• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Re–Os geochronology of the Cambrian stage-2 and-3 boundary in Zhijin County,Guizhou Province,China

    2018-06-27 10:08:08ShuaichaoWeiYongFuHoupengLiangZhihuaGeWenxiZhouGuangzheWang
    Acta Geochimica 2018年2期

    Shuaichao Wei?Yong Fu,2?Houpeng Liang?Zhihua Ge?Wenxi Zhou?Guangzhe Wang

    The Ediacaran-Cambrian(E–C)transition is an important interval in geological history.During this interval,Ediacaran soft-body biota were replaced by small shelly fossils(SSFs),after which occurred the major phase of the‘Cambrian Explosion,’ regionally evidenced by the Chengjiang Biota(Hou et al.2004;Zhu 2010).The Global Boundary Stratotype Section and Point(GSSP)E–C boundary is marked by the first appearance of trace fossilTreptichnus pedum,or by SSFs in the platform facies of the Yangtze Block(Brasier et al.1994;Landing 1994;Buatois et al.2013).Currently,the first occurrence of SSFs has been constrained by a zircon U–Pb age of 539.4± 2.5 Ma from bentonite(Compston et al.2008),but their extinction time remains controversial.Meanwhile there is only a rough estimated age of 525 Ma for the Chengjiang Biota(Zhu et al.2003).Therefore,a reliable radiometric age of the Chengjiang Biota was sought in this study.Furthermore,the oceanic anoxic event(OAE),formed by the expansion and/or intensification of the global or local anoxic ocean waters during a relatively short time interval,occurred globally during the E–C transition,having great influence on the co-evolution of environment-life processes on Earth’s surface.Hence,the timing of the OAE is crucial to the understanding of several problems.

    In the past,multiple isotopic dating methods,such as Rb–Sr,K–Ar,Sm–Nd,and U–Pb dating,have been applied to constrain the depositional age of sedimentary strata(Dickin 2005),but these methods are limited by the availability of suitable dating materials.In contrast,the Re–Os dating methodology can be well-applied in organicrich rocks,i.e.,black shale,because these rocks are high in Re–Os.Because the closure temperature of the Re–Os isotopic system is relatively high(Dickin 2005;Li et al.2014),with negligible diagenetic alteration,Re–Os has been widely used in dating sedimentary rocks(Cohen 2004;Hannah et al.2004;Selby and Creaser 2005;Kendall et al.2009;Li et al.2014).On the other hand,the Os isotope is an effective tracer for the paleo-ocean environment,being particularly sensitive to hydrothermal activity(Cumming et al.2012;Fu et al.2016).In this study,we utilized the Re–Os isotopic system to investigate the black shale at the base of the Niutitang Formation from the Gezhongwu section in the Zhijin area,Guizhou Province.This paper aims to:(1)constrain the ages of OAE and of the subsequent occurrence of the Chengjiang Biota in the Early Cambrian using the Re–Os isochron age;(2)explore the environmental background of the Early Cambrian OAE and subsequent Cambrian Explosion in light of the initial Os isotopic ratios.

    1 Geologic setting

    From the Early Ediacaran,large-scale carbonate platform systems have been established on paleo-highs in the Yangtze Block(Jiang et al.2009).However,in the late Ediacaran,enhanced extensional tectonism caused block tilting and differential subsidence across faulted blocks,resulting in intense subaerial exposure and erosion on the uplifted ridges of platforms,apparently forming an unconformity with respect to the overlying Lower Cambrian sediments.In subsequent large-scale transgression,the carbonate platforms were completely flooded or submerged,thereby forming a fine-grained siliciclastic shelf basin setting(Yeasmin et al.2016)(Fig.1a,b).The study area thus experienced an environmental change from dolomitic-phosphatic shelf to fine-grained(muddy)siliciclastic shelf.

    The Gezhongwu area,about 14 km east of Zhijin City,is located on the southeastern wing of the Dayuan anticline,across which the Ediacaran,Cambrian,Carboniferous,Permian,and Triassic systems crop out(Fig.1c).The lithostratigraphic units of the Ediacaran and Lower Cambrian include the Dengying,Gezhongwu and Niutitang Formations,in ascending order(Fig.2);simple descriptions are provided below.

    2 Samples and methods

    In view of the high Re and Os contents of black shale,samples were mainly selected from black(carbonaceous)shale in the lower part of the Niutitang Formation.

    All samples were collected from a 2 m-thick drill core with sampling spacing of 10 cm,ensuring sufficient expansion of the Re–Os isochrones and a precise Re–Os isotopic age.To avoid potential diagenetic alteration,samples containing hydrothermal veins and pyrites were excluded.

