• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spike-Stall of Compressors-A Critical Review

    2018-07-13 08:25:22HuaChen
    風(fēng)機(jī)技術(shù) 2018年3期

    Hua Chen

    (Dalian Maritime University,Dalian,China)

    Abstract:Spike-stall is a fast stall mode of both axial and centrifugal compressors.It can very quickly lead to surge and interrupt the normal operation of compressors.Despite decades’efforts,we still do not have a clear picture of how it starts and develops,let alone predicting it.This paper reviews the research works on this instability of compressors,describes the progress made,discusses the shortcomings of current research,and proposes some new concepts that may lead to breakthroughs.It is pointed out that current methods of predicting spike-stall are mostly based on classic stability concept which is incapable of handling the transient growth and diminution of disturbances in short length scales that typify spike-stall.Modern transient instability concept is proposed that establishes the link between the maximum amplification of the system to initial perturbations and time.The non-normality of compressor system is also emphasised.

    Key Words:Compressors,Spike-stall,Transient growth,Non-normality

    Nomenclature

    BFVBack flow vortex

    G(t) Optimum energy amplification to initial conditions

    LELeading edge

    PPressure(N/m2)

    TETrailing edge

    TLVTip leakage vortex

    TSVTip secondary vortex

    UBlade speed(m/s)

    URANSUnsteady Reynolds averaged Navier-Stokes eqns.

    rDensity(kg/m3)

    WAngular speed of shaft(radian/s)

    ωzAxial vorticity(radian/s)

    Subscripts

    tTotal,blade tip

    vlsVaneless space

    1 Introduction

    Flow instability is a common problem for compressor.Surge for example is a typical instability of compressors which limits the flow range of compressors.Surge itself is usually triggered by stall.There are at least two types of stall that are now well known,and they are modal-stall and spike-stall.Modal stall is characterised by disturbances in a length scale of impeller periphery or so,and it typically takes tens to hundreds of impeller revolutions to develop from inception to a full scaled instability.The theory of modal stall is relatively mature,and the general topic of modal-stall inception and active control has been discussed in[1-3].

    The spike-stall on the other hand is characterised by spike type disturbances of short length scales typically starting in one pitch and developing in a few.Its progress is much faster than modal-spike and it usually only takes a few rotor revolutions to grow from the initial spike to a full scale of rotating stall[3].Figure 1,taken from[3],shows modal-stall and spike-stall at two rotors respectively inside a multi-stage axial compressor.

    In centrifugal compressors spike-stall was also observed.Figure 2 gives an example.Spike-stall often occurs in modern highly loaded compressors and at high speeds. Because of its damage to compressor performance,spike-stall has drawn much attention of compressor research in the last few decades,and many progress has been made.However,due to the apparent suddenness of the stall, many questions remain unanswered.In the remaining of this paper,we review the achieved progress and point out the areas where research attention may be focus on.Above all,a new approach based on modern fluid dynamics is proposed.

    Fig.1 Wall static pressure measurement showing inception of modal-stall in Rotor 1 and spike-stall in Rotor 4.[3]

    Fig.2 Spike-stall in a turbocharger compressor with vane diffuser.Spike was first observed in vaneless space upstream the diffuser inlet[4].

    2 Origins of Spike-stall

    2.1 Axial Compressors

    There are several different versions of how spike is first generated and developed into a rotating stall.For axial compressor rotor with small blade tip-casing clearance,some authors[5-6]argued that the spike is caused by a flow separation from blade suction surface.Figure 3 illustrates this mechanism.

    A positive feedback mechanism for rapid development of spike-stall can be seen from Figure 3:blockage from the separation on one blade increases the incidence on to the next,causing the next blade to separatesevererhencecreatingalargerblockage,andsoon.

    Fig.3 URANS simulation results of NASAE3 Rotor B without tip clearance,showing spike-stall inception[5].

    When sizable tip clearance exists,the function of suction surface separation in stall inception is replaced by tip leakage vortex(TLV)according to[5].When a compressor is throttled toward stall,the incidence angle increases,and blade loading builds up near leading edge.The tip clearance then enables overtip leakage flow from pressure side to suction side,forming TLV,Figure 4.

    Fig.4 Computed vorticity showing TLV and its breakdown at near stall but stable condition[6].

