• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in the Proportion of Precipitation Occurring as Rain in Northern Canada during Spring–Summer from 1979–2015

    2018-06-29 08:24:32WeiHANCundeXIAOTingfengDOUandMinghuDING
    Advances in Atmospheric Sciences 2018年9期

    Wei HAN,Cunde XIAO,Tingfeng DOU,and Minghu DING

    1Nanjing University of Information Science and Technology,Nanjing 210044,China

    2Institute of Polar Meteorology,Chinese Academy of Meteorological Sciences,Beijing 100081,China

    3State Key Laboratory of Earth Surface and Resource Ecology,Beijing Normal University,Beijing 100875,China

    4College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    Climate change has ampli fi ed in the Arctic(Serreze et al.,2009;Screen and Simmonds,2010;Pithan and Mauritsen,2014),and Arctic surface temperatures are rising at a rate more than twice the global average(Bekryaev et al.,2010;Miller et al.,2010).As a result,there have been unprecedented declines in the Arctic sea-ice area,leading to larger open water areas that are exposed for longer periods of time(Cavalieri and Parkinson,2012)and the Arctic becoming warmer and wetter(Przybylak,2007;Overland et al.,2014;Boisvert and Stroeve,2015).

    Precipitation is more susceptible to warming trends in high-latituderegions(Irannezhadet al.,2016);however,most studies of precipitation change in high-latitude regions have concentrated on analyses of total precipitation(Serreze et al.,2000;Yao et al.,2012;Irannezhad et al.,2016),as well as heavy and extreme precipitation(Zhang et al.,2001;Groisman et al.,2005).However,the precipitation form is equally as important as the quantity and intensity for understanding the seasonality of hydrological cycles and the health of the ecosystem in the cryosphere(Hasnain,2002;Putkonen and Roe,2003;Ye,2008).

    Precipitation falls to the ground as rain,snow,sleet,and other forms,each of which has considerable impacts on the surface runo ffand energy balance(Loth et al.,1993;Ding et al.,2014).As the air temperature rises,more precipitation falls as rain instead of snow(Knowles et al.,2006;Screen and Simmonds,2012;Ye and Cohen,2013).This rain brings heat to the snow cover and a ff ects the snow morphology and albedo(Stirling and Smith,2004),causing the surface to absorb more solar energy and accelerating snow cover and sea-ice melt(Perovich and Polashenski,2012).Conversely,snowfall can stop or reverse the decline in albedo during the initial melting phase(Perovich et al.,2017).This emphasizes the importance of di ff erent precipitation forms in the rapidly changing Arctic climate system.

    Previous studies of precipitation forms have concentrated on the number of rain days during the cold season(Aanes et al.,2000;Putkonen and Roe,2003;Cohen et al.,2015).There are relatively few stations in the Arctic,and only a minority of them have recorded liquid and solid precipitation;thus,changesinprecipitationformsovertheArcticduringthe spring–summer transition period are poorly understood.The transition from the cold season(snow accumulation period)to the warm season(melting period)generally occurs during late-spring through mid-summer in Canada.Thus,the variability and potential trends of the rainfall to precipitation ratio(RPR)inCanadanorth of60?Nduring thespring–summer period were analyzed in the present study.

    We used observational data and ERA-Interim data to analyze changes in the proportion of precipitation occurring as rain in northern Canada and discuss its possible causes.The remainder of this paper is organized as follows:Section 2 introduces the data and method used in this study.Section 3.1 compares the ERA-Interim with the observational data during 1979–2007.Section 3.2 presents the variations in surface air temperature and RPR in northern Canada during 1979–2015.Section3.3discussesthevariabilityassociatedwith the North Atlantic Oscillation(NAO).Finally,Section 4 summarizes and discusses the conclusions.

    ?

    2.Data and methods

    2.1.Data

    We obtained the daily data from the Canadian Daily Meteorological database for 11 meteorological stations in northern Canada from Environment and Climate Change Canada(Table 1).All of the selected stations include the daily mean temperature(?C),precipitation(mm),rainfall(mm)and snowfall as water equivalent(mm during March–July from 1979 to 2007.All data were subjected to quality control using “DLY04”daily network programs(DLY is the term used to refer to the Monthly Record of Daily Data)that are based on observations made at manned and automated sites(see http://climate.weather.gc.ca/aboutthedataindex_e.html).The stations were culled according to the following steps:

    (1)Any station that was missing one or more elements(daily mean temperature,precipitation,rainfall,snowfall)was excluded.

    (2)It was considered incomplete in one month if there were missing data for fi ve or more days in this month.

    (3)It was considered incomplete in one year if there were missing data for one or more months between March and July in this year.

    (4)Any station that was missing more than three years of data in 1979–2007 was excluded.

    Because of the sparse distribution of station locations and a lack of recent observational data,we used reanalysis data(ERA-Interim)in this study.ERA-Interim is the global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts(ECMWF).When compared with previous reanalysis data,signi fi cant advances have been made in the hydrological cycle,the quality of the stratospheric circulation,and the consistency in time of the reanalyzed fi elds via many model improvements,the use of four-dimensional variational analysis,a revised humidity analysis,the use of variational bias correction for satellite data,and other improvements in data handling(Dee et al.,2011).Screen and Simmonds(2012)found no obvious tendencies or discontinuities in the snowfall-to-precipitation ratio(SPR)di ff erence between observations and ERAInterim as a function of time.The precipitation and snowfall are the 12-h accumulated totals,while the temperature is the 12-h mean in ERA-Interim.Therefore,we summed the 12-h accumulated totals to have daily accumulated precipitation and snowfall(Screen and Simmonds,2012)and averaged the two 12-h mean temperatures to have a daily mean temperature.ERA-Interim daily data in March to July from 1979 to 2015,including precipitation(mm d?1),snowfall as water equivalent(mm d?1)and 2-m temperature(K)for midday and midnight,at time step of 12-h,are provided at a horizontal resolution of 0.75?×0.75?The ERA-Interim data can be downloaded from ECMWF(http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/),while the AO and NAO indices can be downloaded from NOAA/CPC(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnectiote.shtml).