    The selected samples were carefully cleaned,then put in a drying oven for 24 h at a constant temperature of 60°C.Bulk sample was grinded to 200 mesh using a mortar,and the mortar was carefully cleaned by alcohol between samples to avoid contamination.Approximately 0.5 g of sample powder was precisely weighed,and then transferred by neck funnel to a pipe with length 20 cm and diameter 2 cm at the bottom of the Carius.After using 3 mL 15-mol/L hydrochloric acid to transferthe185Re–190Os mixed diluent into the Carius tube being frozen with liquid nitrogen,we added 5 mL 15-mol/L HNO3and 1 mL 30%H2O2.The Carius tube was heated at 230°C for 24 h after being liquefied with petroleum gas and oxygen flame(Du et al.2001;Qu and Du 2003).After reaction,we opened the frozen Carius tube at the narrow neck,added ultrapure water to 25 mL,and used 5 mL ultrapure water,the absorption solution,to separate and enrich the Os by direct distillation(Li et al.2010).After completing the distillation of Os,we turn the distilled residue in the Carius tube into a 150-mL Teflon beaker,and put it on the heating plate until nearly dry.We used acetone to extract Re in 10-mol/L NaOH alkaline medium(Li et al.2009).After acetone drying,we added 2 mL ultrapure water.Lastly,we used the X-series inductively coupled plasma–mass spectrometer(ICP-MS)to measure the isotopic ratio.Re and Os measurement accuracies were 0.1%and 0.5%,respectively.

    3 Results

    The Re–Os abundances and isotopic data for the Niutitang black shale are shown in Table 1.In this experiment,the blanks of Re and Os were-0.001 and 0.0002 ng/g,respectively—significantly lower than the Re and Os contentsin samples,which ranged from 21.27 to 312.78 ng/g and from 0.455 to 7.789 ng/g,respectively.The187Re/188Os ratio varied between 102.30 and 306.43,and the187Os/188Os ratio between 1.72 and 3.51.Thus,even samples with lower Re and Os contents were not affected by the blanks.Thus,the errors of187Re/188Os and187Os/188Os ratios mainly derived from mass spectrometer,ratio of diluent,balanced reaction between diluent and sample,and reproducibility of sample data.The corrected data were analyzed by isoplot,generating a Re–Os isochron(Ludwig 2001)with a decay constant of 1.666×10-11a-1for187Re(Smoliar et al.1996;Ludwig 1999,2001).The Jinchuan standard samples from the Re–Os Laboratory of National Research Center were used as the standards in this study.The measured Re and Os contents were 39 and 16.49 ng/g,respectively,and the ratios of187Re/188Os and187Os/188Os were 12 and 0.338,respectively,consistent with the recommended ratios.The Re–Os isotope age of the black shale samples was 522.9±8.6 Ma with initial187Os/188Os of 0.826±0.026(MSWD=0.52).

    Fig.1 a Geographic location of the Yangtze Platform;b paleogeographic map of the Yangtze Platform in the Early Cambrian(modified from Yeasmin et al.2016);c geologic sketch map of Nayong-Zhijing in Guizhou.Note the sampling location

    4 Discussion

    4.1 Re–Os isotopic dating of black shale

    The Re–Os isotopic system can effectively reflect the depositional age of black shale,and is mainly affected by two factors.The first is the sources of Re and Os in black shale.During the E–C transition,the global OAE(Leggett 1980;Wu et al.1999,2000)caused a rapid reduction of seawater Os.With the upward migration of the redox boundary,Re and Os oxides were reduced and entered into the organic phase via adsorption of organic matter and/or sulfide generated by reaction with H2S.As a result,the Re–Os isotopic closed system was formed.Given the Re and Os contents of typical black shales in other ages(Fig.3),we suggest that the Re and Os in the black shale derived from seawater.

    The second factor is diagenetic alteration.(Creaser et al.2002)suggested that the Re–Os isotope system in black shale could not be destroyed at temperatures as high as 650°C as indicated by the simulation experiment.Therefore,the influence of regional tectonic metamorphism and hydrothermal activity would be negligible on the Re–Os system.Jiang and Li(2010)used the thermoelectric coefficient method of pyrite to obtain a formation temperature of 100–240 °C from the coarse-grained sulfide(pyrite)of the Lower Cambrian black shale series in the Tian’eshan section of Zunyi,Guizhou.In addition,the formation temperatures of fracture- filled quartz and calcite crystals in the black shales measured by the homogenization temperature of fluid inclusions were 126–230 °C and 113–153 °C,respectively.In this light,the diagenetic temperature was significantly lower than the disclosure temperature limit of the Re–Os system,suggesting that the isotopic system of the Zhijin samples was well preserved with a good closure,so that the Re–Os isochron age can effectively reflect the depositional age of black shales.Despite the existence of errors of instrument and technique,we believe the samples have the same initial isotopic composition.