    It was argued by Pullan et al[5]that in approaching stall,the TLV trajectory becomes tangential and the TLV breaks down into fragments.When the TLV reaches the neighbouring blade's leading edge,leading edge flow separation occurs due to the incidence angle change brought about by the TLV,see Figure 5.

    Fig.5 URANS simulation results of NASAE3Rotor B with tip clearance,showing spike-stall inception[5].

    However,there are other versions of spike-stall inception. Based on stereoscopic particle image velocimetry(SPIV)and flow visualisation,Katz et al.[7]found back flow vortices or BFV induced by TLV,as shown in Figure 6.In a further work[8]they proposed that it is the tangential movement of the BFV that triggers the flow separation of next blade which starts a spikestall,as it can be observed in Figure 7.

    Fig.6 SPIV measured TLV(centred at 0,blue)and BFV(centred at O,orange).[7]

    Wu et al.[9]suggested a tip second vortex(TSV)mechanism,as illustrated in Figure 8.With additional instrumentation and careful planning and measurement,Weichert and Day[10]suggested that a spike is the result of the destabilization of the boundary between the incoming and reversed flows,a shear layer in tip gap,as depicted in Figure 9.TLV spillage happens later.In the figure,the TLV trajectory,which follows the interface,is still within the flow passage 14-15,while disturbances already occur at the most unstable passage 15-16.Shear layer instability is a typical flow instability,and shroud or tip clearance could provide a passage forflow disturbancesto propagate from one blade passage to another.So Weichert and Day offered a different mechanism of spike-stall inception.This version of spike-stall inception agrees with the numerical results of Haz and Katz et al[11].in which casing boundary layer was found separated but no TLV breaking down was discovered.

    Fig.7 Atime sequence of cavitation images showing the propagation of vortical structures at pre-stall conditions.Arrows of same styles follow the evolution of the same backflow vortex.White lines indicate the blade tip profile.[7]

    Fig.8 URANS results showing development of TSV at near stall condition.TLV is also marked.

    Fig.9 Hot wire measurement of absolute flow velocity at 50%tip gap of a high speed axial compressor during embryonic spike formation.Disturbances are circled by red.

    2.2 Centrifugal Compressors

    There are less in depth studies of spike-stall in centrifugalcompressors.Spakovszky and Roduner[4]reported spike-stall in a marine turbocharger compressor.The stall was first observed at vaneless space between impeller trailing edge and vane diffuser leading edge,at 100%speed,see Figure 2.Everitt and Spakovszky later[12]proposed a mechanism for this stall based on numerical evidence,as portrayed in Figure 10.

    Fig.10 Spike-stall mechanism proposed by[12]

    According to[12],separation at the diffuser leading edge caused by high incidence near the shroud endwall sheds vorticity from the diffuser vane leading edge.Locally reversed radial flow in the vaneless and semivaneless space then allows the vorticity to convect back to the vaneless space.The flow in the vaneless space that recirculates around the circumference allows the vortical structures to form and to grow through the addition of new vorticity shed from the diffuser vane leading edge;and a feedback mechanism whereby the convection of the vortical structures within the developing stall precursor triggers a variation of incidence on the downstream blade,such that further vorticity/low total pressure fluid sheds from that vane and causes growth of the precursor.

    Buffaz and Trébinjac[13]measured casing pressure signals of a high speed centrifugal compressor and concluded that when the compressor is in rotating stall,the TLV from one blade reaches the front part of the inducer,as depicted in Figure 11.Note that in the figure,the TLV is not parallel to the tangential direction.

    Fig.11 Sketch of trajectories of TLV(broken red line)and overtip leakage flow(solid red line from 5 to 3)in rotating stall of a helicopter compressor,based on casing pressure signals from transducers 1-9[13].

    In centrifugal compressors with vaneless diffuser,such as the compressors for road vehicle turbochargers,modal type of stall is often reported before surge[14].However,at high speeds,transition to surge can be very abrupt and without modal wave precursor.Vaneless diffuser stall is considered to trigger the surge under this speed condition.More work is required to establish if spike-stall exists in vaneless diffusers.

    2.3 Two Conditions for Spike-stall

    Based on numerical simulation results,Vo and others[15]proposed a two-conditions criterion for spikestall inception in axial compressors,that is,the TLV or the interface between approaching flow and tip leakage flow reaches the LE of the adjacent blade,and reverse flow occurs at the TE.For centrifugal compressors,often the first condition was quoted in literature when rotating stall happens.