    2.2.Methods

    We focused in this study on the spring–summer season,de fi ned here as March to July.The spring–summer mean temperature(ˉT)here is the average of the daily mean temperature(T)from March to July.The spring–summer AO/NAO index(AO:Arctic Oscillation)is also the averaged monthly AO/NAO index during the same period.

    The SPR is widely used to re fl ect the proportion of precipitation occurring as snow.However,here we focus on the rainfall in spring–summer and express the proportion of precipitation occurring as rain as a rainfall-to-precipitation ratio(RPR):

    where R is the total rainfall and P is the total precipitation in spring–summer.We obtained the rainfall data by subtracting the snowfall from the total precipitation in the ERA-Interim data.

    To validate the performance of the ERA-Interim data,we compared the station value with the nearest reanalysis grid that covers the station site.The reanalysis–observation comparison of the mean value and standard deviation were conducted based on the two-tailed t-test and F-test,respectively.The trends of the spring–summer mean temperature,rainfall,total precipitation and RPR were determined based on leastsquares linear regression.The trends were tested using the ordinary Student’s t-test.A con fi dence level above 95%was deemed statistically signi fi cant.

    3.Results

    3.1.Performance of ERA-Interim

    To validate the performance of the ERA-Interim data,we compared the spring–summer mean temperature,rainfall,total precipitation and RPR between observations and ERA-Interim data from 1979–2007.Analysis of the mean value,trend and standard deviation of the data was carried out to estimate whether the station observations could be simulated well by the ERA-Interim data.The results showed that ERA-Interim can reasonably simulate the annual variation of the spring–summer mean temperature.The observed mean value,trend and standard deviation of the spring–summer mean temperature were comparable with ERA-Interim.For the mean value,except for the MAYO A,RESOLUTE CARS,CAMBRIDGE BAY A and HAY RIVER A stations,the spring–summer mean temperature showed a small deviation between the observational data and ERA-Interim(Table 1,Fig.S1 in electronic supplementary material).The spring–summer mean temperature showed an increasing trend at 11 stations,despite a discrepancy in the slope value(Fig.S1).The increasing trends were significant at the EUREKA A,RESOLUTE CARS and CORAL HARBOUR A stations in the observational data and signi ficant at the EUREKA A,CAMBRIDGE BAY A,RESOLUTE CARS,CORAL HARBOUR A,and BAKER A stations in ERA-Interim.The changes in standard deviation were generally consistent at 11 stations(Fig.S1).The correlation coefficients of the spring–summer mean temperature ranged from 0.72–0.98 between ERA-Interim and observations(Table 1).The correlations were signi fi cant at the 99%con fi dence level.Figure 1a shows the trends in the spring–summer mean temperature during 1979–2007,and the observations used to validate ERA-Interim.We can see that the trend in the spring–summer mean temperature at each station was consistent with the surrounding reanalysis data.The mean temperature increased signi fi cantly in northern Canada during 1979–2007,except in Yukon Territory,which is located in the Rocky Mountains.The temperature in this region showed a discrepancy between the observational data and ERA-Interim,as did the MAYO A station.The impact of topography may be the main reason for this discrepancy.

    The amounts of total precipitation and rainfall were overestimated in ERA-Interim(Table 1).This is mainly because the estimates of precipitation are produced by the forecast model,based on temperature and humidity information derived from the assimilated observations.Approximations used in the model’s representation of moist processes strongly a ff ect the quality and consistency of the hydrological cycle.Though imperfect,the overestimated precipitation in ERA-Interim is less pronounced than in ERA-40(Dee et al.,2011).These data are widely used in Arctic research(Screen and Simmonds,2012;Cohen et al.,2015).

    We focused in this study on changes in the proportion of precipitation occurring as rain.The reanalysis–observation comparison showed that the mean value of the RPR is reproduced well by ERA-Interim,except at the HAY RIVER A,EUREKA A and CORAL HARBOUR A stations(Table 1,Fig.S2),and the trend of RPR in ERA-Interim is comparable with the observations,except at the HAY RIVER A and EUREKA A stations(Fig.S2).There was a signi fi cant increasing trend in RPR at RESOLUTE CARS station in ERAInterim,while other stations showed no signi fi cant trend.The changes in standard deviation were smaller in ERA-Interim than in the observational data,except at YELLOWKNIFE A station(Fig.S2).The correlation coefficient of RPR be-tween ERA-Interim and observations was calculated to be about 0.51–0.89,all values of which were signi fi cant at the 99%con fi dence level(Table 1).ERA-Interim agreed well with the station observations in terms of the changes in the RPR.The trends of RPR at the 11 stations were consistent with the surrounding reanalysis data(Fig.1b).The spring–summer RPR increased signi fi cantly in the Canadian Arctic Archipelago from 1979–2007.In general,ERA-Interim can be used to analyze the changes in spring–summer temperature and the RPR in northern Canada.

    Fig.1.Trend of(a)mean temperature[units: ?C(10 yr)?1]and(b)RPR[units:%(10 yr)?1]in ERA-Interim during spring–summer,1979–2007.The color of dots denotes the value of the trend from the Canadian meteorological stations.Dashed shading indicates statistical signi fi cance at the greater than 95%con fi dence level.

