• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of Di ff erent Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau

    2018-06-29 08:24:34LangZHANGYaomingMAWeiqiangMAandBinbinWANG
    Advances in Atmospheric Sciences 2018年9期

    Lang ZHANG,Yaoming MA?,3,Weiqiang MA,3,and Binbin WANG

    1Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China

    1.Introduction

    Land–atmosphere interactions a ff ect the energy and water cycles over a wide range of scales(Betts et al.,1996).Among these interactions,relatively small-scale processes have a crucial in fl uence on the development of convective clouds and precipitation,e.g.,local circulation systems induced by the dynamical or thermal e ff ects of topography are difficult to simulate accurately using models(Xu et al.,2008;Eigenmann et al.,2009;Gerken et al.,2014).On the other hand,many studies have reported(Mayer et al.,2008)tracegas transport induced by local circulation,e.g.,sudden ozone reduction events on a mountain summit as a result of the occurrence of free convection conditions(FCCs)in a valley(Mayer et al.,2008)and high ozone events on the mountain summit region of Mount Everest(Zhu et al.,2006;Cai et al.,2007;Semple and Moore,2008).Therefore,investigating the characteristics of local circulation systems,e.g.,the trigger conditions or driving mechanism of FCCs(Hanesiak et al.,2004;Eigenmann et al.,2009),will contribute to improving the simulation capability of sub-grid physical processes and the understanding of observed air matter exchange in alpine regions.

    Eigenmann et al.(2009)investigated near-ground FCCs in the Kinzig Valley,Black Forest,Southeast Germany by using eddy covariance(EC)measurements combined with a Doppler radar system and discussed the applicability of using the EC method to detect FCCs.Following this study,Zhou et al.(2011)analyzed FCCs in a typical land–lake breeze circulation at Nam Co Station,which is near Nam Co Lake in Tibet.Buoyant forces generated by elevated heating of a mountain slope can induce local mesoscale circulations,usually referred to as upslope winds or anabatic winds(Lee and Kimura,2001).However,if the land-use type of the highland is forest and the lower land is grass or cropland,it can induce a circulation that is counter to upslope winds(Hanesiak et al.,2004).For this reason,we chose the Qomolangma Monitoring and Research Station for Atmosphere and Environment(QOMS),which has bare soil underlying the surface of a mountain,and the Southeast Tibet Monitoring and Research Station for Environment(SETS),which has forest on a mountain and high grass in a valley,to detect the FCCs and compare the di ff erences.Subsequently,we investigated the in fl uence of the monsoon on FCCs.

    QOMS and SETS have similar terrain features but completely di ff erent characteristics of underlying surface in the adjacent area.There are probably essential distinctions between the generation mechanism and structure of local smallscale circulation at these two stations.This analysis focuses on discussing the di ff erences in FCCs between the two stations under the in fl uence of speci fi c background circulation and is a supplement to the results of Eigenmann et al.(2009)and Zhou et al.(2011).The present study aims to investigate the near-ground FCCs based on EC data at QOMS and SETS,and aims to serve as a reference for further research on local circulation systems.

    2.Site description and experimental data

    The stations under investigation in the present study—namely,QOMS(28?21.640N,86?56.910E;4298 m MSL)and SETS(29?45.870N,94?44.30E;3327 m MSL)—were established in 2006 and are in the Rongbuk Valley approximately 42 km north of Mt.Qomolangma(Sun et al.,2007)and 6 km north of the town of Lulang in Linzhi County near the southeastern border of Tibet,respectively.The Rongbuk Valley is oriented in a north-northeast–south-southwest direction with high mountains to the south and a width of approximately 1.2 km(Sun et al.,2007).Mountain crests in the adjacent area(within 10 km)of QOMS and SETS reach maximal values of approximately 5200 m and 5000 m MSL,respectively.The target underlying surface type of QOMS is a fi eld of gravel mixed with a small fraction of grass and some herbaceous plants in the valley(see Figs.1a and b).The valley in which SETS is situated is oriented north-northeast–south-southwest with high mountains to the south.The width of this valley ranges from 400 m to 500 m,and the target land-use type is a high grass fi eld(see Figs.1c and d).

    The data used in this study are obtained from the EC tower.An EC system(measurement height:3.25 m(QOMS)and 3.04 m(SETS);sampling frequency:10 Hz),equipped with a sonic anemometer(CSAT3,Campbell Scienti fi c Inc.,Logan,USA.,was used for collecting wind vector and sonic temperature data.An open-path H2O/CO2gas analyzer(Li-7500,LI-CORBiosciences,NebraskaUSA)wasusedforwa-ter vapor and CO2concentrations observation.

    Fig.1.Topographic features(left)and land-use type(right)of(a,b)QOMS and(c,d)SETS.The locations of the two stations are marked by a red cross in each plot.

    3.Data processing and quality assessment

    The EC data measured at QOMS and SETS were processed with TK3,a software developed at the Department of Micrometeorology,University of Bayreuth(Mauder et al.,2007;Mauder and Foken,2011),which includes all fl ux correction steps(Webb et al.,1980;Vickers and Mahrt,1997;Wilczak et al.,2001)and a quality assessment applied on the satisfaction of stationary and integral turbulence characteristics(Foken and Wichura,1996;Gckede et al.,2004;Eigenmannetal.,2009).Ageneralviewofsensibleheat fl ux,latent heat fl ux and wind direction in 2011 at QOMS and SETS is shown in Fig.2,where the y-axis represents the instrument recording time(LST,UTC+8),with the white areas denoting missing data.