    Fig.12 Calculated relative Mach number and flow velocity vectors at blade tip of a transonic axial flow compressor just before(left)and at stall(right)[16].

    From the discussion in 2.2,we know that the first condition is open to questions,and is perhaps the consequence of another flow instability that really starts the spike inception.The second condition is illustrated here in Figure 12 for a transonic axial compressor[16].In the graph shown on the right,reversed flow can be seen.However,the stator is already stalled before the stage stalls as can be seen in the graph on the left.The separation of the stator on the suction surface creates a throttling effect on the rotor,forcing the latter to stall.So,the trigger of the spike-stall in this case is the stator and not the rotor,just like in the case of centrifugal compressors.

    In the vaneless diffuser used in centrifugal compressors,reversed flow reaching diffuser exit was found to be the condition of diffuser stall[17].

    3 Prediction of Spike-stall

    Predicting compressor instability is always a difficult task,forecasting spike-stall is even more challenging because of the short time scale within it can develop.Here some attempts are reviewed.

    3.1 Semi-empiricalMethods

    While the first condition of spike-stall proposed by Vo et al[15],the TLV reaches theLEof adjacent blade or becomes parallel to tangential direction,may not be precise,it offers a convenient way to predict spike-stall empirically.Cameron and Du et al[18]proposed a stall prediction method based on this condition.From experimental and numerical results,they found that this condition is equivalent to the state when the line of zero casing wall shear stress reaches theLEof a neighbouring blade.Applying the axial momentum conservation to the clearance flow and main flow,an empirical model was built to establish the compressor operating condition that leads to stall,see Figure 13.The model contains two empirical coefficients that are compressor specific and may be fixed by experimental or CFD results.

    Fig.13 Stall prediction model based on zero wall shear stress[18].U0is approaching flow axial velocity,UJisthe tip reversed flow velocity,his the clearance height.Control volume is shown inside the dotted lines where axial momentum conservation applies.

    Ye et al[19]recently proposed a similar model for transonic axial rotors in which the TLV reaching theLEof next blade is employed as the criterion of stall.But they include the effect of shock wave on the TLV trajectory.Again,the model is empirical and requires fitting of some coefficients.This model and one in[18]can be useful in compressor design,but they make no distinction between spike-stall and modal stall and others.They can neither explain the process into the spike-stall,nor can they predict correctly compressor stalls triggered by stators or diffusers.

    3.2 Body Force Models and Eigenvalue Methods

    Gong et al[20-21]put forward a body-force model to simulate the propagation of instabilities in axial compressors.This is a multi-dimensional,incompressible and inviscid flow model in the which flow turning effect of blades is replaced by a body force field.The field is continuously distributed circumferentially,and the rotor is assumed to have an infinitive number of blades to restrict the flow redistribution peripherally,as illustrated in Figure 14.

    Fig.14 Body-force model for stall prediction[20-21]

    By imposing an initial disturbance of modal or spike type,the model forms a group of differential equations that may be numerically solved along the time axis.The method was later extended to include viscous forces and applied to a centrifugal compressor[22].To obtain body force distribution, the steady flow Navier-Stokes equations are solved for a single blade passage at near numericalstallpoint,and theresultsareused to extrapolate or to build a model for the body force calculation.This method requires an initial disturbance while real compressors do not;and the body force calculation often diverges,reflecting the problems in force model building using the extrapolation.

    To overcome the need for an initial disturbance,Sun and his co-operators[23-24]linearised the body force model,and assumed normal mode disturbances to change the problem from an initial value one to an eigen value one.The method was applied to a transonic fan and axial compressor[25-26]and latter to centrifugal compressor[27].But the transformation to an eigen value problem from an initial value problem also means that the method makes no distinction between different stall modes and the ability to track the inception process to spike-stall is lost.In addition,some arbitrary features of the body force model still exist.

    Everitt and Spakovszky[28]modelled an isolated vane diffuser in a turbocharger compressor.A spike type initial disturbance has to be imposed,and the model can then be solved to show the system response.Earlier Spakovszky and Rodunes[4]solved a linearised model of centrifugal compressors for instability using normal mode and eigenvalue method.