    3.2.Changes in surface air temperature and RPR

    When it comes to the reasons for the changes in precipitation forms,the changes in surface air temperature are considered fi rst,and we fi nd that the RPR has a good connection with the surface air temperature(Fig.2).As the temperature rises,the RPR increases obviously.Below,we analyze both the changes in surface air temperature and RPR over northern Canada.

    Fig.2.RPR as a function of mean surface air temperature at 11 stations during spring–summer,1979–2007.Dashed line means the proportation of precipitation occurring as rain when the surface air temperature is 0?C.

    Analysis based on ERA-Interim showed that the spring–summer mean temperature is about?20?C to 7.5?C in northern Canada(Fig.3a).The spring–summer mean temperature increased signi fi cantly over most of northern Canada from 1979 to 2015,in addition to some areas in Yukon Territory(Fig.3b).An increase of 0.4?C–1?C(10 yr)?1is apparent in the Canadian Arctic Archipelago,which is concurrent with the results of previous studies showing that the temperature has increased rapidly in these areas,based both on observational data(Przybylak,2007)and other reanalysis data(Overland et al.,2014).

    The analysis based on ERA-Interim showed that the RPR ranges from 25%to 85%from northeast to southwest(Fig.3c).The spatial distribution of the RPR is closely related to the distribution of surface air temperature.Against the background of warming,the RPR also increases over most of northern Canada,except near the Mackenzie Mountains,Bake Lake,and the north coast of Ellesmere Island(Fig.3d,Fig.S3).We fi nd that the total precipitation trend is not signi fi cant,but the rainfall increases signi fi cantly over Baffin Island,Banks Island,M’Clure Strait,and other islands(Figs.S3 and S4).The change in rainfall is greater than that of total precipitation over most of the Canadian Arctic Archipelago.The RPR increases by 2%–6%(10 yr)?1(signi fi cant at the 95%con fi dence level)in the Canadian Arctic Archipelago,except near Queen Elizabeth Island and Baffin Bay.

    The spring–summer mean temperature shows a signi ficant positive correlation with the RPR in northern Canada(60?–70?N,70?–140?W),and a signi fi cant negative correlation in the area near Queen Elizabeth Islands(Fig.3e).There is a signi fi cant regional di ff erence in the relationship between air temperature and the RPR in the Canadian Arctic Archipelago,due to the complicated impacts of topography.

    3.3.Variability associated with the NAO

    Temperature has important impacts on the form of precipitation,with increasing temperatures causing the precipitation form to change from snow to rain earlier(Knowles et al.,2006;Ye,2008).Against the background of warming in the Arctic,the rising temperatures have a greater impact on changing the form of precipitation(rain/snow)than altering the total precipitation amount(Screen and Simmonds,2012).

    Fig.3.Climatology of(a)mean temperature(units:?C)and(c)RPR(units:%),along with trends of(b)mean temperature[units:?C(10 yr)?1]and(d)RPR[units:%(10 yr)?1],and(e)the correlation between mean temperature and RPR,in northern Canada during spring–summer,1979–2015.Dashed shading indicates statistical signi fi cance at the greater than 95%con fi dence level.

    Further analysis indicated a consistent temperature increase over northern Canada,while there are regional di ff erences for the RPR.Aside from the impact of topography,precipitation can also be in fl uenced by atmospheric circulation and moisture supply.Thus,teleconnection patterns may also contribute to changes in the RPR in spring–summer.The AO and NAO are the most important atmospheric teleconnection patterns in the Arctic.Based on correlation analysis of both the AO and NAO indices with the RPR in northern Canada over the past few decades,the NAO shows identi fi able regional signatures in the changes in the RPR.

    The NAO is characterized by a north–south dipole,with its centers located in the area of the Icelandic low and the Azores high,respectively(Wallace and Gutzler,1981;Barnston and Livezey,1987).During positive(negative)phases of the NAO,the Azores high is strengthened(weakened)and the Icelandic low is deepened(shallowed).The meridional circulation is strong during positive NAO.Dry tropical conditions are much more common with positive NAO throughout much of North America in spring(Sheridan,2003).Figure 4a shows the NAO dominates the variations in RPR over northern Canada.Negative NAO resulted in a larger RPR in northern Canada from 1979–2015,and was signi fi cant in most areas of northern Canada(?0.6 to ?0.3),except the region near Baffin Bay(Fig.4a).We fi nd that the NAO has di ff erent effects on rainfall and snowfall(Figs.4b and c).Positive(negative)NAO results in less(more)rainfall and a slight change in total precipitation in south Nunavut,overall leading to a small(large)RPR.In the Northwest Territories,meanwhile,positive(negative)NAO results in more(less)snowfall and a slight change in total precipitation,also leading to a small(large)RPR.However,the NAO has little in fl uence on the rainfall and total precipitation in areas near Baffin Bay.In general,the changes in RPR in northern Canada may include the e ff ects of both warming and the NAO.

    4.Discussion and conclusions

    Few studies of di ff erent precipitation forms have been conducted in Arctic regions.In view of the important e ff ects of the local hydrology and ecology in the Arctic climate system,we analyzed the changes in the spring–summer RPR over northern Canada and discussed the potential causes.

    The precipitation form is determined by the vertical temperature of the atmosphere,particle size distribution and the microphysics scheme.Among these factors,the temperature is dominant(Sankar′e and Th′eriault,2016).In this study,we focused on the changes in the RPR in northern Canada and its link with surface air temperature changes.ERA-Interim agrees well,qualitatively,with observations of the spring–summer mean temperature and RPR.Evaluation of the ERAInterim data indicated that the spring–summer mean temperature increased signi fi cantly[0.4?C–1?C(10 yr)?1],as did the rainfall and the RPR[2%–6%(10 yr)?1],in the Canadian Arctic Archipelago from 1979 to 2015.

