文 晨,毛率先 ,劉文鳳
(天津工業(yè)大學(xué) 環(huán)境與化學(xué)工程學(xué)院,天津300387)
隨著人口增長和化工產(chǎn)業(yè)的快速發(fā)展,全球每天約有400 t染料以各種形式,如合成、加工和應(yīng)用等排入自然水體中,由此導(dǎo)致了嚴(yán)重的水環(huán)境污染[1].眾所周知,印染廢水富含染料、表面活性劑和無機(jī)鹽等.其中染料的分子結(jié)構(gòu)均屬于苯環(huán)、萘環(huán)和蒽醌類,在江河湖泊中會逐漸轉(zhuǎn)化為有毒物質(zhì).因此,在排入受納水體前必須對印染廢水實(shí)施嚴(yán)格的有效處理[2].通常印染廢水處理方法主要包含混凝沉淀法、吸附法、萃取法、膜分離法、高級氧化法和生化法等[3-12],而生化法是首選之一,這主要基于其環(huán)境友好和低成本.但是一些研究結(jié)果表明[13-18],生化法很難徹底降解染料分子,致使其出水殘留顏色.為此,印染廢水的脫色成為保護(hù)水環(huán)境和公眾健康的重要課題之一.萃取法作為一種分離技術(shù)在富集與分離領(lǐng)域已得到廣泛地應(yīng)用,如廢水脫色、脫酚和脫有機(jī)酸等[19-27].眾所周知,萃取法的關(guān)鍵在于萃取劑的設(shè)計,也就是既要確保對溶質(zhì)具有高度的親和力,又要防止在溶劑中溶解或乳化.張奎等[28]報告了以三辛胺(TOA)作為萃取劑對CLT酸廢水進(jìn)行預(yù)處理,在最佳工藝條件下其萃取率高達(dá)99.27%.Homsirikamol等[19]設(shè)計了以三辛基甲基氯化銨、二(2-乙基己基)磷酸酯(P204)和磷酸三丁酯(TBP)為組分的復(fù)合萃取劑脫除廢水中的阿莫西林,其研究顯示,萃取率和分配系數(shù)分別達(dá)到了90.4%和9.44.因此,在印染廢水處理領(lǐng)域,開發(fā)兼有良好溶質(zhì)分配比和穩(wěn)定性的復(fù)合萃取劑是極具挑戰(zhàn)性的課題,對出水達(dá)標(biāo)具有重要意義.本文構(gòu)建了以三辛胺(TOA)和二(2-乙基己基)磷酸酯(P204)為主的二元復(fù)合萃取劑,探討了在酸性條件下萃取活性紅K-7B染料的行為及其實(shí)現(xiàn)最佳脫色率的工藝條件,為印染廢水達(dá)標(biāo)排放提供了有力的技術(shù)支持.
主要材料:三辛胺(TOA)、二(2-乙基己基)磷酸酯(P204)和磺化煤油(SK),河南洛陽奧達(dá)化工有限公司產(chǎn)品;氫氧化鈉和碳酸鈉,分析純,天津市福晨化學(xué)試劑公司產(chǎn)品;活性紅K-7B,山東如意數(shù)碼印染公司產(chǎn)品,其特性顯示在表1;實(shí)驗用水為蒸餾水.
表1 活性紅K-7B染料特征Tab.1 Characteristics of reactive red 4
主要儀器:TU-1900/1901型可見-紫外分光光度儀,北京普析通用儀器有限責(zé)任公司產(chǎn)品;PHS-25型數(shù)顯pH計,上海雷磁公司產(chǎn)品;DF-101S智能集熱恒溫加熱磁力攪拌器,河南鞏義儀器公司產(chǎn)品.
擬定不同濃度的活性紅K-7B染料溶液,依次測定其吸光度與濃度的工作曲線,在中性水中得到Y(jié)=38.11X+0.567,R2=0.999 5;在 pH 值為 3時 Y=38.14X+0.556,R2=0.999 1.可見,加入一定酸劑對活性紅K-7B溶液的吸光度無影響.