    Fig.2.Sensible heat fl ux(H;units:W m?2),latent heat fl ux(LE;units:W m?2)and wind direction in 2011 at(a,c,e)QOMS and(b,d,f)SETS.

    Footprint analyses have to be performed to evaluate the spatial representativeness of measurements.For the present study,a forward Lagrangian footprint model(Rannik et al.,2003)combined with the fl ux data quality assessment scheme of Foken and Wichura(1996)was applied to provide a basis for data fi ltering(Gckede et al.,2004,2006;Eigenmann et al.,2009).Furthermore,the impact of internal boundary layers caused by the discontinuities of surface properties should be checked.The relation proposed by Raabe(1983)is as follows:

    This relation can be used to approximately determine the height δ of the new equilibrium layer(Foken,2008a)in order to check the impact of the internal boundary(Eigenmann et al.,2009).Here,x is the fetch(m),and z is the height(m)of the sensor.In this study,the e ff ect of the fence is considered as an obstacle.The measuring height of both sites is greater than twice that of the fence height;hence,the infl uence of the fence on fl ux measurements can be neglected.Table 1 shows the results for the approximately calculated fetch of the target underlying surface type for QOMS(gravel mixed with grass)and SETS(high grass).“I”presented in this table indicates that the fetch of the target land-use type is sufficiently large to make the internal boundary layer higher thanthemeasurementheight.AtQOMS,thenewequilibrium layer is below the measurement level in the 270?and 300?directions.The fl ux measurements within these two sectors are under the in fl uence of the internal boundary layer and should be discarded.However,the in fl uence of the heterogeneous underlying surface on the overall assessment was weak because these regions do not lie in the prevailing wind direction.For the case at SETS,the terrain is more complicated and the fetch of the 30?,60?,90?,120?,330?and 360?sectors denotes the distance between the EC tower and the outer edge of the surface discontinuity.Flux measurements for wind directions of 90?and 120?,where the measuring height of 3.04 m is greater than δ,and 150?,240?,270?and 300?,where the measuring height is lower than δ,can be associated with the target land-use type(high grass).The footprint analysis results are also presented in Table 1.Generally,if the fl ux contribution from the target land-use type was less than 80%and the δ was greater than the measurement height,the fl ux data should be excluded from further analyses(Mauder et al.,2006).

    Table 1.Average fl ux contribution(%)obtained by footprint analyses from the target underlying surface type “grass and gravel”at QOMS and “high grass”at SETS,in 12 independent wind directions and three stability classes.The internal boundary layer height δ and the fetch x in each direction are also listed.

    4.Results and discussion

    4.1.Detection of FCCs

    The stability parameter ζ,

    can be used to detect the occurrence of FCCs(Eigenmann et al.,2009).Here,z,L,k,g,w,θvand u?represent measurement height,Obukhov length,von-K′arm′an’s constant,gravitational acceleration,vertical wind speed,virtual potential temperature and friction velocity,respectively.The subscriptindicates the turbulent fl ux equal its respective surface value,andis the covariance of w and θv.This parameter can be considered as B/S,where and

    These are the buoyancy term(B)and the shear term(S)in the TKE function respectively.Free convection occurs when ζ

    QOMS is on the northern side of Mt.Qomolangma under the in fl uence of katabatic fl ow over glaciers(Sun et al.,2007).The in fl uence of downslope katabatic glacier winds(southerly or south-southeasterly)on up-valley winds(northnortheasterly)forced by solar heating delays the onset and weakens the intensity of up-valley winds.Figures 3a1–f1 show a typical day of FCC occurrence on 12 April 2011 at QOMS.In the morning,the glacier wind intensity is not suffi ciently strong,and thus thermally driven up-valley winds can occur approximately two hours after sunrise.During the onset of up-valley winds,an increasing sensible heat fl ux(Fig.3b1)caused by solar heating occurs with a lower wind speed and u?.The fi rst occurrence of FCCs occurred at approximately 1040 LST and was the result of a horizontal wind speed decrease caused by a change in local circulation from prevailing katabatic glacier winds to prevailing upvalley winds,which was accompanied by increasing buoyancy fl uxes.A sudden change in wind direction and an increase in wind speed after 1040 LST(see Figs.3c1 and e1)implies the domination of thermally induced valley circulation over katabatic glacier winds from 1040 to 1330 LST.After this period,a slightly weak decreasing trend in solar heating(see Fig.3d1),caused by occasional cloud cover,weakened the intensity of up-valley winds.Meanwhile,the increasing temperature di ff erence between the ice surface and the air nearby strengthens the glacier winds(Sun et al.,2007).Although the transient cloud cover reduces solar heating,the considerable surface heating does not disappear but,rather,is partially weakened.Therefore,during the period from 1330 to 1500 LST,the oscillation of wind direction caused by local circulation variation induces the occurrence of a low wind speed together with high buoyancy,i.e.,the occurrence of FCCs.However,during the monsoon,the circumstance is di ff erent and will be discussed in section 4.3.

    Figures 3a2–f2 show a classic case of the occurrence of FCCs on 3 April 2011 at SETS.Figures 4c2 and 4e2 show that down-valley winds become inconspicuous during the night and u?maintains a lower value before sunrise.Unlike at QOMS,FCCs do not just occur during lower wind-speed periods.Therefore,the occurrence of FCCs(approximately from 0940 to 1200 LST)is not the result of a decrease in horizontal wind speed but is triggered completely by strong solar heating.Shortly after 1200 LST,the persistent enhancement of upslope wind speeds led to the buoyancy term not being able to dominate the shear term any longer,resulting in the disappearance of FCCs.

