| 99国产精品免费福利视频| 亚洲成人国产一区在线观看| 高清视频免费观看一区二区| 欧美日本中文国产一区发布| 亚洲av日韩在线播放| 男女免费视频国产| 久久av网站| 精品少妇黑人巨大在线播放| 午夜福利免费观看在线| 性色av乱码一区二区三区2| 啪啪无遮挡十八禁网站| 美女大奶头黄色视频| 午夜福利在线观看吧| 国产色视频综合| 免费看十八禁软件| 汤姆久久久久久久影院中文字幕| 啪啪无遮挡十八禁网站| 色94色欧美一区二区| 久久人妻熟女aⅴ| 性高湖久久久久久久久免费观看| 亚洲中文字幕日韩| 欧美日韩国产mv在线观看视频| 亚洲欧美一区二区三区久久| 午夜福利影视在线免费观看| 国产在视频线精品| a级毛片黄视频| 老熟妇乱子伦视频在线观看 | 99九九在线精品视频| netflix在线观看网站| 色婷婷久久久亚洲欧美| 搡老熟女国产l中国老女人| 啦啦啦视频在线资源免费观看| 精品少妇久久久久久888优播| 精品少妇久久久久久888优播| 久久久精品94久久精品| www.熟女人妻精品国产| www.精华液| 亚洲avbb在线观看| 国产片内射在线| 9色porny在线观看| 亚洲情色 制服丝袜| 亚洲国产精品一区三区| 91老司机精品| 国产免费一区二区三区四区乱码| 少妇猛男粗大的猛烈进出视频| 国产精品一区二区免费欧美 | 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 久久狼人影院| 国产在线观看jvid| 国产淫语在线视频| 久久精品国产a三级三级三级| 每晚都被弄得嗷嗷叫到高潮| 999久久久精品免费观看国产| 曰老女人黄片| 麻豆乱淫一区二区| 成人国产一区最新在线观看| 亚洲欧美色中文字幕在线| 久久狼人影院| 在线永久观看黄色视频| 另类亚洲欧美激情| 国产一区二区激情短视频 | 女警被强在线播放| 久9热在线精品视频| 久9热在线精品视频| 后天国语完整版免费观看| 亚洲人成电影观看| 超色免费av| 亚洲精品自拍成人| 嫁个100分男人电影在线观看| 超色免费av| 青草久久国产| 国产成人av教育| 在线av久久热| 操美女的视频在线观看| 精品国内亚洲2022精品成人 | 欧美日韩黄片免| 黄色 视频免费看| 国产精品影院久久| 免费少妇av软件| 精品一品国产午夜福利视频| 国产一区二区三区综合在线观看| 国产91精品成人一区二区三区 | 成人国产一区最新在线观看| 国产精品一二三区在线看| 妹子高潮喷水视频| 亚洲全国av大片| tube8黄色片| 啦啦啦 在线观看视频| 黄频高清免费视频| 99香蕉大伊视频| 精品国产一区二区久久| 亚洲avbb在线观看| 王馨瑶露胸无遮挡在线观看| 欧美激情久久久久久爽电影 | 精品人妻熟女毛片av久久网站| 国产在线免费精品| 啪啪无遮挡十八禁网站| 波多野结衣一区麻豆| 一区在线观看完整版| 最黄视频免费看| 久久久精品国产亚洲av高清涩受| 美女主播在线视频| 韩国精品一区二区三区| 国产免费av片在线观看野外av| 日韩欧美一区视频在线观看| 国产真人三级小视频在线观看| 日本精品一区二区三区蜜桃| 日韩,欧美,国产一区二区三区| 91成年电影在线观看| 美女脱内裤让男人舔精品视频| 狠狠婷婷综合久久久久久88av| 欧美xxⅹ黑人| 中国美女看黄片| 国产国语露脸激情在线看| 国产97色在线日韩免费| 亚洲第一欧美日韩一区二区三区 | a级片在线免费高清观看视频| 国产精品二区激情视频| 精品国产一区二区三区久久久樱花| 在线看a的网站| 欧美日韩一级在线毛片| 日韩有码中文字幕| 各种免费的搞黄视频| 伦理电影免费视频| 色视频在线一区二区三区| 免费在线观看日本一区| 色播在线永久视频| 欧美 亚洲 国产 日韩一| 一二三四在线观看免费中文在| 蜜桃国产av成人99| 日韩制服丝袜自拍偷拍| 亚洲少妇的诱惑av| 日韩精品免费视频一区二区三区| 18禁国产床啪视频网站| 性高湖久久久久久久久免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲人成电影观看| 久久香蕉激情| 多毛熟女@视频| 美女福利国产在线| 黄色视频在线播放观看不卡| 新久久久久国产一级毛片| av欧美777| 日本黄色日本黄色录像| 肉色欧美久久久久久久蜜桃| 交换朋友夫妻互换小说| 丝袜人妻中文字幕| 操出白浆在线播放| 