1.2.1 萃取實(shí)驗
在煤油中依次加入不同體積比的TOA和P204充分混合后得到系列復(fù)合萃取劑.配置1 g/L活性紅K-7B水溶液,調(diào)節(jié)pH值=3與復(fù)合萃取劑按水油比為5∶1置于燒杯中,在恒溫磁力攪拌器中攪拌15 min后靜置分層,取水相用UV-vis分析殘存活性紅K-7B染料的吸光度.按式(1)、(2)和(3)計算脫色率 Dr、萃取率Er、分配比D和協(xié)同系數(shù)R:
式中:A0、At分別為萃取前后水相的吸光度;Vorg、Vaq分別為復(fù)合萃取劑與染料溶液的體積(mL).
1.2.2 復(fù)合萃取劑再生實(shí)驗
取上述條件下得到的負(fù)載染料的復(fù)合萃取劑與堿劑按油堿比為4∶1置于燒杯中,在恒溫磁力攪拌器中攪拌15 min后靜置分層,取水相用UV-vis分析儀分析殘存活性紅K-7B染料的吸光度.按式(4)計算復(fù)合萃取劑脫附率(Sr):
式中:Aaq為在堿劑中K-7B的吸光度;Aorg為擬再生的復(fù)合萃取劑中染料吸光度,Aorg=(A0-At)-Aaq;Vaq和Vorg分別為堿劑和擬再生的復(fù)合萃取劑體積(mL).
在恒定TOA與P204總體積分?jǐn)?shù)為30%前提下,考察了復(fù)合萃取劑中TOA與P204的體積比(以XTOA表示,XTOA=[TOA]/[TOA]+[P204])對活性紅K-7B的萃取率(脫色率)和協(xié)同系數(shù)的影響,其結(jié)果如圖1所示.
圖1 復(fù)合萃取劑對活性紅K-7B的萃取行為Fig.1 Behavior of composite extraction on removal reactive red 4
由圖1可知,當(dāng)僅有P204(TOA體積為0)時,對活性紅K-7B的萃取率和協(xié)同系數(shù)均較低,僅為25.4%和1.0,表明P204對活性紅K-7B萃取能力很低,僅僅是分子間力的作用;但隨著TOA體積比增加,對活性紅K-7B的萃取率和協(xié)同系數(shù)也隨之提高,當(dāng)XTOA=0.6時達(dá)到最大值,即Er(Dr)=87.6%和R=8.0,此時相當(dāng)于18%TOA與12%P204混合呈現(xiàn)出最優(yōu)的萃取能力;而當(dāng)僅有TOA(P204體積為0)時,對活性紅K-7B的萃取率明顯下降至55.7%,這意味著TOA在復(fù)合萃取劑中起主導(dǎo)作用,其原因可歸結(jié)為:在酸性條件下活性紅K-7B染料顯負(fù)電,而TOA與P204組成的復(fù)合萃取劑因TOA的氨基質(zhì)子化表面帶正電,分子間強(qiáng)烈的靜電力利于萃取染料;而隨TOA量體積增加,質(zhì)子化數(shù)密集化,更易于萃取活性紅K-7B,從而提高了萃取率.然而當(dāng)TOA體積分?jǐn)?shù)超過0.6時(XTOA>0.6),復(fù)合萃取劑萃取效率逐漸降低,這是基于2種考慮:①增加TOA體積,提高了體系粘度,阻礙了分子間的相互碰撞;②過量TOA能中和溶液中氫離子,使自身的質(zhì)子化數(shù)減少,因而降低了萃取效率.此外,從該二元復(fù)合萃取體系看,其協(xié)同系數(shù)(R)代表了組分間的協(xié)同關(guān)系,通常該值大于1,且R越大表明組分間的協(xié)同效應(yīng)越強(qiáng)[29].基于上述實(shí)驗結(jié)果,該復(fù)合萃取劑TOA和P204的體積比確定為18∶12.
圖2給出了萃取前后不同TOA與P204體積比對活性紅K-7B染料紫外-可見光譜的影響,樣品稀釋10倍,得到吸光度值乘10.
圖2 萃取前后不同TOA體積比對活性紅K-7B染料紫外-可見光譜的影響Fig.2 UV-vis spectra of dye solution before and after extraction by different TOA volume fractions
由圖2(a)可知,活性紅K-7B的最大吸收波長λmax=510 nm的吸光度隨TOA與P204體積比變化逐漸降低,這再次證明在復(fù)合萃取劑中適宜的TOA與P204體積比對染料脫色起重要作用.圖2(b)顯示了位于XTOA=0.6的復(fù)合萃取劑萃取活性紅K-7B前后的出水照片.可見,在達(dá)到萃取平衡時,其油水分層清晰,出水色度比原水明顯地下降.