    Fig.2 Ediacaran–Cambrian boundary succession in the Gezhongwu section,Zhijin.(Niutitang Formation:6.Dark gray to black carbonaceous mudstones intercalated with siltstone layers.~15 m thick.5.Dark gray to black mudstone/shale,containing siliceous–phosphatic concretions,and anomalously high concentrations of Mo,Ni,and V.~15 m thick.Conformity.Gezhongwu Formation:4.Dark purplish medium-bedded dolomitic bioclastic phosphorite,siliceous phosphorite,and phosphatic dolostone intercalated with liver-colored cellophane.12.8 m thick.3.Varicolored siliceous phosphorite with angular rubbles/breccias of dolostone,phosphorite,and chert.11.6 m thick.Unconformity:Dengying Formation:2.Maolongjing Member:light-gray to gray thin-bedded phosphatic micro-to fine-crystalline dolostone.2.6 m.1.Algae dolostone Member:light-gray to gray thin-to thick-bedded algal dolostone and laminated siliceous dolostone.3.2 m thick.Base not observed.)

    Table 1 Re–Os abundances and isotope data

    Fig.3 Re–Os content of typical black shale in the world.1:Re–Os contents in pyrite in black shale in South Africa(Hannah et al.2004);2:Re–Os contents in sedimentary rock of Mesoproterozoic in Taoudeni basin,Mauritania(Rooney et al.2010);3:Re–Os contents in black shale in Britain(Cohen et al.1999);4:Re–Os contents in metalliferous layer in Hunan and Guizhou Provinces(Fu et al.2016);5:Re–Os contents of siliceous shale in Hunan and Guizhou Provinces(Fu et al.2016);6:Re–Os contents of black shale in Hunan and Guizhou Provinces;7:Re–Os contents of Neoproterozoic black shale in the South of Australia and Northwest of Tasmania(Kendall et al.2009).Data are from Cohen et al.1999;Kendall et al.2009;Hannah et al.2004;Rooney et al.2010

    Previous Re–Os studies mainly focused on the polymetalliferous layer in the Niutitang Formation.The polymetalliferous layers have much higher Re and Os contents than organic-rich rocks(with Re content up to ppm level,and Os content of several hundred ppb)(Li et al.2002;Mao et al.2002;Xu et al.2011).

    In spite of relatively low Re and Os contents,black shale samples from the Gezhongwu section yield a good wholerock Re–Os isochron age of 522.9 ± 8.6 Ma for the basal Niutitang Formation (Fig.4a).Previous research has shown Re–Os isochron ages at the metalliferous layer in the basal Niutitang Formation in this area mainly concentrated in 542~521 Ma(Table 2).Because the isotopic age is mainly controlled by the two end-members on the isochrone,in order to further reduce the data error,this paper obtained an Re–Os isochron age(523 ± 6.5 Ma)of the metalliferous layer in the basal Niutitang Formation,which is consistent with the experimental results of Re–Os age(Fig.4b).A tuff layer that is widely observed below the poly-metalliferous layer has yielded zircon U–Pb ages of 532.3–522.3 Ma(Jiang et al.2009).The zircon U–Pb ages from a tuff bed in the Meishucun section in Yunnan Province,Bahuang,Panmen,and Taoying sections in Guizhou Province ranges from 526.5 to 522.3 Ma(Compston et al.2008;Wang et al.2012;Chen et al.2015a).At Songlin,Zunyi,an identical tuffaceous layer yielded two different zircon U–Pb ages at 532.3± 0.7 Ma(Xu et al.2011)and 518±5 Ma(Zhou et al.2008).Together with ages measured previously,the Re–Os isochron age obtained in this study(522.9±8.6 Ma)provides another useful constraint on the formation time of the Niutitang black shale in the Zhijin area.

    4.2 Constraints on biological evolution

    The Meishucun section in Yunnan Province used to be the standard candidate of the Precambrian-Cambrian boundary in South China(Qian and He 1996;Zhang et al.1997;Zhu et al.2003).However,it has been abandoned due to the presence of an unconformity between the Zhujiaqing and Dengying Formations.Even so,the Lower Cambrian succession at this section is complete,including,in ascending order,the Meishucun Stage(equivalent to the Fortunian Stage and Stage 2 of the global Terreneuvian Series)and Qiongzhusi Stage(equivalent to Stage 3 of the global Series 2).The Meishucun Stage consists of the Zhujiaqing and Qiongzhusi(or Helinpu)Formations.Of these,the former includes,in ascending order,the Daibu(DB),Zhongyicun(ZYC),and Dahai(DH)members;the latter comprises the Shiyantou and Yuanshan members(Fig.5).

