• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of Di ff erent Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau

    2018-06-29 08:24:34LangZHANGYaomingMAWeiqiangMAandBinbinWANG
    Advances in Atmospheric Sciences 2018年9期

    Lang ZHANG,Yaoming MA?,3,Weiqiang MA,3,and Binbin WANG

    1Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China

    1.Introduction

    Land–atmosphere interactions a ff ect the energy and water cycles over a wide range of scales(Betts et al.,1996).Among these interactions,relatively small-scale processes have a crucial in fl uence on the development of convective clouds and precipitation,e.g.,local circulation systems induced by the dynamical or thermal e ff ects of topography are difficult to simulate accurately using models(Xu et al.,2008;Eigenmann et al.,2009;Gerken et al.,2014).On the other hand,many studies have reported(Mayer et al.,2008)tracegas transport induced by local circulation,e.g.,sudden ozone reduction events on a mountain summit as a result of the occurrence of free convection conditions(FCCs)in a valley(Mayer et al.,2008)and high ozone events on the mountain summit region of Mount Everest(Zhu et al.,2006;Cai et al.,2007;Semple and Moore,2008).Therefore,investigating the characteristics of local circulation systems,e.g.,the trigger conditions or driving mechanism of FCCs(Hanesiak et al.,2004;Eigenmann et al.,2009),will contribute to improving the simulation capability of sub-grid physical processes and the understanding of observed air matter exchange in alpine regions.

    Eigenmann et al.(2009)investigated near-ground FCCs in the Kinzig Valley,Black Forest,Southeast Germany by using eddy covariance(EC)measurements combined with a Doppler radar system and discussed the applicability of using the EC method to detect FCCs.Following this study,Zhou et al.(2011)analyzed FCCs in a typical land–lake breeze circulation at Nam Co Station,which is near Nam Co Lake in Tibet.Buoyant forces generated by elevated heating of a mountain slope can induce local mesoscale circulations,usually referred to as upslope winds or anabatic winds(Lee and Kimura,2001).However,if the land-use type of the highland is forest and the lower land is grass or cropland,it can induce a circulation that is counter to upslope winds(Hanesiak et al.,2004).For this reason,we chose the Qomolangma Monitoring and Research Station for Atmosphere and Environment(QOMS),which has bare soil underlying the surface of a mountain,and the Southeast Tibet Monitoring and Research Station for Environment(SETS),which has forest on a mountain and high grass in a valley,to detect the FCCs and compare the di ff erences.Subsequently,we investigated the in fl uence of the monsoon on FCCs.

    QOMS and SETS have similar terrain features but completely di ff erent characteristics of underlying surface in the adjacent area.There are probably essential distinctions between the generation mechanism and structure of local smallscale circulation at these two stations.This analysis focuses on discussing the di ff erences in FCCs between the two stations under the in fl uence of speci fi c background circulation and is a supplement to the results of Eigenmann et al.(2009)and Zhou et al.(2011).The present study aims to investigate the near-ground FCCs based on EC data at QOMS and SETS,and aims to serve as a reference for further research on local circulation systems.

    2.Site description and experimental data

    The stations under investigation in the present study—namely,QOMS(28?21.640N,86?56.910E;4298 m MSL)and SETS(29?45.870N,94?44.30E;3327 m MSL)—were established in 2006 and are in the Rongbuk Valley approximately 42 km north of Mt.Qomolangma(Sun et al.,2007)and 6 km north of the town of Lulang in Linzhi County near the southeastern border of Tibet,respectively.The Rongbuk Valley is oriented in a north-northeast–south-southwest direction with high mountains to the south and a width of approximately 1.2 km(Sun et al.,2007).Mountain crests in the adjacent area(within 10 km)of QOMS and SETS reach maximal values of approximately 5200 m and 5000 m MSL,respectively.The target underlying surface type of QOMS is a fi eld of gravel mixed with a small fraction of grass and some herbaceous plants in the valley(see Figs.1a and b).The valley in which SETS is situated is oriented north-northeast–south-southwest with high mountains to the south.The width of this valley ranges from 400 m to 500 m,and the target land-use type is a high grass fi eld(see Figs.1c and d).

    The data used in this study are obtained from the EC tower.An EC system(measurement height:3.25 m(QOMS)and 3.04 m(SETS);sampling frequency:10 Hz),equipped with a sonic anemometer(CSAT3,Campbell Scienti fi c Inc.,Logan,USA.,was used for collecting wind vector and sonic temperature data.An open-path H2O/CO2gas analyzer(Li-7500,LI-CORBiosciences,NebraskaUSA)wasusedforwa-ter vapor and CO2concentrations observation.

    Fig.1.Topographic features(left)and land-use type(right)of(a,b)QOMS and(c,d)SETS.The locations of the two stations are marked by a red cross in each plot.

    3.Data processing and quality assessment

    The EC data measured at QOMS and SETS were processed with TK3,a software developed at the Department of Micrometeorology,University of Bayreuth(Mauder et al.,2007;Mauder and Foken,2011),which includes all fl ux correction steps(Webb et al.,1980;Vickers and Mahrt,1997;Wilczak et al.,2001)and a quality assessment applied on the satisfaction of stationary and integral turbulence characteristics(Foken and Wichura,1996;Gckede et al.,2004;Eigenmannetal.,2009).Ageneralviewofsensibleheat fl ux,latent heat fl ux and wind direction in 2011 at QOMS and SETS is shown in Fig.2,where the y-axis represents the instrument recording time(LST,UTC+8),with the white areas denoting missing data.