    3.3 Discussion

    Experimental and numerical evidences have shown that compressor stall is a multi-scales event with at least two different time-space scales.The spike-stall has a length scale of one pitch initially and an associated short time scale;while the modal stall has a length scale of rotor periphery or a large fraction of it and a much longer time scale.Any models or theories trying to predict compressor stall must be able to handle at least these two different scales.In this regard,the eigenvalue and normal mode method are likely to fail because they are based on the concept of Lyapunov stability in which an infinite time horizon is allowed for the departure and the return to equilibrium when checking the stability of a system.An infinite time horizon does not account for the many time scales that characterise local fluid processes,such as the different time scales of spike-stall and modal stall of compressors.In fact,it can be argued that most dynamic processes in wall-bounded shear flows occur on a finite time scale,often related to,e.g.,a characteristic eddy turnover time or the lifetime of coherent structures involved in the process.So a stability definition that is based on an infinite time horizon seems to run counter to the observation of finite-time processes.

    For this reason,it may be more fruitful if we abandon the concept of Lyapunov stability and adopt a new stability concept as the amplification of the initial perturbation energy over a prescribed time interval[29-31];thisdefinition reintroducesthe timevariable asa parameter.The amplification of the initial energy of course depends on the initial condition.This dependence can be eliminated by optimising over all permissible initial conditions and accepting the maximum as the optimalenergyam plification.Mathematically,wecanwrite

    WhereG(t)is the optimum energy amplification,E(q(t))denotes the energy of the perturbationq,q0the initial perturbation,and the maximising is performed over all the permissible initial conditions.G(t)can be obtained by SVD (singular Value Decomposition).So one may examine the behaviour ofG(t)of a compression system in small time scales for spike-stall type of instability,but in much larger time scales for modal instability.

    Another useful concept is the non-normality concept also developed in modern hydrodynamics[29-31].In traditional stability analysis,different modes or system eigen vectors are assumed to be orthogonal or normal to each other,hence the term normal mode,and eigenvalue analysis is applied.It is now known,however,that the eigen vectors of the flow systems governed by Navier-Stokes equations are usually non-normal.Only for a normal system,eigenvalues fully describe the system’s behaviour;for a non-normal system,eigen vectors must also be considered.Systems with non-normal eigen vectors can exhibit transient growth,even if eigen values indicate long term stability.Figure 15 illustrates this transient behaviour.

    Fig.15 Geometric interpretation of transient growth

    This author and his co-works[32]applied the nonormality analysis to a vaneless diffuser governed by linear Euler equations,and observed transient energy amplification as shown in Figure 16.In this work,linearised Euler equations were applied to a parallel wall vaneless diffuser,both eigen values and the optimum energy amplificationG(t)were computed.In the case shown here for the first circumferential mode with a diffuser outlet-to-inletradius ratio of 1.5 and dimensionless inlet radial velocity of 0.09,all the eigen values are negative,which indicates a Lyapunov stability.G(t)on the other hand shows that the diffuser can experience a transient energy growth.One implication of such a growth is that if it is sufficiently large,it may invalidate the linear assumption,including the Lyapunov stability conclusion that comes out the assumption.

    Fig.16 Transient growth of a vaneless diffuser described by linear Euler operator[32]

    Given the unusually rapid increase of the perturbation amplitude in spike-stalls,a hypothesis may be putforward that such a swift change involves transient growth.A linearno-normality analysis is therefore relevant because the finite amplitude of the spikes must first come from small spikes,as indicated by the experimental results of axial compressors in Figures 9 and in Figure 17:

    Fig.17 Measured spike-stall inception of a transonic axial compressor,showing intermittent spikes before final stall sets in[16]

    4 Conclusion

    This paper reviews the research work on spike-stall of compressors.It seems that decades of research has provided us with many useful information of this rapid stall phenomenon,yet we have still not fully understood its underlying flow mechanism.Prediction of its occurrence is also met with great difficulty.

    Some new concepts have been proposed to overcome some of these difficulties.It is pointed out that current forecasting methods are mostly based on classic stability theory which is incapable of handling the transient growth and diminution of disturbances in multiple time-length scales that typify compressor stall.Modern transient instability concept is suggested to reestablish the link between time and the maximum amplification of the system to initial perturbations.The non-normality of compressor system is also emphasised.

    5 Acknowlegements

    The author thanks Dr X.C.Zhu and Mr C.X.Hu of Shanghai Jiaotong University for many fruitful discussions on transient growth and no-normality.The usefulsuggestionsandcommentsbytheunknown reviewer of CICT are gratefully acknowledged.