    4.2.Near-ground boundary layer structure during FCCs

    The continuous wavelet transform(CWT)is used to analyze the turbulent spectra.This spectral operator was applied to analyze the turbulent structure of vertical wind speeds and temperatures during the period from 0900 to 1700 LST(480 min)at QOMS and from 0800 to 1600 at SETS using the same data analyzed in Fig.3.The CWT was completed using SOWAS—the Software for Wavelet Spectral Analysis and Synthesis(Maraun and Kurths,2004;Maraun et al.,2007).To eliminate the e ff ect of diurnal variation and reduce the processing time,the raw data were detrended and block averaged from the original 10 Hz to 0.5 Hz before the CWT calculation.

    Figures 4a and b show the normalized wavelet power spectra of the vertical wind speed and air temperature at QOMS,respectively.It is signi fi cant that lower-frequency turbulence contributes more spectral power during the fi rst FCC period,marked by the black dotted vertical lines.The time scale of air in plumes or thermals cycling once between the bottom and the top of the mixed layer is approximately 5 to 15 min in a well-developed convective boundary layer(Stull,1988).The structure of large-scale turbulence(lowerfrequency turbulence)presented in Fig.4a conforms to this thermal characteristic.The white dotted vertical lines mark thestartandendtimeofthesecondFCCperiod,duringwhich large-scale turbulence still contributes more power but it is not as obvious as during the fi rst FCC period.This dynamic may be the result of higher wind speeds during the second period.

    The situation at SETS,as depicted in Figs.4c and d,is di ff erent from that at QOMS.The period marked by the black dotted vertical lines contains a low wind-speed period before sunriseandtheonsetofFCCs.AttheonsetofFCCs,thespectral power is contributed mostly by large-scale turbulence.Moreover,thiscircumstancedoesnotjustoccurduringFCCs,andthereisevenlarger-scaleturbulenceoutsideFCCperiods.A possible interpretation is that the considerable heterogeneity of the land surface and the resulting internal boundary layers at SETS(see Fig.1d)induce low-frequency turbulence.

    It is worth noting that the scale of some turbulence is greater than 30 min,which means the EC calculation method cannot capture all types of turbulence power.The average near-ground energy balance closure at QOMS and SETS is 74%and 72%,respectively.Turbulence with scales greater than 30 min led to the imbalance of surface energy.

    4.3.Distribution of FCCs during the entire year

    Because both QOMS and SETS are in a region under a monsoonal in fl uence,the existence of di ff erences between the monsoon and non-monsoon seasons should be considered.Figure 5a shows the distribution of FCCs during 2011,excluding the period when precipitation and sensible heat fl uxes were less than 20 W m?2.The onset of FCCs is most common from 1.5 to 2 h after sunrise during non-monsoon periods and approximately 4 h or more after sunrise during the monsoon season.To obtain accurate FCC distribution characteristics during the monsoon without confusion caused by data blackout during September and October,supplemen-tary analysis based on a 30 min block average was performed with a more complete data record from 2014.The results indicate that the occurrence of FCCs during the monsoon become more dispersed and less frequent than during the nonmonsoon season.

    Fig.4.CWT analysis of the(a,c)vertical wind speed and(b,d)air temperature,(a,b)from 0900 to 1700 LST(480 min)on 12 April 2011 at QOMS,and(c,d)from 0800 to 1600 LST(480 min)on 3 April 2011 at SETS.Two black dotted lines marked the period of FCCs during morning and the yellow dotted lines marked the period of FCCs during afternoon.

    During the monsoon season,katabatic glacier winds(southerly or south-southeasterly)cease during the night(see Fig.2e).Thisdisappearanceallowsthehorizontalwindspeed decrease caused by the wind-direction change from katabatic glacier winds to up-valley winds in the morning to cease,undermining the onset of FCCs.Moreover,because of increased water vapor content during the monsoon season,the sensible heat fl ux is not very high—normally less than 200 W m?2.FCCs can only occur with a lower wind speed in most cases.A few hours after sunrise,the temperature difference between the ice surface and air nearby strengthened by solar heating leads to the onset of down-valley glacier winds(Sunetal.,2007).Inotherwords,bothup-valleywinds and down-valley glacier winds are induced by solar heating.Thus,when the intensity of solar heating is close to an appropriate range,the horizontal wind direction is likely to oscillate between two directions.This oscillation leads to the horizontal wind speed decreasing,and then,FCCs to occur.Take 22 July 2011 as an example( fi gures not shown).During FCC periods,the range of sensible heat fl ux is approximately 50–200 W m?2,and the wind speed decreases because of the oscillation of the wind direction from 0?to 45?.

    At SETS,the situation is much simpler,because the trigger mechanism of FCCs is no longer the low horizontal wind speed coupled with higher sensible heat fl ux,but strong solar heating,independently.Figure 5c shows the distribution of FCCs at SETS in 2011.The occurrence of FCCs is approximately one hour after sunrise,and there is no obvious difference between the monsoon and non-monsoon periods,except for the increasing probability of FCC occurrence caused by more frequent cloud cover during the afternoon during the monsoon.