    Fig.4 a Re–Os isochron diagrams of black shale from the Niutitang Formation at Gezhongwu section in Zhijin;b Re–Os isochron diagrams of polymetallic sulfide bed from the Niutitang Formation in Guizhou and Hunan Provinces

    Table 2 Re and Os isotope data of black shale in the Niutitang Formation in the Yangtze Platform

    There are four biostratigraphic marker levels(Fig.5):Marker A,at the base of Daibu Member,represents the first appearance of the SSFs above which theAnabarites trisulcatus–Protohertzinaanabaricsassemblage (zone SSF1)appears in bed 3 of the basal Zhongyicun Member.Marker B,representative of SSF flourishing,is marked by the occurrence ofParagloborilus subglobsosus–Purella squamulosaassemblage(zone SSF2)in the top part of Zhongyicun Member,and by a volcanic ash layer(bentonite)(bed 5).Marker B was formerly used as the lower boundary of the Cambrian in China,but after 2004,the International Commission on Stratigraphy accepted the new division standard of four series and ten stages in the Cambrian,moving the basal boundary of the Cambrian downward(Peng 2006).Marker C is at the boundary between the Dahai and Shiyantou members,and represents a sedimentary environmental change from shallow water carbonate platform to organic-rich fine-grained siliciclastic(muddy)shelf.A volcanic tuff-originated bentonite layer around Marker C(Zhang 1997)yielded a zircon U–Pb age of 526.5±1.1 Ma(Compston et al.2008).Marker D,2.4 m above the base of the Yuanshan Member,marks the appearance of the earliest trilobites.A large number of fossils of Chengjiang Biota were found in the siltstone and mudstone in the middle part of the Yu’anshan Member or above Marker D(Chen et al.1994,1999;Shu et al.1999;Steiner et al.2001).The black shale at the base of the Yuanshan Member is rich in metals Cr,Ni,Mo,and V(Zhu et al.2003).

    Fig.5 Stratigraphic correlation of the E–C boundary successions between shallow-and deep-water settings in the Yangtze platform constrained by both U–Pb isotope ages and Re–Os isotope age data.(Meishucun section data from Compston et al.2008;Songlin section data from Xu et al.2011(Re–Os)and Jiang et al.2009(U–Pb);Bahuang and Panmen data from Chen et al.2015a;Taoying section data from Wang et al.2012).BYS Baiyanshao,XWTS Xiaowaitoushan;ZYC Zhongyicun;DH Dahai;SYT Shiyantou;YAS Yuanshan;LCP Liuchapo;DY Dengying;A:SSF appearance;B:SSF biodiversity;C:sedimentary facies change point;SSF1:Anabarites trisulcatus–Protohertzina anabarics assemblage zone;SSF2:Paragloborilus subglobsosus–Purella squamulosa assemblage zone;SSF3:Watsonella crosbyi assemblage zone

    The division of Sinian-Cambrian boundary strata is based on the type-section Meishucun,which corresponds with the Gezhongwu section in Zhijin.The two sections share a common fossil assemblage,SSF1:Anabarites-Conotheca–Protohertzinaassemblage zone.However,due to environmental differences,different faunal members may exist in the same assemblage,i.e.,in SSF2.It has been suggested that theSiphogonuchites-Sachites–Lapworthellaassemblage zone at Gezhongwu is comparable to theParagloborilus subglobsosus–Purella squamulosaassemblage zone in the Zhongyicun Member of the Yuhucun Formation in the Meishucun.In addition,few fossils occur in the lower Niutitang Formation at Gezhongwu,so it is debatable to some degree whether it correlates with the Heilinpu Formation of the Qiongzhusi Stage in the Meishucun section.Our Re–Os isochron age of the black shale at the base of Niutitang Formation(522.9±8.6 Ma)corresponds(within the error range)with the zircon U–Pb age(526.5±1.1 Ma;Compston et al.2008)at the base of the Shiyantou Member of the Helingpu Formation.

    4.3 Constraints on oceanic anoxic events

    Fig.6 Mo isotope and δCe variations in the Early Cambrian.Molybdenum isotope composition of modern seawaters derived from Kendall et al.(2009)and Xu et al.(2012).Colored circles represent different data sources(Lehmann et al.2007;Xu and Lehmann 2010;Wen et al.2011;Xu et al.2012;Chen et al.2015b;Mao 2015;Gao et al.2016),similar to rectangle patterns