    We also paid attention to the regional di ff erences in the RPR.Correlation analysis of both the AO and NAO indices with the RPR in northern Canada over the past few decades indicated the NAO plays a dominant role in the variations of RPR over northern Canada.Positive(negative)NAO resulted in a small(larger)RPR in northern Canada from 1979–2015.Speci fi cally,positive(negative)NAO resulted in less(more)rainfall in south Nunavut,but more(less)snowfall in the Northwest Territories,all leading to a small(large)RPR.Therefore,aside from the contribution of climate warming,the NAO is probably another key factor resulting in the temporal and spatial variations in the RPR over northern Canada.

    The results presented herein improve our understanding of climate change over the Canadian Arctic and the potential impacts of precipitation phase changes on the cryosphere.It is,however,important to note that the temporal coverage of the ERA-Interim data employed here is not long enough to capture the interdecadal signal of the NAO.The changes in the RPR in northern Canada may include the e ff ects of both warming and the NAO.Further studies are needed to better understand the ecological environment in the Arctic climate system.

    Fig.4.Correlationof(a)RPR,(b)rainfall,and(c)snowfallwith the NAO during spring–summer,1979–2015.Dashed shading indicates statistically signi fi cant correlations at the greater than 95%con fi dence level.

    Acknowledgements.This study was supported by the NationalKeyBasicResearchProgram ofChina(GrantNo.2013CBA01804),the National Science Foundation of China(Grant Nos.41425003 and 41401079),the State Oceanic Administration of the People’s Republic of China Project on Climate in Polar Regions(Grant No.CHINARE2016-2020),the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-G03),and the Opening Founding of the State Key Laboratory of Cryospheric Sciences(Grant No.SKLCS-OP-2016-03).The authors would like to express their appreciation to Julian Morales for providing the daily meteorological data from Environment and Climate Change Canada.

    Electronic supplementary material Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-018-7226-3.

    REFERENCES

    Aanes,R.,B.E.S?ther,and N.A.?ritsland,2000:Fluctuations of an introduced population of Svalbard reindeer:The effects of density dependence and climatic variation.Ecography,23,437–443,https://doi.org/10.1111/j.1600-0587.2000.tb00300.x.

    Barnston,A.G.,and R.E.Livezey,1987:Classi fi cation,seasonality,and persistence of low-frequency atmospheric circulation patterns.Mon.Wea.Rev.,115,1083–1126,https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    Bekryaev,R.V.,I.V.Polyakov,and V.A.Alexeev,2010:Role of polarampli fi cation in long-term surface airtemperature variations and modern Arctic warming.J.Climate,23,3888–3906,https://doi.org/10.1175/2010JCLI3297.1.

    Boisvert,L.N.,and J.C.Stroeve,2015:The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder.Geophys.Res.Lett.,42,4439–4446,https://doi.org/10.1002/2015GL063775.

    Cavalieri,D.J.,and C.L.Parkinson,2012:Arctic sea ice variability and trends,1979-2010.The Cryosphere,6,881–889,https://doi.org/10.5194/tc-6-881-2012.

    Cohen,J.,H.C.Ye,and J.Jones,2015:Trends and variability in rain-on-snow events.Geophys.Res.Lett.,42,7115–7122,https://doi.org/10.1002/2015GL065320.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis:Con fi guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597,https://doi.org/10.1002/qj.828.

    Ding,B.H.,K.Yang,J.Qin,L.Wang,Y.Y.Chen,and X.B.He,2014:Thedependenceofprecipitationtypesonsurfaceelevation and meteorological conditions and its parameterization.J.Hydrol.,513,154–163,https://doi.org/10.1016/j.jhydrol.2014.03.038.

    Groisman,P.Y.,R.W.Knight,D.R.Easterling,T.R.Karl,G.C.Hegerl,and V.N.Razuvaev,2005:Trends in intense precipitation in the climate record.J.Climate,18,1326–1350,https://doi.org/10.1175/JCLI3339.1.

    Hasnain,S.I.,2002:Himalayan glaciers meltdown:Impact on south Asian rivers.Proc.Fourth International FRIEND Conf.Held at Cape Town,South Africa,IAHS,274,417–423.

    Irannezhad,M.,H.Marttila,D.L.Chen,and B.Kl?ve,2016:Century-long variability and trends in daily precipitation characteristics at three Finnish stations.Advances in Climate Change Research,7,54–69,https://doi.org/10.1016/j.accre.2016.04.004.

    Knowles,N.,M.D.Dettinger,and D.R.Cayan,2006:Trends in snowfall versus rainfall in the western United States.J.Climate,19,4545–4559,https://doi.org/10.1175/JCLI3850.1.

    Loth,B.,H.-F.Graf,and J.M.Oberhuber,1993:Snow cover model for global climate simulations.J.Geophys.Res.,98,10 451–10 464,https://doi.org/10.1029/93JD00324.

    Miller,G.H.,R.B.Alley,J.Brigham-Grette,J.J.Fitzpatrick,L.Polyak,M.C.Serreze,and J.W.C.White,2010:Arctic ampli fi cation:Can the past constrain the future?Quaternary Science Reviews,29,1779–1790,https://doi.org/10.1016/j.quascirev.2010.02.008.

    Overland,J.E.,M.Y.Wang,J.E.Walsh,and J.C.Stroeve,2014:Futurearcticclimatechanges:Adaptationandmitigationtime scales.Earth’s Future,2,68–74,https://doi.org/10.1002/2013 EF000162.