    5.Conclusion

    Two observation stations(QOMS and SETS)with similar valley topography and a di ff erent underlying surface type were chosen to analyze the triggering mechanism of FCCs and compare the di ff erences.To obtain high-quality surface turbulent fl uxes,which can be used for the detection of FCCs,footprint analysis for the data representativeness of the target underlying surface type and investigation of the internal boundary layer disturbance combined with the quality control and assessment software TK3 was applied to process the turbulence data both at QOMS and at SETS.Glacier winds and valley winds constitute the local circulation at QOMS.FCCs at this station are the result of a horizontal wind speed decrease caused by change in wind direction from katabatic glacier winds to up-slope winds and weakened up-valley winds due to cloud cover.SETS,which has a forest on the mountain and high grass in the valley,presents di ff erent characteristics in terms of FCCs.Because of the low wind speed before sunrise,FCCs occurring during the morning are not triggered by a horizontal wind speed decrease,but by strong solar heating.Spectral data analyzed using CWT reveals large-scale turbulence near the ground emerging from the detected FCCs.However,the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs.The distribution of FCCs at QOMS for the whole year indicates that FCCs occur later andbecomemoredispersedandlessfrequentduringthemonsoon than during the non-monsoon seasons.At SETS,there is no signi fi cant di ff erence between the monsoon and nonmonsoon periods,except the increased occurrence probability of FCCs during the afternoon during the monsoon.In conclusion,both orography and the ambient underlying surface type can a ff ect the occurrence of FCCs.

    Fig.5.Distribution of FCCs in(a)2011 and(b)2014 at QOMS and(c)at SETS in 2011.The dashed lines indicate sunrise and sunset,and the gray vertical dotted lines outline the monsoon season.

    Acknowledgements.This research was funded by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC019),the National Natural Science Foundation of China(Grant Nos.41661144043,91337212,91637313 and 91737205),and the CAS “Hundred Talents”program(Dr.Weiqiang MA).The authors would like to thank Dr.Yongjie WANG,Dr.Zhongyan WANG,Dr.Zhikun ZHU,Dr.Cunbo HAN and colleagues from QOMS and SETS for their installation and maintenance of the measurement systems.The EC data can be download from http://zenode.org/record/20349#.

    REFERENCES

    Betts,A.K.,J.H.Ball,A.C.M.Beljaars,M.J.Miller,and P.A.Viterbo,1996:The land surface–atmosphere interaction:A review based on observational and global modeling perspectives.J.Geophys.Res.,101,7209–7225,https://doi.org/10.1029/95JD02135.

    Cai,X.H.,Y.Song,T.Zhu,W.L.Lin,and L.Kang,2007:Glacier winds in the Rongbuk Valley,north of Mount Everest:2.Their role in vertical exchange processes.J.Geophys.Res.,112,D11102,https://doi.org/10.1029/2006JD007868.

    Eigenmann,R.,S.Metzger,and T.Foken,2009:Generation of free convection due to changes of the local circulation system.Atmos.Chem.Phys.,9,8587–8600,https://doi.org/10.5194/acp-9-8587-2009.

    Foken,T.,and B.Wichura,1996:Tools for quality assessment of surface-based fl ux measurements.Agricultural and Forest Meteorology,78,83–105,https://doi.org/10.1016/0168-1923(95)02248-1.

    Foken,T.,2008a:Micrometeorology.Springer,Berlin,Heidelberg,https://doi.org/10.1007/978-3-540-74666-9.

    Foken,T.,2008b:The energy balance closure problem:An overview.Ecological Applications,18,1351–1367,https://doi.org/10.1890/06-0922.1.

    Gerken,T.,T.Biermann,W.Babel,M.Herzog,Y.M.Ma,T.Foken,and H.-F.Graf,2014:A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin,Tibetan Plateau.Theor.Appl.Climatol.,117,149–167,https://doi.org/10.1007/s00704-013-0987-9.

    Gckede,M.,T.Markkanen,C.B.Hasager,and T.Foken,2006:Update of a footprint-based approach for the characterisation of complex measurement sites.Bound.-Layer Meteor.,118,635–655,https://doi.org//10.1007/s10546-005-6435-3.

    Hanesiak,J.M.,R.L.Raddatz,and S.Lobban,2004:Local initiation of deep convection on the Canadian prairie provinces.Bound.-Layer Meteor.,110,455–470,https://doi.org/10.1023/B:BOUN.0000007242.89023.e5.

    Lee,S.H.,and F.Kimura,2001:Comparative studies in the local circulations induced by land-use and by topography.Bound.-Layer Meteor.,101,157–182,https://doi.org/10.1023/A:1019219412907.

    Maraun,D.,and J.Kurths,2004:Cross wavelet analysis:Signi ficance testing and pitfalls.Nonlinear Processes in Geophysics,11,505–514,https://doi.org/10.5194/npg-11-505-2004.

    Maraun,D.,J.Kurths,and M.Holschneider,2007:Nonstationary Gaussian processes in wavelet domain:Synthesis,estimation,and signi fi cance testing.Phys.Rev.E,75,016707,https://doi.org/10.1103/PhysRevE.75.016707.

    Mauder,M.,C.Liebethal,M.Gckede,J.-P.Leps,F.Beyrich,and T.Foken,2006:Processing and quality control of fl ux data during LITFASS-2003.Bound.-Layer Meteor.,121,67–88,https://doi.org/10.1007/s10546-006-9094-0.