    In South China,OAEs occurred from the Neoproterozoic to the Cambrian with a great thickness of black shales deposited.The changes in δ98/95Mo and δCe may reflect the occurrence of OAE(Fig.6).Based on research by Wen et al.(2011),the maximum Mo isotopic ratio of euxinic sedimentary rock may approximately represent the lower limit of seawater Mo isotopic ratio,and the Mo isotopic composition of seawater is affected by the oxic sediments in the sea floor,which are dominantly controlled by atmospheric oxygen and the redox conditions of the ocean(Anbar and Rouxel 2007).In addition,the cerium anomaly(δCe)can also be used as a tracer of paleo-environment(Wright et al.1987).Generally,δCe<-0.1 reflects oxic aqueous conditions,while δCe>-0.1 reflects a reducing(or anoxic)condition(Wright et al.1987).Through compiling δ98/95Mo and δCe datasets of phosphorite in the Gezhongwu Formation of the Meishucun Stage and the black shale in the Niutitang Formation of the Qiongzhusi Stage in the Lower Cambrian(Fig.6),we found that the maximum δ98/95Mo value of phosphorite approached the modern seawater Mo isotope value,but the maximum δ98/95Mo values at the base of overlying black shales showed a negative excursion and subsequent rapid increase.In addition, δCe values(<-0.1)in the phosphorites of the Gezhongwu Formation indicate an oxic environment.In contrast,the δCe values(>-0.1)in black shales of the Niutitang Formation suggest a reducing environment,constrained at 522.9 ± 8.6 Ma by Re–Os isochron dating.

    5 Possible implication of the initial Os isotopic ratio

    Through geologic time,silicate weathering could have influenced atmospheric CO2concentration, thereby changing the climate.Currently,the Sr isotope composition of seawater is a widely available tracer of riverine flux resulting from continental weathering relative to the hydrothermal flux into the ocean.The increase of87Sr/86Sr could have resulted from terrestrial weathering and/or enhanced orogeny,but there is generally a lack of widespread diagenetic-resistant materials available for Sr isotope analysis(Blum and Erel 1995;Derry and France-Lanord 1996;Quade and Ojha 1997).Os isotopic composition of seawater provides an alternative signature to trace the continental flux relative to hydrothermal flux,particularly for organic-rich sediments(Pegram et al.1992;Ravizza 1993;Peucker-Ehrenbrink et al.1995;Oxburgh 1998;Reusch et al.1998;Pegram and Turekian 1999).

    In general,the Os isotopic ratio is controlled by the redox conditions of the medium and source of Os.Three main sources of Os in seawater include:(1)riverine input with a187Os/188Os ratio of 0.3–1.54;(2)mid-ocean ridge hydrothermal fluid with a187Os/188Os ratio of about 0.12,and with a non-radioactive characteristic(Sharma et al.2000);and (3)cosmic dust,having a comparable187Os/188Os ratio to the mantle(Yang et al.2005).The annual extraterrestrial Os supply is generally less than 17 kg(Levasseur et al.1999),accounting for quite a small part of the equivalent terrigenous supply.So the extrater-restrial input is not a significant source of Os in the ocean.In fact,cosmic dust could even be adsorbed in the submarine Fe–Mn crust,decreasing the Os isotopic ratio of the Fe–Mn crust(Peucker-Ehrenbrink 1996;Burton et al.1999;Sun et al.2006).The modern ocean yields a187Os/188Os ratio of 1.05–1.06,indicating mixing of different materials in seawater(Levasseur et al.1999).

    Fig.7 Initial187Os/188Os ratios of black shale in Early Cambrian,South China.1)Ni–Mo metalliferous deposits in Zunyi and Zhangjiajie area(Li et al.2002);2)Ni–Mo metalliferous deposits in Zunyi(Mao et al.2002);3)metalliferous deposits in Dayong in Hunan Province(Jiang et al.2003);4)black shale under metalliferous deposits in Nayong(Fu et al.2016);5)metalliferous deposits in Hunan and Guizhou Province(Fu et al.2016);6)this study;7)Hunan and Guizhou Provinces(Xu et al.2011)

    In this study,the initial187Os/188Os ratio from the basal black shale of the Niutitang Formation in the Zhijin area was 0.826±0.026(Table 1;Fig.7),falling within the range of 0.78–0.88 reported by other researchers(Li et al.2002;Mao et al.2002;Jiang et al.2007;Xu et al.2011;Fu et al.2016),but slightly lower than that of a continental source.This indicates that the shale was deposited in the shelf sea affected strongly by continental weathering flux and somewhat by hydrothermal flux during the Early Cambrian(Qiongzhusi epoch),resulting in the moderately high radioactive Os in the seawater.

    During the Qiongzhusi epoch,owing to huge amounts of greenhouse gas released by sea floor hydrothermal venting or volcanic activity,atmospheric CO2may have increased rapidly,causing climate warming.On the other hand,the warm climate may have facilitated a large-scale sea-level rise,leading to the widespread transgression and marine anoxia under which organic-rich sediments could have been deposited as seen the widespread(basin-scale)Niutitang black shales over the antecedent Yangtze carbonate platform.

    6 Conclusion

    This study carried out Re–Os isotopic dating for the black shale in the Niutitang Formation at Gezhongwu,Guizhou and yielded an isochron age of 522.9±8.6 Ma,providing a radiometric time constraint on the onset of the Niutitang Formation and further facilitating stratigraphic correlation with the type section of E–C boundary strata in eastern Yunnan and elsewhere.