    久热爱精品视频在线9| 人妻一区二区av| 窝窝影院91人妻| 国产人伦9x9x在线观看| 中文字幕色久视频| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩一区二区精品| 欧美激情高清一区二区三区| 亚洲视频免费观看视频| 欧美老熟妇乱子伦牲交| 99re6热这里在线精品视频| 深夜精品福利| 丝袜美腿诱惑在线| 人人妻人人爽人人添夜夜欢视频| 丰满的人妻完整版| 日本黄色日本黄色录像| 午夜福利一区二区在线看| 人人妻,人人澡人人爽秒播| 99国产极品粉嫩在线观看| 无遮挡黄片免费观看| 久久人人97超碰香蕉20202| 91成人精品电影| 少妇 在线观看| 亚洲熟女毛片儿| 成人av一区二区三区在线看| 在线观看www视频免费| 亚洲欧美激情在线| 热re99久久精品国产66热6| 久久精品亚洲熟妇少妇任你| 国产精品国产高清国产av | 国产精品永久免费网站| 精品一区二区三区四区五区乱码| 免费人成视频x8x8入口观看| 91av网站免费观看| 天天添夜夜摸| 久久久国产精品麻豆| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 国产亚洲欧美在线一区二区| 天堂√8在线中文| 久久久久精品人妻al黑| 高清视频免费观看一区二区| videosex国产| 99国产精品一区二区蜜桃av | 91在线观看av| 国产精品一区二区在线不卡| 国产高清videossex| 午夜久久久在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美黄色淫秽网站| 久久天躁狠狠躁夜夜2o2o| 男女免费视频国产| 国产免费现黄频在线看| 色94色欧美一区二区| 女人久久www免费人成看片| 亚洲熟妇熟女久久| 国产成人精品在线电影| 日韩熟女老妇一区二区性免费视频| 捣出白浆h1v1| 亚洲熟妇熟女久久| 亚洲av日韩精品久久久久久密| 欧美日本中文国产一区发布| 欧美日韩亚洲综合一区二区三区_| 捣出白浆h1v1| 国产精品一区二区在线观看99| 欧美 日韩 精品 国产| 巨乳人妻的诱惑在线观看| 亚洲人成77777在线视频| 久久午夜亚洲精品久久| 国产精品一区二区免费欧美| 成人av一区二区三区在线看| 精品久久久久久久毛片微露脸| 1024视频免费在线观看| 亚洲avbb在线观看| 欧美日韩av久久| 亚洲美女黄片视频| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 久久精品国产综合久久久| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 男人操女人黄网站| 色综合婷婷激情| 好男人电影高清在线观看| 天堂√8在线中文| 免费观看a级毛片全部| 黑人欧美特级aaaaaa片| 999精品在线视频| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 亚洲在线自拍视频| 欧美日韩黄片免| 一本一本久久a久久精品综合妖精| 18禁裸乳无遮挡免费网站照片 | av中文乱码字幕在线| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 亚洲国产欧美网| 国产精品影院久久| 最近最新中文字幕大全免费视频| 男女高潮啪啪啪动态图| 999久久久精品免费观看国产| 亚洲全国av大片| 国产精品成人在线| 成人免费观看视频高清| 老汉色av国产亚洲站长工具| 中文字幕人妻丝袜一区二区| 色94色欧美一区二区| 亚洲aⅴ乱码一区二区在线播放 | 丝瓜视频免费看黄片| 搡老岳熟女国产| 99热只有精品国产| 免费女性裸体啪啪无遮挡网站| 国产精华一区二区三区| 日韩一卡2卡3卡4卡2021年| 色播在线永久视频| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 中文亚洲av片在线观看爽 | 中文字幕av电影在线播放| 91字幕亚洲| 亚洲av电影在线进入| 99热网站在线观看| 一本大道久久a久久精品| 天天影视国产精品| 老鸭窝网址在线观看| 久久影院123| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 99久久综合精品五月天人人| 久久香蕉精品热| 一二三四社区在线视频社区8| 欧美乱妇无乱码| 日日爽夜夜爽网站| 色在线成人网| 中国美女看黄片| 丰满迷人的少妇在线观看| 激情视频va一区二区三区| 99精品欧美一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 韩国av一区二区三区四区| 久久久精品区二区三区| 俄罗斯特黄特色一大片| 国产高清国产精品国产三级| 韩国精品一区二区三区| 国产精品久久久久久人妻精品电影| www.