    Perovich,D.,C.Polashenski,A.Arntsen,and C.Stwertka,2017:Anatomy of a late spring snowfall on sea ice.Geophys.Res.Lett.,44,2802–2809,https://doi.org/10.1002/2016 GL071470.

    Perovich,D.K.,and C.Polashenski,2012:Albedo evolution of seasonal Arctic sea ice.Geophys.Res.Lett.,39,L08501,https://doi.org/10.1029/2012GL051432.

    Pithan,F.,and T.Mauritsen,2014:Arctic ampli fi cation dominated by temperature feedbacks in contemporary climate models.Nature Geoscience,7,181–184,https://doi.org/10.1038/NGEO2071.

    Przybylak,R.,2007:Recent air-temperature changes in the Arctic.Annals of Glaciology,46,316–324,https://doi.org/10.3189/172756407782871666.

    Putkonen,J.,and G.Roe,2003:Rain-on-snow events impact soil temperatures and a ff ect ungulate survival.Geophys.Res.Lett.,30,1188,https://doi.org/10.1029/2002GL016326.

    Sankar′e,H.,and J.M.Th′eriault,2016:On the relationship between the snow fl ake type aloft and the surface precipitation types at temperatures near 0?C.Atmos.Res.,180,287–296,https://doi.org/10.1016/j.atmosres.2016.06.003.

    Screen,J.A.,and I.Simmonds,2010:Thecentral role ofdiminishing sea ice in recent Arctic temperature ampli fi cation.Nature,464,1334–1337,https://doi.org/10.1038/nature09051.

    Screen,J.A.,and I.Simmonds,2012:Declining summer snowfall in the Arctic:Causes,impacts and feedbacks.Climate Dyn.,38,2243–2256,https://doi.org/10.1007/s00382-011-1105-2.

    Serreze,M.C.,A.P.Barrett,J.C.Stroeve,D.N.Kindig,and M.M.Holland,2009:The emergence of surface-based Arctic ampli fi cation.The Cryosphere,3,11–19,https://doi.org/10.5194/tc-3-11-2009.

    Serreze,M.C.,and Coauthors,2000:Observational evidence of recent change in the northern high-latitude environment.Climatic Change,46,159–207,https://doi.org/10.1023/A:1005504031923.

    Sheridan,S.C.,2003:North American weather-type frequency and teleconnection indices.Int.J.Climatol.,23,27–45,https://doi.org/10.1002/joc.863.

    Stirling,I.,and T.G.Smith,2004:Implications of warm temperatures and an unusual rain event for the survival of ringed seals on the coast of southeastern Baffin Island.Arctic,57,59–67,https://doi.org/10.14430/arctic483.

    Wallace,J.M.and D.S.Gutzler,1981:Teleconnections in the geopotential height fi eld during the northern hemisphere win-ter.Mon.Wea.Rev.,109,784–812,https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Yao,T.D.,and Coauthors,2012:Di ff erent glacier status with atmospheric circulations in Tibetan Plateau and surroundings.Nature Climate Change,2,663–667,https://doi.org/10.1038/nclimate1580.

    Ye,H.C.,2008:Changes in frequency of precipitation types associated with surface air temperature over northern Eurasia during 1936–90.J.Climate,21,5807–5819,https://doi.org/10.1175/2008JCLI2181.1.

    Ye,H.C.,and J.Cohen,2013:A shorter snowfall season associated with higher air temperatures over northern Eurasia.Environ.Res.Lett.,8,014052,https://doi.org/10.1088/1748-9326/8/1/014052.

    Zhang,X.B.,W.D.Hogg,and′E.Mekis,2001:Spatial and temporal characteristics of heavy precipitation events over Canada.J.Climate,14,1923–1936,https://doi.org/10.1175/1520-0442(2001)014<1923:SATCOH>2.0.CO;2.