    The initial Os isotope ratio of seawater during deposition of the Niutitang black shale was determined to be 0.826±0.026,suggesting moderately strong continental weathering flux and likely submarine hydrothermal release into the seawater.

    AcknowledgementsThis research was supported by the China Geological Survey(DD20160346),the National Natural Science Foundation of China(41472089)and the Guizhou Geological Prospecting Fund(2016091).We would like to thank Prof.Daizhao Chen for his valuable reviews,the anonymous reviewers and the editor for their constructive comments.

    Anbar AD,Rouxel O(2007)Metal stable isotopes in paleoceanography.Annu Rev Earth Planet Sci 35(1):717–746

    Blum JD,Erel Y(1995)A silicate weathering mechanism linking increase in marine87Sr/86Sr with global glaciation.Nature 373:415–418

    Brasier M,Cowie J,Taylor M(1994)Decision on the Precambrian-Cambrian boundary stratotype.Episodes 17:3–8

    Buatois LA,Almond J,Germs GJB(2013)Environmental tolerance and range offset ofTreptichnus pedum:implications for the recognition of the Ediacaran–Cambrian boundary.Geology 41:519–522

    Burton KW,Bourdon B,Birck JL,Allègre CJ,Hein JR(1999)Osmium isotope variations in the oceans recorded by Fe–Mn crusts.Earth Planet Sci Lett 171:185–197

    Chen JY,Ramskold L,Zhou GQ(1994)Evidence for monophyly and arthropod affinity of Cambrian giantpredators.Science 264:1304–1308

    Chen JY,Huang DY,Li CW(1999)An Early Cambrian craniate-like chordate.Nature 402:518–522

    Chen D,Zhou X,Fu Y,Wang J,Yan D(2015a)New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China.Terra Nova 27:62–68

    Chen X,Ling HF,Vance D,Shields-Zhou GA,Zhu MY,Poulton SW,Och LM,Jiang SY,Cremonese L,Archer C(2015b)Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.Nat Commun 6:1–7

    Cohen AS(2004)The rhenium–osmium isotope system:applications to geochronological and palaeoenvironmental problems.J Geol Soc 161:729–734

    Cohen AS,Coe AL,Bartlett JM,Hawkesworth CJ(1999)Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater.Earth Planet Sci Lett 167:159–173

    Compston W,Zhang Z,Cooper JA,Ma G,Jenkins RJF(2008)Further SHRIMP geochronology on the Early Cambrian of South China.Am J Sci 308:399–420

    Creaser RA,Sannigrahi P,Chacko T,Selby D(2002)Further evaluation of the Re–Os geochronometer in organic-rich sedimentary rocks:a test of hydrocarbon maturation effects in the Exshaw Formation,Western Canada Sedimentary Basin.Geochim Cosmochim Acta 66:3441–3452

    Cumming VM,Selby D,Lillis PG(2012)Re–Os geochronology of the lacustrine Green River Formation:insights into direct depositional dating of lacustrine successions,Re–Os systematics and paleocontinental weathering.Earth Planet Sci Lett 359–360:194–205

    Derry LA,France Lanord C(1996)Neogene Himalayan weathering history and river87Sr/86Sr:impact on the marine Sr record.Earth Planet Sci Lett 142:59–74

    Dickin AP(2005)Radiogenic isotope geology.Cambridge University Press,Cambridge,pp 42–286

    Du AD,Zhao DM,Wang SX(2001)Precise Re–Os dating for molybdenite by ID-NTIMS with carius tube sample preparation.Rock Miner Anal 20:247–252

    Fu Y,Dong L,Li C,Q WJ,Pei HX,Qiao WL,Shen B(2016)New Re–Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian niutitang formation.J Earth Sci 27:271–281

    Gao P,Liu G,Jia C,Young A,Wang Z,Wang T,Zhang P,Wang D(2016)Redox variations and organic matter accumulation on the Yangtze carbonate platform during late Ediacaran–Early Cambrian:constraints from petrology and geochemistry.Palaeogeogr Palaeoclimatol Palaeoecol 450:91–110

    Hannah JL,Bekker A,Stein HJ,Markey RJ,Holland HD(2004)Primitive Os and 2316 Ma age for marine shale:implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen.Earth Planet Sci Lett 225:43–52

    Hou XG,Aldridge RJ,Bergstr?m J,Siveter DJ,Feng XH(2004)The Cambrian fossils of Chengjiang,China:the flowering of early animal life.Blackwell,Oxford,pp 1–233

    Jiang YH,Li SR(2010)The genesis of pyrite from Ni–Mo deposit in the Lower Cambrian black rock series of Hunan and Guizhou provinces,China.Geol Bull Chin 29(2/3):427–435