    Fig.2.Sensible heat fl ux(H;units:W m?2),latent heat fl ux(LE;units:W m?2)and wind direction in 2011 at(a,c,e)QOMS and(b,d,f)SETS.

    Footprint analyses have to be performed to evaluate the spatial representativeness of measurements.For the present study,a forward Lagrangian footprint model(Rannik et al.,2003)combined with the fl ux data quality assessment scheme of Foken and Wichura(1996)was applied to provide a basis for data fi ltering(Gckede et al.,2004,2006;Eigenmann et al.,2009).Furthermore,the impact of internal boundary layers caused by the discontinuities of surface properties should be checked.The relation proposed by Raabe(1983)is as follows:

    This relation can be used to approximately determine the height δ of the new equilibrium layer(Foken,2008a)in order to check the impact of the internal boundary(Eigenmann et al.,2009).Here,x is the fetch(m),and z is the height(m)of the sensor.In this study,the e ff ect of the fence is considered as an obstacle.The measuring height of both sites is greater than twice that of the fence height;hence,the infl uence of the fence on fl ux measurements can be neglected.Table 1 shows the results for the approximately calculated fetch of the target underlying surface type for QOMS(gravel mixed with grass)and SETS(high grass).“I”presented in this table indicates that the fetch of the target land-use type is sufficiently large to make the internal boundary layer higher thanthemeasurementheight.AtQOMS,thenewequilibrium layer is below the measurement level in the 270?and 300?directions.The fl ux measurements within these two sectors are under the in fl uence of the internal boundary layer and should be discarded.However,the in fl uence of the heterogeneous underlying surface on the overall assessment was weak because these regions do not lie in the prevailing wind direction.For the case at SETS,the terrain is more complicated and the fetch of the 30?,60?,90?,120?,330?and 360?sectors denotes the distance between the EC tower and the outer edge of the surface discontinuity.Flux measurements for wind directions of 90?and 120?,where the measuring height of 3.04 m is greater than δ,and 150?,240?,270?and 300?,where the measuring height is lower than δ,can be associated with the target land-use type(high grass).The footprint analysis results are also presented in Table 1.Generally,if the fl ux contribution from the target land-use type was less than 80%and the δ was greater than the measurement height,the fl ux data should be excluded from further analyses(Mauder et al.,2006).

    Table 1.Average fl ux contribution(%)obtained by footprint analyses from the target underlying surface type “grass and gravel”at QOMS and “high grass”at SETS,in 12 independent wind directions and three stability classes.The internal boundary layer height δ and the fetch x in each direction are also listed.

    4.Results and discussion

    4.1.Detection of FCCs

    The stability parameter ζ,

    can be used to detect the occurrence of FCCs(Eigenmann et al.,2009).Here,z,L,k,g,w,θvand u?represent measurement height,Obukhov length,von-K′arm′an’s constant,gravitational acceleration,vertical wind speed,virtual potential temperature and friction velocity,respectively.The subscriptindicates the turbulent fl ux equal its respective surface value,andis the covariance of w and θv.This parameter can be considered as B/S,where and

    These are the buoyancy term(B)and the shear term(S)in the TKE function respectively.Free convection occurs when ζ

    QOMS is on the northern side of Mt.Qomolangma under the in fl uence of katabatic fl ow over glaciers(Sun et al.,2007).The in fl uence of downslope katabatic glacier winds(southerly or south-southeasterly)on up-valley winds(northnortheasterly)forced by solar heating delays the onset and weakens the intensity of up-valley winds.Figures 3a1–f1 show a typical day of FCC occurrence on 12 April 2011 at QOMS.In the morning,the glacier wind intensity is not suffi ciently strong,and thus thermally driven up-valley winds can occur approximately two hours after sunrise.During the onset of up-valley winds,an increasing sensible heat fl ux(Fig.3b1)caused by solar heating occurs with a lower wind speed and u?.The fi rst occurrence of FCCs occurred at approximately 1040 LST and was the result of a horizontal wind speed decrease caused by a change in local circulation from prevailing katabatic glacier winds to prevailing upvalley winds,which was accompanied by increasing buoyancy fl uxes.A sudden change in wind direction and an increase in wind speed after 1040 LST(see Figs.3c1 and e1)implies the domination of thermally induced valley circulation over katabatic glacier winds from 1040 to 1330 LST.After this period,a slightly weak decreasing trend in solar heating(see Fig.3d1),caused by occasional cloud cover,weakened the intensity of up-valley winds.Meanwhile,the increasing temperature di ff erence between the ice surface and the air nearby strengthens the glacier winds(Sun et al.,2007).Although the transient cloud cover reduces solar heating,the considerable surface heating does not disappear but,rather,is partially weakened.Therefore,during the period from 1330 to 1500 LST,the oscillation of wind direction caused by local circulation variation induces the occurrence of a low wind speed together with high buoyancy,i.e.,the occurrence of FCCs.However,during the monsoon,the circumstance is di ff erent and will be discussed in section 4.3.