本研究考察了TOA和P204不同濃度萃取活性紅K-7B染料對其分配比的影響,以評價其協(xié)同效應(yīng),結(jié)果如圖3所示.
圖3 不同組分濃度對萃取活性紅K-7B分配系數(shù)的影響Fig.3 Effect of extractant concentration on distribution ratio of reactive red 4 using TOA,P204 and the mixture
由圖3可知,隨TOA、P204和其混合物濃度增加,各分配比也隨之增大.然而,與TOA和P204單獨(dú)萃取活性紅K-7B染料的分配比相比較,混合物的分配比顯著地增大,如當(dāng)僅有TOA或P204,且質(zhì)量分?jǐn)?shù)為30%時,其分配比依次為8.8和0.3,尤其P204對活性紅K-7B染料分配比接近0;但將它們以一定比例混合后,其萃取活性紅K-7B的分配比明顯地提高至32.5,遠(yuǎn)高于單獨(dú)任何組分,這進(jìn)一步表明TOA與P204的協(xié)同效應(yīng)促進(jìn)了對活性紅K-7B染料萃取,類似的其他研究也證明了二者的協(xié)同關(guān)系[30].
2.3.1 萃取時間對脫色率的影響
用復(fù)合萃取劑萃取活性紅K-7B染料,其萃取時間對染料脫色的影響如圖4所示.
圖4 萃取時間對活性紅K-7B脫色率的影響Fig.4 Effect of extraction times on removal reactive red 4
從圖4可看出,盡管活性紅K-7B初始質(zhì)量濃度不同(0.1、0.3、0.5 和 1.0 g/L),但隨萃取時間其脫色率均快速增加,當(dāng)時間超過7 min時,基本達(dá)到萃取平衡,且不同初始濃度的脫色率無明顯地差異,這表明該復(fù)合萃取劑萃取活性紅K-7B染料屬于快速達(dá)到平衡的過程;同時其萃取能力與被萃取物的初始濃度在一定范圍內(nèi)無相關(guān)性.因此,在本實(shí)驗條件下,確定最佳萃取時間為10 min.
2.3.2 水油比對脫色率的影響
萃取過程中水油比是影響萃取效率的關(guān)鍵因素,它不僅影響萃取效率,而且關(guān)系到運(yùn)行成本.圖5顯示了不同水油比對脫色率的影響.
圖5 水油比對活性紅K-7B脫色率的影響Fig.5 Effect of phase ratios on removal reactive red 4
由圖5可見,隨溶液體積增加,染料脫色率逐漸地降低,這是基于增加水油比使復(fù)合萃取劑的有效濃度減少,從而降低了單位時間內(nèi)萃取劑對活性紅K-7B的傳質(zhì)通量,從而導(dǎo)致其脫色率低下.因此,在本實(shí)驗條件下,確定最佳水油比為5∶1.
2.3.3 pH對脫色率的影響
在萃取過程中廢水pH也是影響萃取效率的關(guān)鍵因素,因為溶液中氫離子濃度直接關(guān)聯(lián)到TOA的質(zhì)子化,從而影響分子間作用力.在調(diào)節(jié)溶液pH值為2.0~5.0范圍內(nèi),復(fù)合萃取劑萃取活性紅K-7B染料脫色率的結(jié)果如圖6所示.
圖6 pH對活性紅K-7B脫色率的影響Fig.6 Effect of pH on removal reactive red 4
由圖6可以看出,當(dāng)溶液pH值從2.0升至5.0時,脫色率由93.8%降至63.4%,表明酸性條件有利于萃取過程的進(jìn)行.因此,在本實(shí)驗條件下,確定初始廢水pH值為3.
活性紅K-7B廢水經(jīng)萃取工藝處理后,部分染料分子由水相遷移到復(fù)合萃取劑(油相)中,只有將該復(fù)合萃取劑進(jìn)行脫附處理后方能再利用.為此,實(shí)驗選擇2種堿劑(NaOH和Na2CO3)作為洗脫劑,以不同初始濃度的堿液分別洗脫染料,其結(jié)果如圖7所示.