精华液| 日韩中文字幕欧美一区二区| 国产成人精品在线电影| 首页视频小说图片口味搜索| av电影中文网址| avwww免费| 啪啪无遮挡十八禁网站| 人妻丰满熟妇av一区二区三区 | 丝袜人妻中文字幕| 国产成人精品久久二区二区免费| 久久狼人影院| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院 | 在线观看免费高清a一片| 亚洲少妇的诱惑av| 最近最新免费中文字幕在线| 国产99久久九九免费精品| 亚洲 国产 在线| 国产男女超爽视频在线观看| 美女扒开内裤让男人捅视频| 国产无遮挡羞羞视频在线观看| 国产欧美亚洲国产| 久久久久国产一级毛片高清牌| a级毛片黄视频| 久久天堂一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 亚洲成人免费av在线播放| 男女免费视频国产| 一级毛片女人18水好多| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 精品久久久久久久久久免费视频 | 精品人妻1区二区| 欧美激情高清一区二区三区| 国产精品一区二区免费欧美| 新久久久久国产一级毛片| 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 亚洲少妇的诱惑av| 电影成人av| 精品第一国产精品| videos熟女内射| 久久亚洲真实| 亚洲色图综合在线观看| 国产xxxxx性猛交| 这个男人来自地球电影免费观看| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品| 一进一出抽搐动态| 国产在视频线精品| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 欧美日韩瑟瑟在线播放| 国产三级黄色录像| 欧美黄色淫秽网站| 建设人人有责人人尽责人人享有的| 国产亚洲欧美在线一区二区| 高清在线国产一区| videos熟女内射| 一级片免费观看大全| 亚洲欧美日韩高清在线视频| 国产在线一区二区三区精| 日本精品一区二区三区蜜桃| 午夜福利在线免费观看网站| 涩涩av久久男人的天堂| 亚洲视频免费观看视频| 国产成人精品久久二区二区91| 十分钟在线观看高清视频www| 精品国产乱子伦一区二区三区| 亚洲午夜精品一区,二区,三区| 一区二区日韩欧美中文字幕| 色94色欧美一区二区| 国产黄色免费在线视频| 大片电影免费在线观看免费| 一区二区三区国产精品乱码| 亚洲专区国产一区二区| 两个人免费观看高清视频| 成在线人永久免费视频| 国产国语露脸激情在线看| 色综合欧美亚洲国产小说| 国产91精品成人一区二区三区| 在线天堂中文资源库| 69精品国产乱码久久久| 又黄又粗又硬又大视频| 亚洲精品一二三| 黄色片一级片一级黄色片| av电影中文网址| 人妻一区二区av| 亚洲免费av在线视频| 亚洲五月色婷婷综合| 91成年电影在线观看| 国产精品 欧美亚洲| 999久久久国产精品视频| 满18在线观看网站| 国产成人免费无遮挡视频| 天天影视国产精品| 日本vs欧美在线观看视频| 又紧又爽又黄一区二区| 亚洲九九香蕉| 久久久久久久久免费视频了| 精品国产一区二区三区四区第35| 欧美日韩福利视频一区二区| 午夜两性在线视频| 少妇裸体淫交视频免费看高清 | 美女扒开内裤让男人捅视频| 十八禁高潮呻吟视频| 十八禁人妻一区二区| 在线国产一区二区在线| 亚洲精品久久成人aⅴ小说| 国产精品美女特级片免费视频播放器 | 亚洲av第一区精品v没综合| 我的亚洲天堂| 一区二区日韩欧美中文字幕| 午夜老司机福利片| 国产精品久久久久久精品古装| 香蕉丝袜av| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 老鸭窝网址在线观看| 成人精品一区二区免费| 黄片小视频在线播放| 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| 亚洲人成电影观看| 久久久久国产精品人妻aⅴ院 | 韩国av一区二区三区四区| 亚洲av成人av| 黑人猛操日本美女一级片| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 成人永久免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 国产高清国产精品国产三级| 欧美午夜高清在线| 国产男女内射视频| 亚洲国产毛片av蜜桃av| 午夜老司机福利片| 欧美+亚洲+日韩+国产| 午夜精品在线福利| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 国产免费男女视频| 少妇裸体淫交视频免费看高清 | 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 不卡av一区二区三区| 免费高清在线观看日韩| 国产成人精品久久二区二区免费| 成人免费观看视频高清| 精品国内亚洲2022精品成人 | 中文字幕色久视频| 亚洲国产精品sss在线观看 | 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av香蕉五月 | 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦 在线观看视频| 国产aⅴ精品一区二区三区波| 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 18禁观看日本| 亚洲人成电影免费在线| 中文字幕制服av| 亚洲五月婷婷丁香| 亚洲欧美激情在线| 亚洲五月婷婷丁香| 热re99久久精品国产66热6| 久久久久国内视频| 一级黄色大片毛片| av超薄肉色丝袜交足视频| 国产免费男女视频| 在线看a的网站| 国产aⅴ精品一区二区三区波| 久久久久久人人人人人| 极品教师在线免费播放| 大陆偷拍与自拍| 精品国产乱子伦一区二区三区| 日本五十路高清| 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区黑人| 国产片内射在线| 12—13女人毛片做爰片一| 黄色视频,在线免费观看| 国产激情欧美一区二区| 一a级毛片在线观看| 国产精华一区二区三区| 亚洲成人手机| 91成年电影在线观看| 色尼玛亚洲综合影院| 午夜福利欧美成人| 操出白浆在线播放| 午夜日韩欧美国产| 国产欧美亚洲国产| 夫妻午夜视频| 18禁国产床啪视频网站| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区mp4| 日韩人妻精品一区2区三区| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 精品无人区乱码1区二区| 国产乱人伦免费视频| 女性生殖器流出的白浆| 黄片播放在线免费| 国产不卡一卡二| 18禁裸乳无遮挡动漫免费视频| 久久香蕉精品热| 美女高潮到喷水免费观看| 99久久综合精品五月天人人| 欧美+亚洲+日韩+国产| 女性生殖器流出的白浆| 午夜91福利影院| 国产欧美日韩一区二区三| 亚洲精品国产色婷婷电影| 中文字幕制服av| 99热只有精品国产| 久久久久久久久免费视频了| 精品一区二区三卡| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 亚洲av日韩在线播放| 国产日韩一区二区三区精品不卡| 在线视频色国产色| 狠狠婷婷综合久久久久久88av| 亚洲精品国产色婷婷电影| 丰满饥渴人妻一区二区三| 大型av网站在线播放| 精品久久久久久久久久免费视频 | 十八禁网站免费在线| 精品福利永久在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 9热在线视频观看99| av有码第一页| 91老司机精品| 欧美日本中文国产一区发布| 午夜久久久在线观看| 久热爱精品视频在线9| 18禁裸乳无遮挡免费网站照片 | 50天的宝宝边吃奶边哭怎么回事| 婷婷成人精品国产| 91国产中文字幕| 99国产精品一区二区三区| 大型av网站在线播放| 国产成人免费无遮挡视频| 日韩欧美三级三区| 久久影院123| 亚洲欧美色中文字幕在线| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 久久久久久久精品吃奶| 免费一级毛片在线播放高清视频 | 悠悠久久av| 在线观看免费日韩欧美大片| 亚洲国产欧美日韩在线播放| 老鸭窝网址在线观看| 黄片播放在线免费| 一区二区日韩欧美中文字幕| 精品久久久久久久毛片微露脸| 亚洲九九香蕉| 欧美日韩成人在线一区二区| av天堂久久9| 亚洲美女黄片视频| 男女之事视频高清在线观看| 久久久国产成人精品二区 | 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| 欧美 日韩 精品 国产| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 欧美 日韩 精品 国产| 亚洲久久久国产精品| 国产熟女午夜一区二区三区| 两个人看的免费小视频| 12—13女人毛片做爰片一| 一级,二级,三级黄色视频| 欧美大码av| 国产xxxxx性猛交| 欧美亚洲 丝袜 人妻 在线| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 久久人人爽av亚洲精品天堂| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| 国产精品免费大片| 免费看a级黄色片| 交换朋友夫妻互换小说| 色老头精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 91麻豆av在线| 久久精品国产亚洲av香蕉五月 | 午夜激情av网站| 国产精品久久久久久人妻精品电影| 91在线观看av| www.999成人在线观看| 免费观看精品视频网站| 热99久久久久精品小说推荐| 一级毛片女人18水好多| 久久久久精品人妻al黑| 国产成人av激情在线播放| 午夜福利免费观看在线| 欧美最黄视频在线播放免费 | 国产精品98久久久久久宅男小说| 麻豆av在线久日| 无限看片的www在线观看| 