    Jiang SY,Yang JH,Ling HF,Feng HZ,Chen YQ,Chen JH(2003)Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation,South China.Prog Nat Sci Mater Int 13(10):788–794

    Jiang SY,Yang JH,Ling HF,Chen YQ,Feng HZ,Zhao KD,Ni P(2007)Extreme enrichment of polymetallic Ni–Mo–PGE–Au in Lower Cambrian black shales of South China:an Os isotope and PGE geochemical investigation.Palaeogeogr Palaeclimatol Palaeoecol 254:217–228

    Jiang SY,Pi DH,Heubeck C,Frimmel H,Liu YP,Deng HL,Ling HF,Yang JH(2009)Early Cambrian ocean anoxia in South China.Nature 459:E5–E6

    Kendall B,Creaser RA,Gordon GW,Anbar AD(2009)Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations,McArthur Basin, northern Australia. Geochim Cosmochim Acta 73:2534–2558

    Landing E(1994)Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time.Geology 22:179

    Leggett JK(1980)The sedimentological evolution of a Lower Palaeozoic accretionary fore-arc in the Southern Uplands of Scotland.Sedimentology 27:401–417

    Lehmann B,Nagler TF,Holland HD,Wille M,Mao JW,Pan JY,Ma DS,Dulski P(2007)Highly metalliferous carbonaceous shale and Early Cambrian seawater.Geology 35:403–406

    Levasseur S,Birck JL,Allègre CJ(1999)The osmium riverine flux and the oceanic mass balance of osmium.Earth Planet Sci Lett 174:7–23

    Li SR,Xiao QY,Shen JF,Sun L,Liu B,Yan BK(2002)Source of PGE and Re–Os isotopes restriction of ore age in the Lower Cambrian black shale series in Hunan and Guizhou provinces.Sci China Earth Sci 37:568–575

    Li C,Qu WJ,Du AD,Sun WJ(2009)Comprehensive study on extraction of with acetone in Re–Os isotopic dating.Rock Miner Anal 28:233–238

    Li C,Qu WJ,Zhou LM,Du AD(2010)Rapid separation of osmium by direct distillation with Carius tube.Rock Miner Anal 29(1):14–16

    Li C,Qu WJ,Wang DH,Zhou LM,Du AD,Fu Y,Pei HX(2014)The progress of applying Re–Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment.Acta Geosci Sin 35:405–414

    Ludwig KR(1999)Isoplot-A plotting and regression program for radiogenic-isoplot date.U S Geological Survey,1999 Version,Open- file Report 91-445

    Ludwig KR(2001)A geochronological toolkit for microsoft excel.Berkeley Geochronology Center,Isoplot/Ex 2.49.Special Publication No 1a

    Mao T(2015)The analysis of forming environment and orecontrolling factors of phosphorous deposits in the bottom of Lower Cambrian,Central Guizhou Province,China.A Dissertation Submitted to Guizhou University for Doctoral Degree 1–123

    Mao JW,Lehmann B,Du AD,Zhang GD,Ma DS,Wang YT,Zeng MG,Kerrich R(2002)Re–Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance.Econ Geol 97:1051–1061

    Oxburgh R(1998)Variations in the osmium isotope composition of sea water over the past 200,000 years.Earth Planet Sci Lett 159:183–191

    Pegram WJ,Turekian KK(1999)The osmium isotopic composition change of Cenozoic sea water as inferred from a deep-sea core corrected for meteoritic contributions.Geochim Cosmochim Acta 63:4053–4058

    Pegram WJ,Krishnaswami S,Ravizza GE,Turekian KK(1992)The record of sea water187Os/186Os,variation through the Cenozoic.Earth Planet Sci Lett 113:569–576

    Peng SC(2006)New global subdivision on Cambrian chronostratigraphy.Bull Chin Acad Sci 21:325–328

    Peucker-Ehrenbrink B(1996)Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim Cosmochim Acta 60:3187–3196

    Peucker-Ehrenbrink B,Ravizza G,Hofmann AW(1995)The marine187Os/186Os record of the past 80 million years.Earth Planet Sci Lett 130:155–167

    Qian Y,He TG(1996)New investigation of Precambrian-Cambrian boundary sections in eastern Yunnan.Acta Micropalaeontol Sin 13:225–240

    Qu WJ,Du AD(2003)Highly precise Re–Os dating of molybdenite by ICP-MS with Carius tube sample digestion.Rock Miner Anal 22:254–257

    Quade J,Ojha TP(1997)The Late Neogene87Sr/86Sr record of lowland Himalayan rivers.Science 276:1828–1831

    Ravizza G(1993)Variations of the187Os/186Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates.Earth Planet Sci Lett 118:335–348

    Reusch DN,Ravizza G,Maasch KA,Wright JD(1998)Miocene seawater187Os/188Os ratios inferred from metalliferous carbonates.Earth Planet Sci Lett 160:163–178