    Figures 3a2–f2 show a classic case of the occurrence of FCCs on 3 April 2011 at SETS.Figures 4c2 and 4e2 show that down-valley winds become inconspicuous during the night and u?maintains a lower value before sunrise.Unlike at QOMS,FCCs do not just occur during lower wind-speed periods.Therefore,the occurrence of FCCs(approximately from 0940 to 1200 LST)is not the result of a decrease in horizontal wind speed but is triggered completely by strong solar heating.Shortly after 1200 LST,the persistent enhancement of upslope wind speeds led to the buoyancy term not being able to dominate the shear term any longer,resulting in the disappearance of FCCs.

    4.2.Near-ground boundary layer structure during FCCs

    The continuous wavelet transform(CWT)is used to analyze the turbulent spectra.This spectral operator was applied to analyze the turbulent structure of vertical wind speeds and temperatures during the period from 0900 to 1700 LST(480 min)at QOMS and from 0800 to 1600 at SETS using the same data analyzed in Fig.3.The CWT was completed using SOWAS—the Software for Wavelet Spectral Analysis and Synthesis(Maraun and Kurths,2004;Maraun et al.,2007).To eliminate the e ff ect of diurnal variation and reduce the processing time,the raw data were detrended and block averaged from the original 10 Hz to 0.5 Hz before the CWT calculation.

    Figures 4a and b show the normalized wavelet power spectra of the vertical wind speed and air temperature at QOMS,respectively.It is signi fi cant that lower-frequency turbulence contributes more spectral power during the fi rst FCC period,marked by the black dotted vertical lines.The time scale of air in plumes or thermals cycling once between the bottom and the top of the mixed layer is approximately 5 to 15 min in a well-developed convective boundary layer(Stull,1988).The structure of large-scale turbulence(lowerfrequency turbulence)presented in Fig.4a conforms to this thermal characteristic.The white dotted vertical lines mark thestartandendtimeofthesecondFCCperiod,duringwhich large-scale turbulence still contributes more power but it is not as obvious as during the fi rst FCC period.This dynamic may be the result of higher wind speeds during the second period.

    The situation at SETS,as depicted in Figs.4c and d,is di ff erent from that at QOMS.The period marked by the black dotted vertical lines contains a low wind-speed period before sunriseandtheonsetofFCCs.AttheonsetofFCCs,thespectral power is contributed mostly by large-scale turbulence.Moreover,thiscircumstancedoesnotjustoccurduringFCCs,andthereisevenlarger-scaleturbulenceoutsideFCCperiods.A possible interpretation is that the considerable heterogeneity of the land surface and the resulting internal boundary layers at SETS(see Fig.1d)induce low-frequency turbulence.

    It is worth noting that the scale of some turbulence is greater than 30 min,which means the EC calculation method cannot capture all types of turbulence power.The average near-ground energy balance closure at QOMS and SETS is 74%and 72%,respectively.Turbulence with scales greater than 30 min led to the imbalance of surface energy.

    4.3.Distribution of FCCs during the entire year

    Because both QOMS and SETS are in a region under a monsoonal in fl uence,the existence of di ff erences between the monsoon and non-monsoon seasons should be considered.Figure 5a shows the distribution of FCCs during 2011,excluding the period when precipitation and sensible heat fl uxes were less than 20 W m?2.The onset of FCCs is most common from 1.5 to 2 h after sunrise during non-monsoon periods and approximately 4 h or more after sunrise during the monsoon season.To obtain accurate FCC distribution characteristics during the monsoon without confusion caused by data blackout during September and October,supplemen-tary analysis based on a 30 min block average was performed with a more complete data record from 2014.The results indicate that the occurrence of FCCs during the monsoon become more dispersed and less frequent than during the nonmonsoon season.

    Fig.4.CWT analysis of the(a,c)vertical wind speed and(b,d)air temperature,(a,b)from 0900 to 1700 LST(480 min)on 12 April 2011 at QOMS,and(c,d)from 0800 to 1600 LST(480 min)on 3 April 2011 at SETS.Two black dotted lines marked the period of FCCs during morning and the yellow dotted lines marked the period of FCCs during afternoon.

    During the monsoon season,katabatic glacier winds(southerly or south-southeasterly)cease during the night(see Fig.2e).Thisdisappearanceallowsthehorizontalwindspeed decrease caused by the wind-direction change from katabatic glacier winds to up-valley winds in the morning to cease,undermining the onset of FCCs.Moreover,because of increased water vapor content during the monsoon season,the sensible heat fl ux is not very high—normally less than 200 W m?2.FCCs can only occur with a lower wind speed in most cases.A few hours after sunrise,the temperature difference between the ice surface and air nearby strengthened by solar heating leads to the onset of down-valley glacier winds(Sunetal.,2007).Inotherwords,bothup-valleywinds and down-valley glacier winds are induced by solar heating.Thus,when the intensity of solar heating is close to an appropriate range,the horizontal wind direction is likely to oscillate between two directions.This oscillation leads to the horizontal wind speed decreasing,and then,FCCs to occur.Take 22 July 2011 as an example( fi gures not shown).During FCC periods,the range of sensible heat fl ux is approximately 50–200 W m?2,and the wind speed decreases because of the oscillation of the wind direction from 0?to 45?.

    At SETS,the situation is much simpler,because the trigger mechanism of FCCs is no longer the low horizontal wind speed coupled with higher sensible heat fl ux,but strong solar heating,independently.Figure 5c shows the distribution of FCCs at SETS in 2011.The occurrence of FCCs is approximately one hour after sunrise,and there is no obvious difference between the monsoon and non-monsoon periods,except for the increasing probability of FCC occurrence caused by more frequent cloud cover during the afternoon during the monsoon.