    白带黄色成豆腐渣| 久久人人爽人人爽人人片va| 亚洲aⅴ乱码一区二区在线播放| 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 18禁在线播放成人免费| 国产精品一二三区在线看| 国产高清三级在线| 变态另类成人亚洲欧美熟女| 日本-黄色视频高清免费观看| 精品国产三级普通话版| 亚洲婷婷狠狠爱综合网| 国产91av在线免费观看| av天堂中文字幕网| 日韩精品有码人妻一区| 亚洲五月天丁香| 成人亚洲精品av一区二区| 久久久久免费精品人妻一区二区| 亚洲真实伦在线观看| 国产精品三级大全| 少妇熟女欧美另类| 亚洲性久久影院| 嫩草影视91久久| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 亚洲成av人片在线播放无| 亚洲专区国产一区二区| www.色视频.com| 欧美在线一区亚洲| 尤物成人国产欧美一区二区三区| 亚洲成人av在线免费| 亚洲美女视频黄频| videossex国产| 精品99又大又爽又粗少妇毛片| 亚洲,欧美,日韩| 人人妻,人人澡人人爽秒播| 床上黄色一级片| 1024手机看黄色片| 成人精品一区二区免费| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 老师上课跳d突然被开到最大视频| 网址你懂的国产日韩在线| 日韩欧美精品v在线| 亚洲最大成人av| 国产美女午夜福利| av在线亚洲专区| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 春色校园在线视频观看| 精品久久久久久久久久久久久| 老熟妇乱子伦视频在线观看| 亚洲欧美成人综合另类久久久 | 欧美三级亚洲精品| 亚洲自偷自拍三级| 久久精品夜色国产| 在线播放无遮挡| 日韩精品青青久久久久久| 男女边吃奶边做爰视频| 免费在线观看成人毛片| 久久久久国产网址| 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 久久久a久久爽久久v久久| 欧美区成人在线视频| 少妇被粗大猛烈的视频| 午夜亚洲福利在线播放| 亚洲国产色片| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利在线观看免费完整高清在 | 日本与韩国留学比较| 成年女人永久免费观看视频| 老司机午夜福利在线观看视频| 搞女人的毛片| 国产一区二区在线观看日韩| 美女cb高潮喷水在线观看| 乱码一卡2卡4卡精品| 插逼视频在线观看| 色哟哟·www| 国产精品一区www在线观看| 国产欧美日韩精品一区二区| 国产真实伦视频高清在线观看| 天美传媒精品一区二区| 免费黄网站久久成人精品| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 亚洲婷婷狠狠爱综合网| 日本一本二区三区精品| 日韩av不卡免费在线播放| 国产一区二区三区在线臀色熟女| 午夜精品国产一区二区电影 | 免费在线观看影片大全网站| 舔av片在线| 桃色一区二区三区在线观看| 成年版毛片免费区| 深夜精品福利| 免费在线观看成人毛片| 人人妻人人澡人人爽人人夜夜 | 亚洲一区高清亚洲精品| 亚洲av五月六月丁香网| 久久久久久伊人网av| 日本一二三区视频观看| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站 | 欧美高清性xxxxhd video| 亚洲av二区三区四区| 99热网站在线观看| 美女 人体艺术 gogo| 欧美日韩国产亚洲二区| 身体一侧抽搐| 亚洲av美国av| a级毛色黄片| 日本熟妇午夜| 97超视频在线观看视频| 午夜激情福利司机影院| 亚洲av二区三区四区| 日韩欧美三级三区| 成年免费大片在线观看| 亚洲av二区三区四区| 97超视频在线观看视频| 国产亚洲欧美98| 不卡视频在线观看欧美| 亚洲av免费在线观看| 麻豆国产av国片精品| 真人做人爱边吃奶动态| 国内揄拍国产精品人妻在线| 毛片女人毛片| 国产精品99久久久久久久久| 我的女老师完整版在线观看| 亚洲国产精品成人久久小说 | 国产精品福利在线免费观看| 少妇猛男粗大的猛烈进出视频 | 欧美日韩一区二区视频在线观看视频在线 | 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 小蜜桃在线观看免费完整版高清| 一级a爱片免费观看的视频| 国产精品久久久久久av不卡| 国产精品野战在线观看| 看非洲黑人一级黄片| 97热精品久久久久久| 淫妇啪啪啪对白视频| 亚洲av中文av极速乱| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 三级经典国产精品| 成年女人永久免费观看视频| 国产久久久一区二区三区| 你懂的网址亚洲精品在线观看 | 在线免费观看的www视频| 国产片特级美女逼逼视频| a级一级毛片免费在线观看| 色在线成人网| 99久国产av精品国产电影| 波多野结衣巨乳人妻| 五月伊人婷婷丁香| 国产欧美日韩一区二区精品| 黄色一级大片看看| 亚洲精品国产成人久久av| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 俄罗斯特黄特色一大片| 国产久久久一区二区三区| 国产免费一级a男人的天堂| 91久久精品国产一区二区三区| 久久草成人影院| 欧美日韩综合久久久久久| 女生性感内裤真人,穿戴方法视频| 久久久国产成人精品二区| h日本视频在线播放| 波多野结衣高清作品| a级毛色黄片| 国产精品1区2区在线观看.