99久久国产精品久久久| 在线av久久热| 久久久久精品国产欧美久久久 | 中文字幕最新亚洲高清| 青青草视频在线视频观看| 在线 av 中文字幕| 婷婷色av中文字幕| 美女午夜性视频免费| 国产欧美亚洲国产| 亚洲精华国产精华精| 日韩一卡2卡3卡4卡2021年| 国产高清videossex| 老司机深夜福利视频在线观看 | www.av在线官网国产| 国产福利在线免费观看视频| 国产精品 国内视频| 中文字幕人妻熟女乱码| 老司机福利观看| 久久人人爽av亚洲精品天堂| 亚洲成人手机| 久久久久国产精品人妻一区二区| 国产高清视频在线播放一区 | 国产一区二区三区av在线| 18禁裸乳无遮挡动漫免费视频| 操美女的视频在线观看| 精品一区在线观看国产| 午夜日韩欧美国产| 亚洲五月色婷婷综合| 亚洲精品国产av蜜桃| 天天影视国产精品| 十八禁网站免费在线| 黑丝袜美女国产一区| 亚洲国产欧美一区二区综合| 免费在线观看黄色视频的| 99热网站在线观看| 欧美大码av| 亚洲精品成人av观看孕妇| 亚洲第一av免费看| 国产av精品麻豆| tocl精华| 欧美另类一区| 美国免费a级毛片| 国产精品久久久久久精品古装| 自线自在国产av| 男人添女人高潮全过程视频| 深夜精品福利| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 国产99久久九九免费精品| 国产精品熟女久久久久浪| 亚洲国产成人一精品久久久| 日韩电影二区| 国产亚洲欧美在线一区二区| 纵有疾风起免费观看全集完整版| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产色婷婷电影| 亚洲精品一卡2卡三卡4卡5卡 | 男女午夜视频在线观看| 日韩,欧美,国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 黄色怎么调成土黄色| 亚洲欧美精品综合一区二区三区| 午夜福利乱码中文字幕| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 咕卡用的链子| 国产精品久久久久久精品古装| 国产主播在线观看一区二区| 91成年电影在线观看| a在线观看视频网站| 久久热在线av| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区四区第35| 成人亚洲精品一区在线观看| 国产一区二区三区av在线| 亚洲精品av麻豆狂野| 不卡一级毛片| 国产在线免费精品| 麻豆国产av国片精品| 黑人猛操日本美女一级片| 人妻人人澡人人爽人人| 久久久久久久大尺度免费视频| 蜜桃在线观看..| 亚洲一码二码三码区别大吗| 欧美黄色淫秽网站| 久久国产亚洲av麻豆专区| 亚洲熟女毛片儿| 美女中出高潮动态图| 老司机影院毛片| 精品国产乱码久久久久久小说| 丰满迷人的少妇在线观看| 国产精品99久久99久久久不卡| 久久国产精品男人的天堂亚洲| 亚洲精品国产精品久久久不卡| 一区二区三区精品91| 欧美精品av麻豆av| 日韩 亚洲 欧美在线| 亚洲成人国产一区在线观看| 纵有疾风起免费观看全集完整版| 操美女的视频在线观看| 美女福利国产在线| 亚洲全国av大片| 在线天堂中文资源库| 亚洲精品久久久久久婷婷小说| 国产男女内射视频| 欧美性长视频在线观看| 国产在线一区二区三区精| 国产精品.久久久| 免费观看a级毛片全部| 青春草亚洲视频在线观看| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 午夜福利在线免费观看网站| 黄色片一级片一级黄色片| 91精品国产国语对白视频| 三上悠亚av全集在线观看| 亚洲国产精品999| 最新的欧美精品一区二区| 高清在线国产一区| 九色亚洲精品在线播放| 国产xxxxx性猛交| 性色av乱码一区二区三区2| 操美女的视频在线观看| 午夜日韩欧美国产| 91字幕亚洲| www.av在线官网国产| 午夜精品久久久久久毛片777| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡 | 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 