    5.Conclusion

    Two observation stations(QOMS and SETS)with similar valley topography and a di ff erent underlying surface type were chosen to analyze the triggering mechanism of FCCs and compare the di ff erences.To obtain high-quality surface turbulent fl uxes,which can be used for the detection of FCCs,footprint analysis for the data representativeness of the target underlying surface type and investigation of the internal boundary layer disturbance combined with the quality control and assessment software TK3 was applied to process the turbulence data both at QOMS and at SETS.Glacier winds and valley winds constitute the local circulation at QOMS.FCCs at this station are the result of a horizontal wind speed decrease caused by change in wind direction from katabatic glacier winds to up-slope winds and weakened up-valley winds due to cloud cover.SETS,which has a forest on the mountain and high grass in the valley,presents di ff erent characteristics in terms of FCCs.Because of the low wind speed before sunrise,FCCs occurring during the morning are not triggered by a horizontal wind speed decrease,but by strong solar heating.Spectral data analyzed using CWT reveals large-scale turbulence near the ground emerging from the detected FCCs.However,the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs.The distribution of FCCs at QOMS for the whole year indicates that FCCs occur later andbecomemoredispersedandlessfrequentduringthemonsoon than during the non-monsoon seasons.At SETS,there is no signi fi cant di ff erence between the monsoon and nonmonsoon periods,except the increased occurrence probability of FCCs during the afternoon during the monsoon.In conclusion,both orography and the ambient underlying surface type can a ff ect the occurrence of FCCs.

    Fig.5.Distribution of FCCs in(a)2011 and(b)2014 at QOMS and(c)at SETS in 2011.The dashed lines indicate sunrise and sunset,and the gray vertical dotted lines outline the monsoon season.

    Acknowledgements.This research was funded by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC019),the National Natural Science Foundation of China(Grant Nos.41661144043,91337212,91637313 and 91737205),and the CAS “Hundred Talents”program(Dr.Weiqiang MA).The authors would like to thank Dr.Yongjie WANG,Dr.Zhongyan WANG,Dr.Zhikun ZHU,Dr.Cunbo HAN and colleagues from QOMS and SETS for their installation and maintenance of the measurement systems.The EC data can be download from http://zenode.org/record/20349#.

    REFERENCES

    Betts,A.K.,J.H.Ball,A.C.M.Beljaars,M.J.Miller,and P.A.Viterbo,1996:The land surface–atmosphere interaction:A review based on observational and global modeling perspectives.J.Geophys.Res.,101,7209–7225,https://doi.org/10.1029/95JD02135.

    Cai,X.H.,Y.Song,T.Zhu,W.L.Lin,and L.Kang,2007:Glacier winds in the Rongbuk Valley,north of Mount Everest:2.Their role in vertical exchange processes.J.Geophys.Res.,112,D11102,https://doi.org/10.1029/2006JD007868.

    Eigenmann,R.,S.Metzger,and T.Foken,2009:Generation of free convection due to changes of the local circulation system.Atmos.Chem.Phys.,9,8587–8600,https://doi.org/10.5194/acp-9-8587-2009.

    Foken,T.,and B.Wichura,1996:Tools for quality assessment of surface-based fl ux measurements.Agricultural and Forest Meteorology,78,83–105,https://doi.org/10.1016/0168-1923(95)02248-1.

    Foken,T.,2008a:Micrometeorology.Springer,Berlin,Heidelberg,https://doi.org/10.1007/978-3-540-74666-9.

    Foken,T.,2008b:The energy balance closure problem:An overview.Ecological Applications,18,1351–1367,https://doi.org/10.1890/06-0922.1.

    Gerken,T.,T.Biermann,W.Babel,M.Herzog,Y.M.Ma,T.Foken,and H.-F.Graf,2014:A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin,Tibetan Plateau.Theor.Appl.Climatol.,117,149–167,https://doi.org/10.1007/s00704-013-0987-9.

    Gckede,M.,T.Markkanen,C.B.Hasager,and T.Foken,2006:Update of a footprint-based approach for the characterisation of complex measurement sites.Bound.-Layer Meteor.,118,635–655,https://doi.org//10.1007/s10546-005-6435-3.

    Hanesiak,J.M.,R.L.Raddatz,and S.Lobban,2004:Local initiation of deep convection on the Canadian prairie provinces.Bound.-Layer Meteor.,110,455–470,https://doi.org/10.1023/B:BOUN.0000007242.89023.e5.

    Lee,S.H.,and F.Kimura,2001:Comparative studies in the local circulations induced by land-use and by topography.Bound.-Layer Meteor.,101,157–182,https://doi.org/10.1023/A:1019219412907.

    Maraun,D.,and J.Kurths,2004:Cross wavelet analysis:Signi ficance testing and pitfalls.Nonlinear Processes in Geophysics,11,505–514,https://doi.org/10.5194/npg-11-505-2004.

    Maraun,D.,J.Kurths,and M.Holschneider,2007:Nonstationary Gaussian processes in wavelet domain:Synthesis,estimation,and signi fi cance testing.Phys.Rev.E,75,016707,https://doi.org/10.1103/PhysRevE.75.016707.

    Mauder,M.,C.Liebethal,M.Gckede,J.-P.Leps,F.Beyrich,and T.Foken,2006:Processing and quality control of fl ux data during LITFASS-2003.Bound.-Layer Meteor.,121,67–88,https://doi.org/10.1007/s10546-006-9094-0.