大香蕉久久网| 热99国产精品久久久久久7| 国产免费现黄频在线看| 免费日韩欧美在线观看| 国产男女超爽视频在线观看| 啦啦啦在线免费观看视频4| 大陆偷拍与自拍| 男男h啪啪无遮挡| 男女之事视频高清在线观看| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 91精品三级在线观看| 国产人伦9x9x在线观看| 欧美午夜高清在线| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 性少妇av在线| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 欧美老熟妇乱子伦牲交| 91大片在线观看| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜添小说| 久久精品熟女亚洲av麻豆精品| 亚洲在线自拍视频| 在线观看免费视频网站a站| 国产成人一区二区三区免费视频网站| 99re在线观看精品视频| 夜夜夜夜夜久久久久| 国产淫语在线视频| 中文字幕色久视频| 亚洲伊人色综图| 国产精品欧美亚洲77777| 国产真人三级小视频在线观看| 两个人看的免费小视频| 国产一卡二卡三卡精品| 看黄色毛片网站| 久久久国产精品麻豆| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 免费在线观看日本一区| 亚洲七黄色美女视频| av电影中文网址| a在线观看视频网站| 女同久久另类99精品国产91| 亚洲aⅴ乱码一区二区在线播放 | 国产在线精品亚洲第一网站| 久久精品人人爽人人爽视色| 色综合婷婷激情| 人成视频在线观看免费观看| 亚洲国产精品合色在线| 91av网站免费观看| 岛国在线观看网站| 天天添夜夜摸| 午夜两性在线视频| 最新的欧美精品一区二区| av线在线观看网站| 操美女的视频在线观看| 欧美老熟妇乱子伦牲交| 国产高清videossex| 午夜福利在线免费观看网站| 一级毛片高清免费大全| 精品国产一区二区三区久久久樱花| 在线观看舔阴道视频| 午夜福利一区二区在线看| 国产激情久久老熟女| 在线观看免费高清a一片| av天堂在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 999精品在线视频| 两性夫妻黄色片| 久久精品亚洲精品国产色婷小说| 色94色欧美一区二区| 国产精品免费大片| 日本五十路高清| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 亚洲综合色网址| 村上凉子中文字幕在线| 国产精品偷伦视频观看了| 高清欧美精品videossex| www.999成人在线观看| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 国产成人av教育| 91字幕亚洲| 男女高潮啪啪啪动态图| 在线免费观看的www视频| 欧美乱码精品一区二区三区| 国产有黄有色有爽视频| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 国产淫语在线视频| 免费av中文字幕在线| 日韩视频一区二区在线观看| 精品久久久精品久久久| tocl精华| 身体一侧抽搐| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 首页视频小说图片口味搜索| 捣出白浆h1v1| www.熟女人妻精品国产| 丝袜美腿诱惑在线| 欧美激情久久久久久爽电影 | 亚洲欧美一区二区三区久久| 久久久水蜜桃国产精品网| 亚洲 欧美一区二区三区| 久久久国产精品麻豆| 搡老乐熟女国产| 国产高清激情床上av| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 大片电影免费在线观看免费| videosex国产| 精品久久久精品久久久| 免费观看a级毛片全部| 亚洲精品国产区一区二| 欧美中文综合在线视频| 国产亚洲精品第一综合不卡| 怎么达到女性高潮| av有码第一页| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 免费少妇av软件| www.精华液| 国产精品av久久久久免费| 一本大道久久a久久精品| 欧美日韩一级在线毛片| 老熟女久久久| 国产高清videossex| 一二三四社区在线视频社区8| 97人妻天天添夜夜摸| 久久精品亚洲av国产电影网| 国产精品香港三级国产av潘金莲| 中文字幕高清在线视频| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成伊人成综合网2020| 国产在线观看jvid| 亚洲中文日韩欧美视频| 免费看十八禁软件| 国产欧美日韩一区二区三区在线| av天堂久久9| 欧美激情高清一区二区三区| 在线观看66精品国产| 精品久久蜜臀av无| 国产欧美日韩一区二区三| 欧美精品啪啪一区二区三区| 99riav亚洲国产免费| 国产不卡一卡二|