    Mauder,M.,and Coauthors,2007:The energy balance experiment EBEX-2000.Part II:Intercomparison of eddy-covariance sensors and post- fi eld data processing methods.Bound.-Layer Meteor.,123,29–54,https://doi.org/10.1007/s10546-006-9139-4.

    Mauder,M.,and T.Foken,2011:Documentation and instruction manual of the eddy-covariance software package TK3.Arbeitsergebnisse,Nr.46.,Universitt Bayreuth,Bayreuth.

    Mayer,J.C.,K.Staudt,S.Gilge,F.X.Meixner,and T.Foken,2008:The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit.Atmos.Chem.Phys.,8,5941–5956,https://doi.org/10.5194/acp-8-5941-2008.

    Raabe,A.,1983:On the relation between the drag coefficient and fetch above the sea in the case of o ff-shore wind in the near shore zone.Z.Meteor.,33,363–367.

    Rannik,¨U.,T.Markkanen,J.Raittila,P.Hari,and T.Vesala,2003:Turbulence statistics inside and over forest:In fl uence on footprint prediction.Bound.-Layer Meteor.,109,163–189,https://doi.org/10.1023/A:1025404923169.

    Semple,J.L.,and G.W.K.Moore,2008:First observations of surface ozone concentration from the summit region of Mount Everest.Geophys.Res.Lett.,35,L20818,https://doi.org/10.1029/2008GL035295.

    Stull,R.B.,1988:An Introduction to Boundary Layer Meteorology.Dordrecht:Kluwer Academic Publishers.

    Sun,F.L.,Y.M.Ma,M.S.Li,W.Q.Ma,H.Tian,and S.Metzger,2007:Boundary layer e ff ects above a Himalayan valley near Mount Everest.Geophys.Res.Lett.,34,L08808,https://doi.org/10.1029/2007GL029484.

    Vickers,D.,and L.Mahrt,1997:Quality control and fl ux sampling problems for tower and aircraft data.J.Atmos.Oceanic Technol.,14,512–526,https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    Webb,E.K.,G.I.Pearman,and R.Leuning,1980:Correction of fl ux measurements for density e ff ects due to heat and water vapour transfer.Quart.J.Roy.Meteor.Soc.,106,85–100,https://doi.org/10.1002/qj.49710644707.

    Wilczak,J.M.,S.P.Oncley,and S.A.Stage,2001:Sonic anemometer tilt correction algorithms.Bound.-Layer Meteor.,99,127–150,https://doi.org/10.1023/A:1018966204465.

    Xu,Z.X.,T.L.Gong,and J.Y.Li,2008:Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation.Hydrological Processes,22,3056–3065,https://doi.org/10.1002/hyp.6892.

    Zhou,D.G.,R.Eigenmann,W.Babel,T.Foken,and Y.M.Ma,2011:The study of near-ground free convection conditions at Nam Co station on the Tibetan Plateau.Theor.Appl.Climatol.,105,217–228,https://doi.org/10.1007/s00704-010-0393-5.

    Zhu,T.,and Coauthors,2006:Downward transport of ozone-rich air near Mt.Everest.Geophys.Res.Lett.,33,L23809,https://doi.org/10.1029/2006GL027726.