    Mauder,M.,and Coauthors,2007:The energy balance experiment EBEX-2000.Part II:Intercomparison of eddy-covariance sensors and post- fi eld data processing methods.Bound.-Layer Meteor.,123,29–54,https://doi.org/10.1007/s10546-006-9139-4.

    Mauder,M.,and T.Foken,2011:Documentation and instruction manual of the eddy-covariance software package TK3.Arbeitsergebnisse,Nr.46.,Universitt Bayreuth,Bayreuth.

    Mayer,J.C.,K.Staudt,S.Gilge,F.X.Meixner,and T.Foken,2008:The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit.Atmos.Chem.Phys.,8,5941–5956,https://doi.org/10.5194/acp-8-5941-2008.

    Raabe,A.,1983:On the relation between the drag coefficient and fetch above the sea in the case of o ff-shore wind in the near shore zone.Z.Meteor.,33,363–367.

    Rannik,¨U.,T.Markkanen,J.Raittila,P.Hari,and T.Vesala,2003:Turbulence statistics inside and over forest:In fl uence on footprint prediction.Bound.-Layer Meteor.,109,163–189,https://doi.org/10.1023/A:1025404923169.

    Semple,J.L.,and G.W.K.Moore,2008:First observations of surface ozone concentration from the summit region of Mount Everest.Geophys.Res.Lett.,35,L20818,https://doi.org/10.1029/2008GL035295.

    Stull,R.B.,1988:An Introduction to Boundary Layer Meteorology.Dordrecht:Kluwer Academic Publishers.

    Sun,F.L.,Y.M.Ma,M.S.Li,W.Q.Ma,H.Tian,and S.Metzger,2007:Boundary layer e ff ects above a Himalayan valley near Mount Everest.Geophys.Res.Lett.,34,L08808,https://doi.org/10.1029/2007GL029484.

    Vickers,D.,and L.Mahrt,1997:Quality control and fl ux sampling problems for tower and aircraft data.J.Atmos.Oceanic Technol.,14,512–526,https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    Webb,E.K.,G.I.Pearman,and R.Leuning,1980:Correction of fl ux measurements for density e ff ects due to heat and water vapour transfer.Quart.J.Roy.Meteor.Soc.,106,85–100,https://doi.org/10.1002/qj.49710644707.

    Wilczak,J.M.,S.P.Oncley,and S.A.Stage,2001:Sonic anemometer tilt correction algorithms.Bound.-Layer Meteor.,99,127–150,https://doi.org/10.1023/A:1018966204465.

    Xu,Z.X.,T.L.Gong,and J.Y.Li,2008:Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation.Hydrological Processes,22,3056–3065,https://doi.org/10.1002/hyp.6892.

    Zhou,D.G.,R.Eigenmann,W.Babel,T.Foken,and Y.M.Ma,2011:The study of near-ground free convection conditions at Nam Co station on the Tibetan Plateau.Theor.Appl.Climatol.,105,217–228,https://doi.org/10.1007/s00704-010-0393-5.

    Zhu,T.,and Coauthors,2006:Downward transport of ozone-rich air near Mt.Everest.Geophys.Res.Lett.,33,L23809,https://doi.org/10.1029/2006GL027726.