国产人伦9x9x在线观看| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 免费看十八禁软件| 淫妇啪啪啪对白视频 | 久久精品国产亚洲av香蕉五月 | 岛国在线观看网站| 国产日韩欧美在线精品| 亚洲av电影在线进入| 99香蕉大伊视频| 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放| 十八禁网站免费在线| 桃红色精品国产亚洲av| 亚洲国产精品一区三区| 妹子高潮喷水视频| a级片在线免费高清观看视频| a级毛片在线看网站| 91麻豆av在线| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 制服诱惑二区| 我要看黄色一级片免费的| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 午夜久久久在线观看| 99热全是精品| 日本精品一区二区三区蜜桃| 制服诱惑二区| 一级毛片精品| 欧美+亚洲+日韩+国产| 肉色欧美久久久久久久蜜桃| 亚洲伊人久久精品综合| 9191精品国产免费久久| 国产xxxxx性猛交| 亚洲精品中文字幕一二三四区 | 亚洲久久久国产精品| 久久香蕉激情| 亚洲情色 制服丝袜| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看| 最新的欧美精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 超碰97精品在线观看| 免费高清在线观看日韩| 最新在线观看一区二区三区| 天天躁日日躁夜夜躁夜夜| 成人国产一区最新在线观看| 丝袜美腿诱惑在线| 亚洲精品乱久久久久久| 久久久久国产精品人妻一区二区| 国产精品二区激情视频| av片东京热男人的天堂| 99久久综合免费| 男人添女人高潮全过程视频| 熟女少妇亚洲综合色aaa.| 久久久久网色| 岛国毛片在线播放| 一本色道久久久久久精品综合| 国产精品1区2区在线观看. | 久久久水蜜桃国产精品网| 三级毛片av免费| 夜夜骑夜夜射夜夜干| 日韩精品免费视频一区二区三区| 中亚洲国语对白在线视频| 久久热在线av| 嫩草影视91久久| 亚洲性夜色夜夜综合| 91麻豆av在线| 动漫黄色视频在线观看| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 一本久久精品| 久久亚洲精品不卡| 两性夫妻黄色片| 午夜福利视频精品| 精品亚洲成a人片在线观看| 精品福利永久在线观看| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 国产精品av久久久久免费| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 亚洲 欧美在线| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 两性午夜刺激爽爽歪歪视频在线观看 | av在线播放精品| 人人妻,人人澡人人爽秒播| 在线看a的网站| 久久国产精品人妻蜜桃| 久久人人97超碰香蕉20202| www.熟女人妻精品国产| 国产精品免费视频内射| 精品久久久久久久毛片微露脸 | 亚洲欧美一区二区三区久久| 两个人免费观看高清视频| 国产欧美日韩一区二区精品| 丰满少妇做爰视频| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 真人做人爱边吃奶动态| 精品视频人人做人人爽| 香蕉国产在线看| 在线 av 中文字幕| 国产亚洲欧美在线一区二区| 夫妻午夜视频| 日本五十路高清| 国产一区二区三区av在线| 欧美国产精品va在线观看不卡| 蜜桃在线观看..| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 大香蕉久久网| 午夜久久久在线观看| 少妇粗大呻吟视频| 在线看a的网站| 中文字幕av电影在线播放| 欧美97在线视频| 别揉我奶头~嗯~啊~动态视频 | 久久亚洲国产成人精品v| 99热网站在线观看| 一二三四在线观看免费中文在| 亚洲中文av在线| 欧美一级毛片孕妇| 美女视频免费永久观看网站| 欧美激情高清一区二区三区| 成人影院久久| 精品亚洲成a人片在线观看| 国产精品偷伦视频观看了| 日韩免费高清中文字幕av| 精品乱码久久久久久99久播| 亚洲av男天堂| 欧美 日韩 精品 国产| 国产成人精品久久二区二区91| 亚洲精品久久午夜乱码| 人妻 亚洲 视频| 国产麻豆69| 纯流量卡能插随身wifi吗| 亚洲人成电影观看| 一本大道久久a久久精品| 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看 | av电影中文网址| 久久精品人人爽人人爽视色| 亚洲欧美日韩高清在线视频 | 黄色 视频免费看| 亚洲欧美精品自产自拍| 国产99久久九九免费精品| 国产又爽黄色视频| 国产熟女午夜一区二区三区| 国产日韩欧美视频二区| 男女下面插进去视频免费观看| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 91麻豆av在线| 999久久久精品免费观看国产| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 久久中文看片网| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 亚洲第一欧美日韩一区二区三区 | 国产区一区二久久| 久久久久久人人人人人| 嫁个100分男人电影在线观看| 手机成人av网站| 免费高清在线观看日韩| 脱女人内裤的视频| 宅男免费午夜| 美女扒开内裤让男人捅视频| 精品亚洲成a人片在线观看| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 久久久久久久久久久久大奶| 亚洲va日本ⅴa欧美va伊人久久 | 久久九九热精品免费| 侵犯人妻中文字幕一二三四区| 国产免费福利视频在线观看| 丁香六月欧美| 亚洲国产精品999| 国产亚洲午夜精品一区二区久久| 97在线人人人人妻| 美女主播在线视频| 天堂俺去俺来也www色官网| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 精品国产乱子伦一区二区三区 | 日韩一卡2卡3卡4卡2021年| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 久久中文字幕一级| 男男h啪啪无遮挡| 捣出白浆h1v1| 黑人欧美特级aaaaaa片| 久久狼人影院| 亚洲第一欧美日韩一区二区三区 | 久久ye,这里只有精品| 青春草视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 一边摸一边做爽爽视频免费| 交换朋友夫妻互换小说| 男人爽女人下面视频在线观看| 黄频高清免费视频| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 9色porny在线观看| a级片在线免费高清观看视频| 欧美另类一区| 天天影视国产精品| 成人国产av品久久久| 青青草视频在线视频观看| kizo精华| 亚洲欧洲精品一区二区精品久久久| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 一级片'在线观看视频| 欧美97在线视频| 国产精品免费大片| 久热这里只有精品99| 男女高潮啪啪啪动态图| 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| av片东京热男人的天堂| 精品亚洲成国产av| 桃花免费在线播放| 十八禁高潮呻吟视频| 国产成人免费观看mmmm| 嫩草影视91久久| 热99re8久久精品国产| 日韩欧美国产一区二区入口| 18禁黄网站禁片午夜丰满| 精品人妻一区二区三区麻豆| 在线av久久热| 国产又爽黄色视频| 国产男女内射视频| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看 | 91精品伊人久久大香线蕉| 国产一区二区三区综合在线观看| 免费在线观看日本一区| 亚洲国产日韩一区二区| 窝窝影院91人妻| 午夜福利免费观看在线| 久久精品国产综合久久久| 香蕉丝袜av| 大片免费播放器 马上看| 精品乱码久久久久久99久播| 9色porny在线观看| 在线精品无人区一区二区三| 色视频在线一区二区三区| 在线天堂中文资源库| 9191精品国产免费久久| 最近最新中文字幕大全免费视频|