    精品午夜福利视频在线观看一区| 人妻久久中文字幕网| 国产视频一区二区在线看| 禁无遮挡网站| 久久久久久国产a免费观看| 丰满的人妻完整版| 国产不卡一卡二| 久久久国产欧美日韩av| 午夜精品国产一区二区电影| 亚洲精品国产区一区二| 成人特级黄色片久久久久久久| 一二三四在线观看免费中文在| 久久青草综合色| 亚洲在线自拍视频| 成人18禁在线播放| 中出人妻视频一区二区| 国产欧美日韩综合在线一区二区| 国产精品久久视频播放| 一边摸一边抽搐一进一小说| 亚洲黑人精品在线| 啪啪无遮挡十八禁网站| 69av精品久久久久久| 国产高清有码在线观看视频 | 日本五十路高清| 亚洲电影在线观看av| 熟妇人妻久久中文字幕3abv| 精品久久久久久成人av| 午夜福利在线观看吧| 日本a在线网址| 两个人视频免费观看高清| 中国美女看黄片| 搡老妇女老女人老熟妇| 大陆偷拍与自拍| 成在线人永久免费视频| 午夜福利免费观看在线| 成人亚洲精品一区在线观看| av有码第一页| 亚洲熟妇中文字幕五十中出| 日韩欧美三级三区| 免费高清视频大片| 亚洲精品美女久久av网站| 欧美黑人精品巨大| av视频免费观看在线观看| 国产av一区二区精品久久| 一区福利在线观看| 精品一品国产午夜福利视频| 国产av一区二区精品久久| 国产亚洲精品第一综合不卡| 午夜精品国产一区二区电影| 此物有八面人人有两片| 亚洲 国产 在线| 人人妻,人人澡人人爽秒播| 亚洲自拍偷在线| 免费少妇av软件| 一区二区日韩欧美中文字幕| 精品乱码久久久久久99久播| 国产精品九九99| 俄罗斯特黄特色一大片| 免费女性裸体啪啪无遮挡网站| 满18在线观看网站| 国产精品久久久久久精品电影 | 亚洲自拍偷在线| av欧美777| 日韩精品免费视频一区二区三区| 久久婷婷人人爽人人干人人爱 | 91大片在线观看| xxx96com| 中文字幕av电影在线播放| 日日夜夜操网爽| 韩国av一区二区三区四区| 日韩国内少妇激情av| 欧美日韩精品网址| 国语自产精品视频在线第100页| 亚洲 欧美 日韩 在线 免费| 老熟妇仑乱视频hdxx| 91成人精品电影| 啦啦啦免费观看视频1| 免费av毛片视频| 国产午夜精品久久久久久| 久久中文字幕人妻熟女| 亚洲aⅴ乱码一区二区在线播放 | 一本大道久久a久久精品| 久久久久国产精品人妻aⅴ院| 老司机在亚洲福利影院| 日本黄色视频三级网站网址| 男人舔女人的私密视频| 国产男靠女视频免费网站| 久久国产精品男人的天堂亚洲| 在线观看一区二区三区| 国产精品一区二区三区四区久久 | 身体一侧抽搐| 成人国产一区最新在线观看| 日本五十路高清| 日本 av在线| 中文字幕人妻丝袜一区二区| 亚洲精品粉嫩美女一区| 国产伦人伦偷精品视频| 午夜福利在线观看吧| 国产欧美日韩一区二区精品| 首页视频小说图片口味搜索| 色综合欧美亚洲国产小说| 亚洲国产中文字幕在线视频| 亚洲欧洲精品一区二区精品久久久| 午夜久久久久精精品| 黄色a级毛片大全视频| 黄色毛片三级朝国网站| 香蕉久久夜色| 国产精品国产高清国产av| 黄网站色视频无遮挡免费观看| 身体一侧抽搐| 婷婷精品国产亚洲av在线| 日韩 欧美 亚洲 中文字幕| 天堂√8在线中文| 免费人成视频x8x8入口观看| 国产97色在线日韩免费| √禁漫天堂资源中文www| 亚洲欧美日韩高清在线视频| av电影中文网址| 亚洲中文字幕日韩| 亚洲av成人不卡在线观看播放网| 一级a爱片免费观看的视频| 亚洲第一青青草原| 露出奶头的视频| 高清黄色对白视频在线免费看| 男人的好看免费观看在线视频 | 大型黄色视频在线免费观看| 国产成人系列免费观看| 国产精品免费一区二区三区在线| 精品国产乱码久久久久久男人| 99在线视频只有这里精品首页| aaaaa片日本免费| 夜夜躁狠狠躁天天躁| 欧美日韩瑟瑟在线播放| 麻豆成人av在线观看| 一区二区三区高清视频在线| 成人国产一区最新在线观看| 波多野结衣av一区二区av| 色综合亚洲欧美另类图片| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美在线一区二区| 亚洲一码二码三码区别大吗| 母亲3免费完整高清在线观看| 在线观看日韩欧美| 99久久综合精品五月天人人| 两个人看的免费小视频| 99久久99久久久精品蜜桃| 97人妻天天添夜夜摸| 身体一侧抽搐| 国产成人av激情在线播放| 中文字幕久久专区| 欧美绝顶高潮抽搐喷水| 国产精品亚洲一级av第二区| 99国产极品粉嫩在线观看| 欧美黑人精品巨大| 午夜福利免费观看在线| 两个人视频免费观看高清| 69精品国产乱码久久久| 夜夜夜夜夜久久久久| 9色porny在线观看| 少妇熟女aⅴ在线视频| 国产一级毛片七仙女欲春2 | av天堂在线播放| 国产欧美日韩精品亚洲av| 性色av乱码一区二区三区2| 成年人黄色毛片网站| 国产成人欧美在线观看| 亚洲 欧美一区二区三区| 国语自产精品视频在线第100页| 婷婷精品国产亚洲av在线| 久久精品国产清高在天天线| 亚洲性夜色夜夜综合| 一边摸一边抽搐一进一小说| 成人国语在线视频| 两个人看的免费小视频| 欧美日本视频| 国产成人欧美| 国产av一区二区精品久久| 精品久久久久久久毛片微露脸| 亚洲精品中文字幕一二三四区| 亚洲一码二码三码区别大吗| 一级片免费观看大全| 欧美黄色淫秽网站| 黄片播放在线免费| 一二三四在线观看免费中文在| 日韩欧美国产一区二区入口| 日韩欧美一区二区三区在线观看| 国产精品日韩av在线免费观看 | 精品久久久精品久久久| 久久精品91蜜桃| 久久久国产欧美日韩av| 亚洲成av片中文字幕在线观看| 久久精品成人免费网站| 久久久国产成人精品二区| 50天的宝宝边吃奶边哭怎么回事| www日本在线高清视频| 亚洲全国av大片| 天堂√8在线中文| 久久久久国内视频| 少妇的丰满在线观看| 国产成人精品久久二区二区免费| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三区在线| avwww免费| 国产伦人伦偷精品视频| 久9热在线精品视频| 成人18禁在线播放| 久久久久久久久中文| 午夜视频精品福利| www.999成人在线观看| 免费看十八禁软件| 欧美一级毛片孕妇| 在线观看舔阴道视频| 自线自在国产av| 亚洲久久久国产精品| 一边摸一边抽搐一进一小说| 国内精品久久久久久久电影| 精品一区二区三区av网在线观看| 97人妻天天添夜夜摸| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| 