    69av精品久久久久久| 天堂影院成人在线观看| 国产精品久久电影中文字幕| 成人亚洲精品av一区二区| 非洲黑人性xxxx精品又粗又长| 男人的好看免费观看在线视频| 日本一二三区视频观看| 男插女下体视频免费在线播放| 久久久久性生活片| 又爽又黄a免费视频| 91狼人影院| 国产老妇女一区| 日产精品乱码卡一卡2卡三| 亚洲美女搞黄在线观看| 国产精品人妻久久久久久| 你懂的网址亚洲精品在线观看 | av女优亚洲男人天堂| 男人的好看免费观看在线视频| 卡戴珊不雅视频在线播放| 99国产精品一区二区蜜桃av| 欧美激情在线99| 国产黄色小视频在线观看| 亚洲国产欧美在线一区| 97超视频在线观看视频| 99热网站在线观看| 久久亚洲精品不卡| 日韩制服骚丝袜av| 久久精品夜夜夜夜夜久久蜜豆| 日韩中字成人| 婷婷六月久久综合丁香| 亚洲美女视频黄频| 日本wwww免费看| 日韩制服骚丝袜av| 日韩三级伦理在线观看| 男女国产视频网站| 偷拍熟女少妇极品色| 在线观看美女被高潮喷水网站| 一夜夜www| 精品一区二区三区视频在线| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 免费不卡的大黄色大毛片视频在线观看 | eeuss影院久久| 亚洲欧洲日产国产| 51国产日韩欧美| 99热这里只有是精品50| 国产免费福利视频在线观看| 亚洲av福利一区| 18禁在线无遮挡免费观看视频| 久久久国产成人精品二区| 成人欧美大片| 99视频精品全部免费 在线| 亚洲精品自拍成人| 国产爱豆传媒在线观看| 国产精品一区二区性色av| 国内少妇人妻偷人精品xxx网站| 精品人妻偷拍中文字幕| 97人妻精品一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 岛国在线免费视频观看| 国产精品久久电影中文字幕| 欧美日韩国产亚洲二区| 午夜福利在线在线| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 日日摸夜夜添夜夜添av毛片| 国产亚洲精品av在线| 亚洲精华国产精华液的使用体验| 最近中文字幕2019免费版| 中文字幕av成人在线电影| 亚洲精品,欧美精品| 丰满人妻一区二区三区视频av| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲av嫩草精品影院| 国产精品熟女久久久久浪| 国产精品蜜桃在线观看| 真实男女啪啪啪动态图| 亚洲av二区三区四区| 久久精品国产自在天天线| 色哟哟·www| 在线免费十八禁| 国产一区有黄有色的免费视频 | 免费av不卡在线播放| www日本黄色视频网| 视频中文字幕在线观看| 久久精品久久久久久久性| 波多野结衣巨乳人妻| av在线蜜桃| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品久久久久久噜噜老黄 | 夜夜看夜夜爽夜夜摸| 美女国产视频在线观看| 亚洲精品影视一区二区三区av| 久久久久久久国产电影| 人人妻人人澡人人爽人人夜夜 | 高清av免费在线| 毛片女人毛片| 免费一级毛片在线播放高清视频| 免费av不卡在线播放| av在线蜜桃| 精品久久久久久久久亚洲| 一个人免费在线观看电影| 亚洲成人久久爱视频| 亚洲美女搞黄在线观看| 国产成人精品一,二区| 久久亚洲国产成人精品v| 波野结衣二区三区在线| 亚洲av男天堂| 在线观看美女被高潮喷水网站| 狠狠狠狠99中文字幕| 超碰av人人做人人爽久久| 一个人观看的视频www高清免费观看| 极品教师在线视频| 欧美激情国产日韩精品一区| 男人舔女人下体高潮全视频| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| 色网站视频免费| 亚洲伊人久久精品综合 | 免费一级毛片在线播放高清视频| 亚洲欧美精品专区久久| av在线天堂中文字幕| 国产乱来视频区| 69人妻影院| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 少妇被粗大猛烈的视频| 91在线精品国自产拍蜜月| 女人被狂操c到高潮| 国产成人一区二区在线| 热99在线观看视频| 毛片女人毛片| 免费av观看视频| 国产极品天堂在线| 丰满乱子伦码专区| 日本黄色片子视频| 免费av不卡在线播放| 日日撸夜夜添| 毛片女人毛片| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 国产免费又黄又爽又色| 久久99精品国语久久久| 69av精品久久久久久| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99 | 九色成人免费人妻av| 99久国产av精品国产电影| 夜夜爽夜夜爽视频| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| av视频在线观看入口| 黄色一级大片看看| 在线a可以看的网站| 边亲边吃奶的免费视频| 黑人高潮一二区| 国产免费视频播放在线视频 | 免费在线观看成人毛片| 观看免费一级毛片| 伦精品一区二区三区| 国产熟女欧美一区二区| 人人妻人人澡欧美一区二区| 日日撸夜夜添| 超碰av人人做人人爽久久| 亚洲综合精品二区| 久久久国产成人精品二区| 久久久久久久亚洲中文字幕| 日韩成人伦理影院| 国产精品一区二区三区四区免费观看| 国产伦一二天堂av在线观看| 国内精品一区二区在线观看| 成年版毛片免费区| 91久久精品电影网| 国产精品一及| 欧美xxxx性猛交bbbb| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 男人的好看免费观看在线视频| 国产欧美日韩精品一区二区| 欧美日韩精品成人综合77777| 一级毛片久久久久久久久女| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 亚洲欧美中文字幕日韩二区| 男女那种视频在线观看| 插逼视频在线观看| 最近最新中文字幕免费大全7| 我要看日韩黄色一级片| 日韩高清综合在线| 久久99热6这里只有精品| 看黄色毛片网站| 久久精品人妻少妇| 久久久久久国产a免费观看| 久久国内精品自在自线图片| 久久精品国产99精品国产亚洲性色| 一级爰片在线观看| 国产伦理片在线播放av一区| 亚洲国产精品合色在线| 日本-黄色视频高清免费观看| 