圖7 堿劑濃度對脫附率的影響Fig.7 Effect of alkaline solution concentration on stripping rate
由圖7可見,當(dāng)用15%NaOH溶液洗脫后,約94.3%染料被脫除,該值遠(yuǎn)高于Na2CO3溶液的洗脫率.因此,在本實(shí)驗條件下,最佳洗脫液是15%NaOH溶液.
圖8給出了再生復(fù)合萃取劑重新萃取含活性紅K-7B染料廢水的脫色效果.
圖8 再生復(fù)合萃取劑循化萃取對脫色率影響Fig.8 Effect of cycles by spent extractant on removal reactive red 4
由圖8可見,當(dāng)循環(huán)使用3次后再生復(fù)合萃取劑對活性紅K-7B染料的脫色率仍保持在80%以上.因此,進(jìn)一步表明借助15%NaOH溶液脫附染料后可使復(fù)合萃取劑獲得再生與回用.
(1)構(gòu)建了TOA-P204-SK的二元復(fù)合萃取劑,在TOA、P204與SK體積分?jǐn)?shù)為18%、12%與70%,水油比為5∶1,初始廢水pH值為3和萃取時間為10 min等最佳工藝條件下,對活性紅K-7B溶液脫色率可達(dá)87.6%,且獲得了32.5分配比.
(2)在復(fù)合萃取劑中,TOA和P204的協(xié)同作用是實(shí)現(xiàn)高效脫除活性紅K-7B染料的關(guān)鍵因素,只有在TOA中加入適宜量的P204,才能明顯地提高活性紅K-7B的萃取率.
(3)以15%NaOH作洗脫劑可完成對復(fù)合萃取劑的回收與再利用,其回收率達(dá)94.3%.
[1]LI K,ZHANG H,HE Y,et al.Novel wedge structured rotating disk photocatalytic reactor for post-treatment of actual textile wastewater[J].Chemical Engineering Journal,2015,268:10-20.
[2]PUNZI M,NILSSON F,ANBALAGAN A,et al.Combined anaerobic-ozonation process for treatment of textile wastewater:Removal of acute toxicity and mutagenicity[J].Journal of Hazardous Materials,2015,292:52-60.
[3]MEERBERGEN K,CRAUWELS S,WILLEMS K A,et al.Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment[J].Journal of Bioscience and Bioengineering,2017,124:668-673.
[4]REDDY C N,KUMAR A N,MOHAN S V.Metabolic phasing of anoxic-PDBR for high rate treatment of azo dye wastewater[J].Journal of Hazardous Materials,2018,343:49-58.
[5]VENKATA Mohan S,SURESH Babu P,SRIKANTH S.Azo dye remediation in periodic discontinuous batch mode operation:Evaluation of metabolic shifts of the biocatalyst under aerobic,anaerobic and anoxic conditions[J].Separation and Purification Technology,2013,118:196-208.
[6]NARESH Kunmar A,NAGENDRANATHA Reddy C,HARI Prasad R,et al.Azo dye load-shock on relative behavior of biofilm and suspended growth configured periodic discontinuous batch mode operations:Critical evaluation with enzymatic and bio-electrocatalytic analysis[J].Water Research,2014,60:182-196.
[7]LI X,ZHOU M,PAN Y,et al.Highly efficient advanced oxidation processes (AOPs)based on pre-magnetization Fe0for wastewater treatment[J].Separation and Purification Technology,2017,178:49-55.
[8]TAN K B,VAKILI M,HORRI B A,et al.Adsorption of dyes by nanomaterials:Recent developments and adsorption mechanisms[J].Separation and Purification Technology,2015,150:229-242.
[9]NATARAJAN S,BAJAJ H C,TAYADE R J.Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalyticprocess[J].Journal of Environmental Sciences,2017,17:181-187.
[10]MITTERSTEINER M,SCHMITZ F,BARCELLOS I O.Reuse of dye-colored water post-treated with industrial waste:Its adsorption kinetics and evaluation of method efficiency in cotton fabric dyeing[J].Journal of Water Process Engineering,2017,17:181-187.
[11]MOHAMMED S,F(xiàn)ASNABI P A.Removal of dicofol from waste-water using advanced oxidation process[J].Procedia Technology,2016,24:645-653.
[12]AN A K,GUO J,JEONG S,et al.High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation[J].Water Research,2016,103:362-371.