久久性视频一级片| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 亚洲精品国产区一区二| 男女做爰动态图高潮gif福利片 | 久久香蕉激情| 高清在线国产一区| 国产精品乱码一区二三区的特点 | 久99久视频精品免费| 9色porny在线观看| 精品福利观看| 久久国产乱子伦精品免费另类| 国产一区二区在线av高清观看| 男人的好看免费观看在线视频 | 亚洲精品久久成人aⅴ小说| 少妇裸体淫交视频免费看高清 | 欧美日韩瑟瑟在线播放| 亚洲伊人色综图| 亚洲av日韩精品久久久久久密| 国产欧美日韩一区二区精品| 制服人妻中文乱码| 黄色成人免费大全| 久久国产精品影院| 亚洲欧美日韩另类电影网站| 国产野战对白在线观看| 久久久久国产精品人妻aⅴ院| 欧美不卡视频在线免费观看 | 亚洲人成伊人成综合网2020| 黄片播放在线免费| av免费在线观看网站| 一区福利在线观看| 日本免费a在线| 午夜老司机福利片| 99国产精品99久久久久| 91老司机精品| 国产精品99久久99久久久不卡| 国产又爽黄色视频| 丝袜美腿诱惑在线| 国产成人av教育| 精品国内亚洲2022精品成人| 中文亚洲av片在线观看爽| 色综合亚洲欧美另类图片| 欧美激情高清一区二区三区| 三级毛片av免费| 看黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 国产午夜精品久久久久久| 午夜免费激情av| 正在播放国产对白刺激| 免费无遮挡裸体视频| 亚洲国产精品sss在线观看| 嫩草影院精品99| 性少妇av在线| 99久久99久久久精品蜜桃| 大型黄色视频在线免费观看| 亚洲熟妇熟女久久| 91国产中文字幕| 久久影院123| 中文亚洲av片在线观看爽| 国产私拍福利视频在线观看| 国产精品久久视频播放| www.精华液| 成年版毛片免费区| 久热这里只有精品99| 视频在线观看一区二区三区| www.熟女人妻精品国产| 中文亚洲av片在线观看爽| 99热只有精品国产| 欧美成人一区二区免费高清观看 | av天堂久久9| 黄色成人免费大全| 国产欧美日韩一区二区三| 中国美女看黄片| 淫妇啪啪啪对白视频| 丝袜在线中文字幕| 老汉色av国产亚洲站长工具| 可以在线观看的亚洲视频| 国产亚洲精品av在线| 国产在线观看jvid| 欧美日韩乱码在线| 老司机福利观看| 免费无遮挡裸体视频| 亚洲片人在线观看| 久久精品91无色码中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲三区欧美一区| 深夜精品福利| 在线观看免费日韩欧美大片| 怎么达到女性高潮| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区综合在线观看| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 亚洲av成人不卡在线观看播放网| 成人免费观看视频高清| 99精品久久久久人妻精品| 丁香六月欧美| 亚洲成人精品中文字幕电影| 亚洲一码二码三码区别大吗| 成人18禁在线播放| 亚洲中文字幕一区二区三区有码在线看 | av片东京热男人的天堂| 亚洲精品av麻豆狂野| 嫩草影视91久久| 制服丝袜大香蕉在线| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女 | 精品久久蜜臀av无| 老熟妇乱子伦视频在线观看| 亚洲激情在线av| 后天国语完整版免费观看| 亚洲精品av麻豆狂野| 午夜影院日韩av| 国产精品久久久久久人妻精品电影| 亚洲天堂国产精品一区在线| 妹子高潮喷水视频| 日韩视频一区二区在线观看| 午夜福利成人在线免费观看| 亚洲欧美精品综合一区二区三区| 亚洲第一青青草原| 18禁黄网站禁片午夜丰满| 亚洲专区字幕在线| 国产高清激情床上av| 欧美人与性动交α欧美精品济南到| 精品国产国语对白av| 日韩精品免费视频一区二区三区| 一级片免费观看大全| 亚洲 欧美一区二区三区| 亚洲全国av大片| 久久中文字幕一级| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| 成年女人毛片免费观看观看9| 久久久久国产精品人妻aⅴ院| 精品乱码久久久久久99久播| 日本一区二区免费在线视频| 咕卡用的链子| 国产又色又爽无遮挡免费看| 国产亚洲av嫩草精品影院| 成人精品一区二区免费| 欧美日本亚洲视频在线播放| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 午夜福利高清视频| 啪啪无遮挡十八禁网站| 午夜免费鲁丝| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 精品久久久久久久人妻蜜臀av | 日本精品一区二区三区蜜桃| 桃色一区二区三区在线观看| 国产精品一区二区精品视频观看| 十八禁网站免费在线| 免费不卡黄色视频| 国产精品一区二区精品视频观看| 老汉色av国产亚洲站长工具| 久久久久久亚洲精品国产蜜桃av| 女同久久另类99精品国产91| 午夜福利免费观看在线| 国产高清videossex| 97碰自拍视频| 一级片免费观看大全| 国产1区2区3区精品| 午夜a级毛片| 久久久国产成人免费| 岛国在线观看网站| 亚洲久久久国产精品| 首页视频小说图片口味搜索| 一级黄色大片毛片| 一个人免费在线观看的高清视频| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 大型av网站在线播放| 丁香六月欧美| av欧美777| 午夜福利视频1000在线观看 | 亚洲精品国产精品久久久不卡| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 搡老妇女老女人老熟妇| 久久人妻av系列| 欧美日本亚洲视频在线播放| 高清毛片免费观看视频网站| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 极品人妻少妇av视频| 精品不卡国产一区二区三区| 一个人免费在线观看的高清视频| 精品第一国产精品| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 妹子高潮喷水视频| 88av欧美| 18禁裸乳无遮挡免费网站照片 | 日韩大码丰满熟妇| 成人国语在线视频| 