国产三级中文精品| 床上黄色一级片| 在现免费观看毛片| 精品久久久久久成人av| 国语自产精品视频在线第100页| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 中文字幕精品亚洲无线码一区| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 午夜精品在线福利| 国产精品蜜桃在线观看| 亚洲成av人片在线播放无| 亚洲第一区二区三区不卡| 亚洲精品日韩av片在线观看| 久久久久久大精品| 日韩高清综合在线| 成年av动漫网址| 亚洲性久久影院| ponron亚洲| 99久久中文字幕三级久久日本| 两个人视频免费观看高清| 免费在线观看成人毛片| 精品国内亚洲2022精品成人| 亚洲乱码一区二区免费版| 久久午夜福利片| 天堂av国产一区二区熟女人妻| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 亚洲成色77777| 国产黄a三级三级三级人| 99久国产av精品| 精品国产一区二区三区久久久樱花 | 免费搜索国产男女视频| 99久久精品一区二区三区| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 99久久精品热视频| 啦啦啦啦在线视频资源| 一区二区三区高清视频在线| 日本爱情动作片www.在线观看| 国产高清三级在线| 久久精品久久久久久噜噜老黄 | 天堂网av新在线| 只有这里有精品99| 99在线视频只有这里精品首页| 国产成人一区二区在线| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 大又大粗又爽又黄少妇毛片口| 久久国产乱子免费精品| 午夜爱爱视频在线播放| 女人久久www免费人成看片 | 国产精品一区二区在线观看99 | 一个人观看的视频www高清免费观看| 青春草视频在线免费观看| 成人三级黄色视频| 水蜜桃什么品种好| 夜夜看夜夜爽夜夜摸| 美女xxoo啪啪120秒动态图| 精品久久久久久久久久久久久| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 国产亚洲精品av在线| 99热网站在线观看| 欧美成人免费av一区二区三区| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 赤兔流量卡办理| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 免费看光身美女| 变态另类丝袜制服| 国产乱人偷精品视频| 日日啪夜夜撸| 男人和女人高潮做爰伦理| 日本熟妇午夜| 中国国产av一级| av黄色大香蕉| 少妇人妻一区二区三区视频| 国产精品美女特级片免费视频播放器| 欧美日韩综合久久久久久| 舔av片在线| 最近最新中文字幕大全电影3| 日产精品乱码卡一卡2卡三| 国产在视频线精品| 国语自产精品视频在线第100页| 综合色av麻豆| 夜夜爽夜夜爽视频| 日本wwww免费看| 国产乱来视频区| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 国产午夜精品一二区理论片| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 日日啪夜夜撸| 能在线免费观看的黄片| 欧美最新免费一区二区三区| 搡老妇女老女人老熟妇| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 内地一区二区视频在线| 91aial.com中文字幕在线观看| 日韩亚洲欧美综合| 波野结衣二区三区在线| 一区二区三区四区激情视频| 日韩成人伦理影院| 久久久久久大精品| 成人欧美大片| 中文精品一卡2卡3卡4更新| 免费黄网站久久成人精品| 蜜臀久久99精品久久宅男| 午夜精品在线福利| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 亚洲,欧美,日韩| 国产av不卡久久| 久久精品久久久久久久性| 黄色配什么色好看| 国产成人91sexporn| 午夜激情欧美在线| 久久久久久九九精品二区国产| 性色avwww在线观看| 久久久久国产网址| 日本av手机在线免费观看| 免费一级毛片在线播放高清视频| 国产亚洲91精品色在线| 国产综合懂色| 午夜a级毛片| 国产视频内射| 91久久精品电影网| 1024手机看黄色片| 亚洲欧美精品自产自拍| videossex国产| 日本熟妇午夜| 中文字幕熟女人妻在线| 国产色婷婷99| 亚洲18禁久久av| 亚洲久久久久久中文字幕| 免费看a级黄色片| 午夜爱爱视频在线播放| 人妻夜夜爽99麻豆av| 六月丁香七月| 成年版毛片免费区| 一二三四中文在线观看免费高清| 日韩,欧美,国产一区二区三区 | 亚洲经典国产精华液单| 69av精品久久久久久| 91狼人影院| 男女国产视频网站| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 天堂网av新在线| 深夜a级毛片| 一本久久精品| 网址你懂的国产日韩在线| 国产精品女同一区二区软件| 午夜免费男女啪啪视频观看| 国产精品三级大全| 中文字幕久久专区| 黑人高潮一二区| 在线播放国产精品三级| 菩萨蛮人人尽说江南好唐韦庄 | 人人妻人人澡欧美一区二区| 少妇熟女欧美另类| 男人舔奶头视频| 亚洲国产精品成人久久小说| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| av福利片在线观看| 男女视频在线观看网站免费| 三级经典国产精品| 亚洲高清免费不卡视频| 国产精品1区2区在线观看.