| 国产精品一区二区三区四区久久| 老司机午夜福利在线观看视频| 亚洲中文字幕日韩| 国产高清有码在线观看视频| 成人美女网站在线观看视频| 国产av在哪里看| 国产精品久久视频播放| 一级毛片aaaaaa免费看小| 无遮挡黄片免费观看| 插阴视频在线观看视频| 国产免费男女视频| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 2021天堂中文幕一二区在线观| 国产成人a∨麻豆精品| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 嫩草影院入口| 亚洲性久久影院| 久久中文看片网| 人妻少妇偷人精品九色| 久久鲁丝午夜福利片| 亚洲精品色激情综合| 国产中年淑女户外野战色| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 在线播放国产精品三级| 91午夜精品亚洲一区二区三区| 日日摸夜夜添夜夜爱| 国内精品久久久久精免费| 成人三级黄色视频| 亚洲人与动物交配视频| 成年女人看的毛片在线观看| 卡戴珊不雅视频在线播放| 国产探花在线观看一区二区| 草草在线视频免费看| 日韩 亚洲 欧美在线| 大香蕉久久网| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 亚洲真实伦在线观看| 高清毛片免费观看视频网站| 国产成人freesex在线 | 又黄又爽又免费观看的视频| 亚洲精品国产成人久久av| 国产av一区在线观看免费| 国产av在哪里看| 午夜免费激情av| 伦精品一区二区三区| 一进一出好大好爽视频| 极品教师在线视频| 大型黄色视频在线免费观看| 在现免费观看毛片| 免费av不卡在线播放| 丰满乱子伦码专区| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 亚洲va在线va天堂va国产| 日日摸夜夜添夜夜添av毛片| АⅤ资源中文在线天堂| 欧美国产日韩亚洲一区| 欧美日韩在线观看h| 亚洲最大成人手机在线| 欧美最新免费一区二区三区| 成人午夜高清在线视频| 国产精品不卡视频一区二区| 国产精品三级大全| 精品久久久噜噜| 亚洲精品成人久久久久久| 人妻少妇偷人精品九色| 变态另类成人亚洲欧美熟女| 女人十人毛片免费观看3o分钟| 成人一区二区视频在线观看| 日韩精品有码人妻一区| 91精品国产九色| 免费在线观看影片大全网站| 禁无遮挡网站| 国产老妇女一区| 国产黄色小视频在线观看| 亚洲丝袜综合中文字幕| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 日本免费一区二区三区高清不卡| 亚洲最大成人手机在线| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 99热这里只有精品一区| 日日啪夜夜撸| 国产真实乱freesex| 国产黄片美女视频| 我要看日韩黄色一级片| 午夜视频国产福利| 日韩欧美三级三区| 高清毛片免费看| 神马国产精品三级电影在线观看| 久久九九热精品免费| 亚洲色图av天堂| 成人漫画全彩无遮挡| 国产成人a区在线观看| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 日本一二三区视频观看| 亚洲人成网站在线播放欧美日韩| 日本a在线网址| 真人做人爱边吃奶动态| 精品久久国产蜜桃| 级片在线观看| 最新中文字幕久久久久| 色av中文字幕| 国产 一区精品| 一进一出抽搐动态| 国产免费一级a男人的天堂| 中国美女看黄片| 成人永久免费在线观看视频| 噜噜噜噜噜久久久久久91| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 欧美另类亚洲清纯唯美| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 亚洲五月天丁香| 一个人看视频在线观看www免费| 亚洲精品国产成人久久av| 国产色婷婷99| 免费不卡的大黄色大毛片视频在线观看 | 色哟哟哟哟哟哟| 六月丁香七月| 一个人看的www免费观看视频| 一级毛片久久久久久久久女| 亚洲国产日韩欧美精品在线观看| 久久久精品欧美日韩精品| 美女被艹到高潮喷水动态| 亚洲av免费在线观看| 久久精品国产鲁丝片午夜精品| 3wmmmm亚洲av在线观看| 成熟少妇高潮喷水视频| 一级a爱片免费观看的视频| a级毛色黄片| 久久精品人妻少妇| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| 少妇猛男粗大的猛烈进出视频 | 久久精品久久久久久噜噜老黄 | 一进一出抽搐动态| 大型黄色视频在线免费观看| 51国产日韩欧美| 国产成人精品久久久久久| 亚洲五月天丁香| 国产精品一区二区三区四区免费观看 | 亚洲天堂国产精品一区在线| www.色视频.com| 蜜桃久久精品国产亚洲av| av国产免费在线观看| 成人鲁丝片一二三区免费| 男人舔奶头视频| 人妻少妇偷人精品九色| 大型黄色视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 国产真实乱freesex| 国产极品精品免费视频能看的| 99久久无色码亚洲精品果冻| 波野结衣二区三区在线| 最后的刺客免费高清国语| 99久久九九国产精品国产免费| 国产精品女同一区二区软件| 欧美日韩国产亚洲二区| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 欧美激情在线99| 久久鲁丝午夜福利片| 搡老妇女老女人老熟妇| 免费看光身美女| 观看美女的网站| 在线播放无遮挡| 亚洲最大成人av| 看黄色毛片网站| 成年女人永久免费观看视频| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 少妇的逼水好多| 亚洲国产欧美人成| 麻豆一二三区av精品| 国产国拍精品亚洲av在线观看| 国产精品一区二区免费欧美| 国产亚洲91精品色在线| 国产av麻豆久久久久久久| 久久人人爽人人爽人人片va| 免费一级毛片在线播放高清视频| 国产精品爽爽va在线观看网站| 国产激情偷乱视频一区二区| or卡值多少钱| 欧美+日韩+精品| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 最近中文字幕高清免费大全6| 国产午夜精品论理片| 免费大片18禁| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 国产精品国产高清国产av| 69av精品久久久久久| 伦理电影大哥的女人| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 久久韩国三级中文字幕| 99视频精品全部免费 在线| 99riav亚洲国产免费| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 色哟哟哟哟哟哟| 亚洲国产色片| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 国产男靠女视频免费网站| aaaaa片日本免费| av在线观看视频网站免费| 久久精品国产亚洲网站| 久久欧美精品欧美久久欧美| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看| 