亚洲熟女毛片儿| 亚洲第一青青草原| 欧美成狂野欧美在线观看| 亚洲中文日韩欧美视频| 1024香蕉在线观看| av片东京热男人的天堂| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品av在线| 午夜免费观看网址| 欧美丝袜亚洲另类 | 一区二区日韩欧美中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩三级视频一区二区三区| 国产97色在线日韩免费| 久久精品91蜜桃| 精品免费久久久久久久清纯| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 69精品国产乱码久久久| 女性被躁到高潮视频| 色综合站精品国产| 99re在线观看精品视频| 女生性感内裤真人,穿戴方法视频| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 99国产精品一区二区三区| 19禁男女啪啪无遮挡网站| 多毛熟女@视频| 亚洲精品一区av在线观看| 久久久久九九精品影院| 久久精品亚洲熟妇少妇任你| 女性生殖器流出的白浆| svipshipincom国产片| 涩涩av久久男人的天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品99久久99久久久不卡| 国产精品自产拍在线观看55亚洲| 久久久久精品国产欧美久久久| 男女午夜视频在线观看| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区| 欧美激情极品国产一区二区三区| 欧美国产日韩亚洲一区| 久久人人精品亚洲av| 欧美色视频一区免费| 精品少妇一区二区三区视频日本电影| 黑丝袜美女国产一区| 久久久久久久久免费视频了| 国产不卡一卡二| 日韩有码中文字幕| 日本黄色视频三级网站网址| 久久亚洲真实| 国产成+人综合+亚洲专区| 女生性感内裤真人,穿戴方法视频| 欧美国产日韩亚洲一区| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 国产精品亚洲一级av第二区| 日本免费a在线| 在线国产一区二区在线| 天堂动漫精品| 亚洲精品国产色婷婷电影| 日本欧美视频一区| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 亚洲av熟女| 香蕉久久夜色| 久久香蕉国产精品| 国产成人av激情在线播放| 日韩欧美一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 亚洲人成电影观看| 日韩精品中文字幕看吧| 欧美日韩亚洲综合一区二区三区_| 亚洲色图综合在线观看| 国产成年人精品一区二区| 久久久久精品国产欧美久久久| 欧美在线黄色| 最新在线观看一区二区三区| 韩国精品一区二区三区| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡| 制服丝袜大香蕉在线| 亚洲午夜理论影院| 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 精品人妻在线不人妻| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| 午夜老司机福利片| 亚洲成人久久性| 久久久国产成人免费| 亚洲精品国产区一区二| 久久久久九九精品影院| 亚洲av五月六月丁香网| 日韩av在线大香蕉| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| 极品教师在线免费播放| 色综合婷婷激情| 在线天堂中文资源库| 国产成人av激情在线播放| 亚洲国产毛片av蜜桃av| 嫁个100分男人电影在线观看| 国内精品久久久久精免费| 久久婷婷人人爽人人干人人爱 | 午夜影院日韩av| 两人在一起打扑克的视频| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 人人妻人人澡欧美一区二区 | 亚洲精品一区av在线观看| 最新在线观看一区二区三区| 午夜福利18| 久久草成人影院| 午夜a级毛片| 日本三级黄在线观看| 丰满的人妻完整版| 正在播放国产对白刺激| 99热只有精品国产| 一级毛片女人18水好多| 国产精品一区二区三区四区久久 | 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 无人区码免费观看不卡| 欧美激情久久久久久爽电影 | 成人永久免费在线观看视频| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 18美女黄网站色大片免费观看| 亚洲三区欧美一区| 午夜精品在线福利| 丝袜在线中文字幕| tocl精华| 999久久久国产精品视频| 免费在线观看亚洲国产| 精品久久久久久,| 欧美成人免费av一区二区三区| 亚洲片人在线观看| 久久午夜综合久久蜜桃| 亚洲男人天堂网一区| 成人欧美大片| 黄色视频,在线免费观看| 久久精品亚洲熟妇少妇任你| 一级片免费观看大全| 在线观看免费视频日本深夜| 两性夫妻黄色片| 老司机靠b影院| bbb黄色大片| 91成人精品电影| 人妻久久中文字幕网| 午夜免费观看网址| 精品久久久久久久久久免费视频| 99精品欧美一区二区三区四区| 看片在线看免费视频| 国产av精品麻豆| 色婷婷久久久亚洲欧美| 一级片免费观看大全| 妹子高潮喷水视频| 精品一区二区三区四区五区乱码| 日本五十路高清| 成人亚洲精品av一区二区| 国产一卡二卡三卡精品| 国产99久久九九免费精品| 久久久国产精品麻豆| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 激情视频va一区二区三区| 99久久国产精品久久久| 一级a爱片免费观看的视频| 美女扒开内裤让男人捅视频| 免费av毛片视频| 可以在线观看毛片的网站| 丝袜美腿诱惑在线| 免费无遮挡裸体视频| 91国产中文字幕| 此物有八面人人有两片| 久久草成人影院| 他把我摸到了高潮在线观看| 久久青草综合色| av在线天堂中文字幕| 国产精品国产高清国产av| 桃红色精品国产亚洲av| 999久久久国产精品视频| 国产单亲对白刺激| 久久天堂一区二区三区四区| 欧美最黄视频在线播放免费| 99国产综合亚洲精品| 午夜激情av网站| 一区在线观看完整版| 午夜影院日韩av|