| 一个人免费在线观看电影| 亚洲成av人片在线播放无| 国产精品日韩av在线免费观看| 亚洲三级黄色毛片| 99在线人妻在线中文字幕| 一级爰片在线观看| 精品午夜福利在线看| 丝袜喷水一区| 黑人高潮一二区| 国产综合懂色| 亚洲精品乱久久久久久| 久久久a久久爽久久v久久| 亚洲综合色惰| 乱码一卡2卡4卡精品| 久久久成人免费电影| 欧美成人午夜免费资源| 久久亚洲精品不卡| 久久精品国产鲁丝片午夜精品| 精华霜和精华液先用哪个| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 亚洲国产精品成人久久小说| ponron亚洲| 亚洲国产最新在线播放| 色5月婷婷丁香| 有码 亚洲区| 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站 | 亚洲精品乱码久久久久久按摩| 搡老妇女老女人老熟妇| 久久久久久久亚洲中文字幕| 只有这里有精品99| 一边摸一边抽搐一进一小说| 看黄色毛片网站| 国产精品av视频在线免费观看| 天堂av国产一区二区熟女人妻| 日韩中字成人| 日本欧美国产在线视频| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 啦啦啦啦在线视频资源| 你懂的网址亚洲精品在线观看 | 国产亚洲精品av在线| 九九热线精品视视频播放| av专区在线播放| 亚洲自偷自拍三级| 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频| 观看免费一级毛片| 精品国产三级普通话版| 高清在线视频一区二区三区 | 久久精品国产99精品国产亚洲性色| 91aial.com中文字幕在线观看| 女人被狂操c到高潮| 亚洲成人精品中文字幕电影| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 99久久人妻综合| 草草在线视频免费看| 久热久热在线精品观看| 黄片wwwwww| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 日本一本二区三区精品| 国产一区亚洲一区在线观看| 成人亚洲精品av一区二区| av在线观看视频网站免费| 国产老妇女一区| 又粗又硬又长又爽又黄的视频| 午夜精品国产一区二区电影 | 免费观看的影片在线观看| 亚洲性久久影院| 长腿黑丝高跟| 国产精品永久免费网站| 日本与韩国留学比较| 国内精品宾馆在线| 国产黄片美女视频| 床上黄色一级片| 内地一区二区视频在线| 少妇被粗大猛烈的视频| 亚洲不卡免费看| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久末码| 在线天堂最新版资源| 一本一本综合久久| 亚洲精品自拍成人| 婷婷色av中文字幕| 欧美bdsm另类| 国产又黄又爽又无遮挡在线| 少妇的逼好多水| 国产又色又爽无遮挡免| 天美传媒精品一区二区| 亚洲av二区三区四区| 日韩欧美精品免费久久| 亚洲中文字幕一区二区三区有码在线看| 在现免费观看毛片| 国产三级中文精品| 国产v大片淫在线免费观看| 日韩精品有码人妻一区| 午夜久久久久精精品| 七月丁香在线播放| 成人一区二区视频在线观看| 嫩草影院精品99| 麻豆成人av视频| 国产黄片视频在线免费观看| 在线观看66精品国产| 18禁裸乳无遮挡免费网站照片| 久久精品91蜜桃| av女优亚洲男人天堂| 亚洲精品久久久久久婷婷小说 | 日韩av不卡免费在线播放| 成年免费大片在线观看| 精品久久久久久久久亚洲| 国产av一区在线观看免费| 五月玫瑰六月丁香| 日韩欧美在线乱码| 我要搜黄色片| 久久亚洲国产成人精品v| 少妇的逼好多水| 亚洲欧美成人精品一区二区| 99九九线精品视频在线观看视频| 小蜜桃在线观看免费完整版高清| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜添av毛片| 色播亚洲综合网| 小说图片视频综合网站| 国产精品一区www在线观看| 2022亚洲国产成人精品| 极品教师在线视频| 最近最新中文字幕免费大全7| 国产精品电影一区二区三区| 免费观看人在逋| 黄色日韩在线| 久久久色成人| 免费看a级黄色片| 免费黄网站久久成人精品| 久久久久久久久久黄片| 国产成人午夜福利电影在线观看| av在线播放精品| 精品不卡国产一区二区三区| 国产真实乱freesex| 中文欧美无线码| 超碰97精品在线观看| 亚洲欧洲国产日韩| 午夜久久久久精精品| 色哟哟·www| 搞女人的毛片| 欧美成人一区二区免费高清观看| 欧美一区二区精品小视频在线| 成年免费大片在线观看| 日韩制服骚丝袜av| 国产伦精品一区二区三区四那| 日本av手机在线免费观看| 最近中文字幕2019免费版| 能在线免费观看的黄片| 欧美日韩在线观看h| 欧美成人午夜免费资源| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久 | 51国产日韩欧美| 欧美日韩精品成人综合77777| 久久久a久久爽久久v久久| a级毛片免费高清观看在线播放| 伊人久久精品亚洲午夜| 国产精华一区二区三区| 汤姆久久久久久久影院中文字幕 | 成人综合一区亚洲| 亚洲精品国产成人久久av| 国产毛片a区久久久久| 亚洲av免费高清在线观看| 人人妻人人澡欧美一区二区| 国产av一区在线观看免费| 国产亚洲午夜精品一区二区久久 | 午夜免费男女啪啪视频观看| 色播亚洲综合网| 国产免费一级a男人的天堂| 久久久国产成人精品二区| 免费电影在线观看免费观看| 日韩在线高清观看一区二区三区| 好男人视频免费观看在线| 天天躁夜夜躁狠狠久久av| 国产精品蜜桃在线观看| 国产男人的电影天堂91| 日韩国内少妇激情av| 最后的刺客免费高清国语| 波多野结衣高清无吗| 亚洲图色成人| a级毛片免费高清观看在线播放| 国产精品一区二区三区四区免费观看| 国产老妇伦熟女老妇高清| 成人三级黄色视频| av在线老鸭窝| 我要搜黄色片| 亚洲第一区二区三区不卡| 久久精品久久久久久久性| 免费电影在线观看免费观看| 中国美白少妇内射xxxbb| 一区二区三区乱码不卡18| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久人妻蜜臀av| 一二三四中文在线观看免费高清| 日韩欧美 国产精品| 男人狂女人下面高潮的视频| av又黄又爽大尺度在线免费看 | 欧美性猛交黑人性爽| 国产毛片a区久久久久| 国产精品久久久久久精品电影小说 | 午夜爱爱视频在线播放| 少妇被粗大猛烈的视频| 可以在线观看毛片的网站| 69人妻影院| 纵有疾风起免费观看全集完整版 | 亚洲三级黄色毛片| 两个人视频免费观看高清| 亚洲精品aⅴ在线观看| 欧美极品一区二区三区四区| 变态另类丝袜制服| 伦理电影大哥的女人| 精品酒店卫生间| 精品一区二区三区视频在线| 日韩中字成人| 免费一级毛片在线播放高清视频| 色播亚洲综合网| 又粗又爽又猛毛片免费看| 久久精品国产鲁丝片午夜精品| 噜噜噜噜噜久久久久久91| av福利片在线观看| 久久久久性生活片| 亚洲一级一片aⅴ在线观看|