[13]ISIK M,SPONZA D T.Fate and toxicity of azo dye metabolites under batch long-term anaerobic incubations[J].Enzyme and Microbial Technology,2007,40(4):934-939.
[14]MURALI V,ONG S A,HO L N,et al.Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange[J].Bioresource Technology,2013,143:104-111.
[15]GARCíA-MARTíNEZ Y,BENGOA C,STüBER F,et al.Biodegradation of acid orange 7 in an anaerobic-aerobic sequential treatment system[J].Chemical Engineering and Processing:Process Intensification,2015,94:99-104.
[16]MANAVI N,KAZEMI A S,BONAKDARPOUR B.The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater[J].Chemical Engineering Journal,2017,312:375-384.
[17]VENKATA MOHAN S,SURESH Babu P,SRIKANTH S.Azo dye remediation in periodic discontinuous batch mode operation:Evaluation of metabolic shifts of the biocatalyst under aerobic,anaerobic and anoxic conditions[J].Separation and Purification Technology,2013,118:196-208.
[18]SHAW C B,CARLIELL C M,WHEATLEY A D.Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors[J].Water Research,2002,36(8):1993-2001.
[19]HOMSIRIKAMOL C,SUNSANDEE N,PANCHAROEN U,et al.Synergistic extraction of amoxicillin from aqueous solution by using binary mixtures of Aliquat 336,D2EHPA and TBP[J].Separation and Purification Technology,2016,162:30-36.
[20]SULAIMAN R N R,OTHMAN N.Synergistic green extraction of nickel ions from electroplating waste via mixtures of chelating and organophosphorus carrier[J].Journal of Hazardous Materials,2017,340:77-84.
[21]CHEN Z,WANG W T,SANG F N,et al.Fast extraction and enrichment of rare earth elements from waste water via mi-crofluidic-based hollow droplet[J].Separation and Purification Technology,2017,174:352-361.
[22]ONG L K,TRAN NGUYEN P L,SOETAREDJO F E,et al.Kinetic evaluation of simultaneous waste cooking oil hydrolysis and reactive liquid-liquid Cu extraction from synthetic Cucontaining wastewater:Effect of various co-contaminants[J].Separation and Purification Technology,2017,187:184-192.
[23]KESIEME U K,ARAL H.Application of membrane distillation and solvent extraction for water and acid recovery from acidic mining waste and process solutions[J].Journal of Environmental Chemical Engineering,2015,3(3):2050-2056.
[24]DEVA A N,ARUN C,ARTHANAREESWARAN G,et al.Extraction of peroxidase from waste Brassica oleracea used for the treatment of aqueous phenol in synthetic waste water[J].Journal of Environmental Chemical Engineering,2014,2(2):1148-1154.
[25]FISCHER L,F(xiàn)ALTA T,KOELLENSPERGER G,et al.Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water[J].Water Research,2011,45(15):4601-4614.
[26]MA L,ZHAO Z,DONG Y,et al.A synergistic extraction strategybyCyanex572andCyanex923forTh(IV)separation[J].Separation and Purification Technology,2018,191:307-313.
[27]WEI Q F,REN X L,GUO J J,et al.Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping[J].Journal of Hazardous Materials,2016,304:1-9.
[28]張奎,袁慎峰,尹紅,等.絡(luò)合萃取法預(yù)處理CLT酸生產(chǎn)廢水研究[J].水處理技術(shù),2014,40(1):33-36.ZHANG K,YUAN S F,YIN H,et al.Study on the pretreatment of clt acid production wastewater by complexing extraction[J].Technology of Water Treatment,2014,40(1):33-36(in Chinese).
[29]SHI Q,ZHANG Y,HUANG J,et al.Synergistic solvent extraction of vanadium from leaching solution of stone coal using D2EHPA and PC88A[J].Separation and Purification Technology,2017,181:1-7.
[30]孫盈,李艷玲,權(quán)新軍,等.二-(2-乙基己基)磷酸P204與三烷基叔胺N235協(xié)同萃取鉬 [J].應(yīng)用化學(xué),2009,26(11):1353-1356.SUN Y,LI Y L,QUAN X J,et al.Synergistic extraction of molybdenum using acid-base coupling extractants of Di-2-ethylhexyl phosphoric acid P204 and trialkylamine N235[J].Chinese Journal of Applled Chemistry,2009,26(11):1353-1356(in Chinese).