成年免费大片在线观看| 亚洲成人精品中文字幕电影| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 欧美成人精品欧美一级黄| 男人舔女人下体高潮全视频| 亚洲第一电影网av| 日韩欧美三级三区| 国产欧美日韩精品一区二区| or卡值多少钱| 成人高潮视频无遮挡免费网站| 午夜亚洲福利在线播放| 亚洲av二区三区四区| 18禁裸乳无遮挡免费网站照片| 久久精品91蜜桃| 亚洲国产精品成人久久小说 | 久久久精品欧美日韩精品| 色5月婷婷丁香| а√天堂www在线а√下载| 黄色配什么色好看| 欧美激情在线99| 波野结衣二区三区在线| 免费观看的影片在线观看| 亚洲欧美精品自产自拍| 熟女人妻精品中文字幕| 免费看a级黄色片| 亚洲欧美精品综合久久99| 久久精品久久久久久噜噜老黄 | 亚洲欧美精品综合久久99| 久久亚洲精品不卡| 亚洲在线观看片| 国产亚洲91精品色在线| 亚洲国产日韩欧美精品在线观看| 99国产精品一区二区蜜桃av| 黄色日韩在线| 国产亚洲av嫩草精品影院| 一区二区三区高清视频在线| 麻豆av噜噜一区二区三区| 少妇人妻一区二区三区视频| 99久久精品一区二区三区| 国产亚洲91精品色在线| 国产精品电影一区二区三区| 久久久精品欧美日韩精品| 免费看光身美女| 亚洲婷婷狠狠爱综合网| 悠悠久久av| aaaaa片日本免费| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 长腿黑丝高跟| 在线播放无遮挡| 岛国在线免费视频观看| 国产精品亚洲一级av第二区| 麻豆成人午夜福利视频| 国产午夜精品久久久久久一区二区三区 | 欧美人与善性xxx| 一区二区三区四区激情视频 | 我的女老师完整版在线观看| 国产激情偷乱视频一区二区| 日韩成人av中文字幕在线观看 | 老司机影院成人| 男人舔奶头视频| 特大巨黑吊av在线直播| 国产精品一及| 日韩一区二区视频免费看| 免费大片18禁| 女同久久另类99精品国产91| 简卡轻食公司| 搡老岳熟女国产| 精品人妻一区二区三区麻豆 | 老师上课跳d突然被开到最大视频| 久久精品影院6| 尾随美女入室| 男女视频在线观看网站免费| 色哟哟哟哟哟哟| 麻豆精品久久久久久蜜桃| 看非洲黑人一级黄片| 丝袜喷水一区| 国产一区二区亚洲精品在线观看| 少妇熟女aⅴ在线视频| 一本久久中文字幕| 日韩av不卡免费在线播放| 99久国产av精品| 色综合亚洲欧美另类图片| 一级毛片aaaaaa免费看小| 亚洲av一区综合| 国产精品1区2区在线观看.| 国产淫片久久久久久久久| 日产精品乱码卡一卡2卡三| 成年av动漫网址| 十八禁网站免费在线| 久久亚洲国产成人精品v| 99国产精品一区二区蜜桃av| 精品一区二区三区人妻视频| 国产精品一二三区在线看| 草草在线视频免费看| 99热精品在线国产| 欧美性猛交╳xxx乱大交人| 亚洲经典国产精华液单| 乱系列少妇在线播放| 国产精品无大码| 精品久久久久久久久久久久久| 女生性感内裤真人,穿戴方法视频| 欧美绝顶高潮抽搐喷水| 国产成人影院久久av| 日本免费一区二区三区高清不卡| 成人亚洲精品av一区二区| 精品午夜福利在线看| 国产成人一区二区在线| 午夜免费激情av| 亚洲精品在线观看二区| 亚洲国产精品国产精品| 91久久精品国产一区二区三区| 伦理电影大哥的女人| 精品一区二区三区视频在线| 免费看a级黄色片| 九九爱精品视频在线观看| 九色成人免费人妻av| 亚洲欧美日韩东京热| 毛片女人毛片| 深夜a级毛片| 国产高清三级在线| 我要搜黄色片| 亚洲第一区二区三区不卡| 亚洲人与动物交配视频| 亚洲美女视频黄频| 亚洲人成网站在线观看播放| 国产精品久久久久久av不卡| 日韩一本色道免费dvd| 一卡2卡三卡四卡精品乱码亚洲| 长腿黑丝高跟| 国产毛片a区久久久久| 麻豆成人午夜福利视频| 少妇被粗大猛烈的视频| 中文字幕久久专区| av视频在线观看入口| 国产老妇女一区| 国产日本99.免费观看| avwww免费| 免费一级毛片在线播放高清视频| 毛片一级片免费看久久久久| 人妻夜夜爽99麻豆av| 精品日产1卡2卡| 哪里可以看免费的av片| 国产毛片a区久久久久| 人妻少妇偷人精品九色| 国产高清激情床上av| 国产在线男女| 日韩av在线大香蕉| 日本免费一区二区三区高清不卡| 亚洲不卡免费看| 91久久精品国产一区二区三区| 亚洲av五月六月丁香网| 久久精品夜色国产| 国产伦精品一区二区三区视频9| 亚洲中文日韩欧美视频| 性色avwww在线观看| 婷婷精品国产亚洲av在线| 亚洲久久久久久中文字幕| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜 | 99视频精品全部免费 在线| 国产视频内射| 精品乱码久久久久久99久播| 尾随美女入室| 男人的好看免费观看在线视频| 日韩欧美精品v在线| 国内精品久久久久精免费| 欧美激情在线99| 久久精品人妻少妇| 午夜久久久久精精品| 在线观看美女被高潮喷水网站| 欧美三级亚洲精品| 晚上一个人看的免费电影| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 日本撒尿小便嘘嘘汇集6| 亚州av有码| 亚洲国产精品合色在线| 久久精品夜色国产| 我的女老师完整版在线观看| 熟妇人妻久久中文字幕3abv| 在现免费观看毛片| 一区福利在线观看| 天堂av国产一区二区熟女人妻| 久久天躁狠狠躁夜夜2o2o| 国产精品福利在线免费观看| 国产色婷婷99| 性插视频无遮挡在线免费观看| 久久欧美精品欧美久久欧美| 十八禁国产超污无遮挡网站| 亚洲欧美日韩卡通动漫| 精品人妻偷拍中文字幕| 99久久成人亚洲精品观看| 99九九线精品视频在线观看视频| 国内精品美女久久久久久| 免费黄网站久久成人精品| 乱人视频在线观看| 精品一区二区三区人妻视频| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频,在线免费观看| 日本黄大片高清| 亚洲精品乱码久久久v下载方式| 亚洲精品国产成人久久av| av.在线天堂| 晚上一个人看的免费电影| 麻豆国产97在线/欧美| 免费av不卡在线播放| 久久久国产成人精品二区| 国产一区二区在线av高清观看| 女同久久另类99精品国产91| 国产精品久久久久久久久免| 精品久久国产蜜桃| 高清午夜精品一区二区三区 | 99久久九九国产精品国产免费| 麻豆乱淫一区二区| 长腿黑丝高跟|