    Rooney AD,Selby D,Houzay JP,Renne PR(2010)Re–Os geochronology of a Mesoproterozoic sedimentary succession,Taoudeni basin,Mauritania:implications for basin-wide correlations and Re–Os organic-rich sediments systematics.Earth Planet Sci Lett 289:486–496

    Selby D,Creaser RA(2005)Direct radiometric dating of the Devonian–Mississippian time-scale boundary using the Re–Os black shale geochronometer.Geology 33:545–548

    Sharma M,Wasserburg GJ,Hofmann AW,Butter field DA(2000)Osmium isotopes in hydrothermal fluids from the Juan de Fuca Ridge.Earth Planet Sci Lett 179:139–152

    Shu DG,Luo HL,Morris SC,Morris C,Zhang XL,Hu SX,Chen L,Han J,Zhu M,Li Y,Chen LZ(1999)Lower Cambrian vertebrates from south China.Nature 402:42–46

    Smoliar MI,Walker RJ,Morgan JW(1996)Re–Os ages of Group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102

    Steiner M,Wallis E,Erdtmann BD,Zhao Y,Yang R(2001)Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a Lower Cambrian facies and bio-evolution.Palaeogeogr Palaeoclimatol Palaeoecol 169:165–191

    Sun XM,Xue T,He GW,Zhang M,Shi GY,Wang SW,Lu HF(2006)Platinum group elements(PGE)and Os isotopic geochemistry of ferromanganese crusts from Pacific Ocean seamounts and their constraints on genesis.Acta PetSin 22:3014–3026

    Wang X,Shi X,Jiang G,Zhang W(2012)New U-Pb age from the basal Niutitang Formation in South China:implications for diachronous development and condensation of stratigraphic units across the Yangtze Platform at the Ediacaran–Cambrian Transition.J Asian Earth Sci 48:1–8

    Wen HJ,Carignan J,Zhang YX,Fan HF,Cloquet C,Liu SR(2011)Molybdenum isotopic records across the Precambrian-Cambrian boundary.Geology 39(8):775–778

    Wright J,Schrader H,Holser WT(1987)Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil apatite.Geochim Cosmochim Acta 51:631–644

    Wu CD(2000)Recovery of the paleoocean environment in the alternating epoch of Late Sinian and Early Cambrian in the west Hunan.Earth Sci Front s2:45–57

    Wu CD,Yang CY,Chen QY(1999)The origin and geochemical characteritics of Upper Sinian in Lower Cambrian black shales in western Hunan.Acta Pet Miner 18:26–38

    Xu LG,Lehmann B(2010)Mo and Mo stable isotope geochemistry:isotope system,analytical technique and applications to geology.Miner Depos 30:103–124

    Xu L,Lehmann B,Mao J,Qu W,Du A(2011)Re–Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian blake shales of South China—a reassessment.Econ Geol 106:511–522

    Xu L,Lehmann B,Mao J,N?gler TF,Neubert N,B?ttcher ME,Escher P(2012)Mo isotope and trace element patterns of Lower Cambrian black shales in South China:multi-proxy constraints on the paleoenvironment.Chem Geol 318–319:45–59

    Yang JH,Jiang SY,Ling HF,Chen YQ(2005)Re–Os isotope tracing and dating of black shales and oceanic anoxic events.Earth Sci Front 12:143–150

    Yeasmin R,Chen D,Fu Y,Wang J,Guo Z,Guo C(2016)Climaticoceanic forcing on the organic accumulation across the shelf during the Early Cambrian(Age 2 through 3)in the mid-upper Yangtze Block,NE Guizhou,South China.J Asian Earth Sci 134:365–386

    Zhang WT(1997)Cambrian explosion and significance of the Changjiang Fauna.Earth Sci Front 4:117–121

    Zhang JM,Li GX,Zhou CM(1997)Geochemistry of light colour clayrock layers from the Early Cambrian Meishucun Stage in eastern Yunnan and their geological significance.Acta Pet Sin 13:100–110

    Zhou MZ,Luo TY,Li ZX,Zhao H,Long HS,Yang Y(2008)SHRIMP U–Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation,Zunyi,South China.Chin Sci Bull 53:576–583

    Zhu MY(2010)The origin and Cambrian explosion of animals:fossil evidences from China.Acta Palaeontol Sin 49:269–287

    Zhu M,Zhang J,Steiner M,Yang A,Li G,Erdtmann BD(2003)Sinian-Cambrian stratigraphic framework for shallow-to deepwater environments of the Yangtze Platform:an integrated approach.Prog Nat Sci 13:951–960

    亚洲av第一区精品v没综合| 国产欧美日韩精品亚洲av| 99久久精品热视频| 99精品欧美一区二区三区四区| 天天添夜夜摸| 两个人视频免费观看高清| 亚洲av第一区精品v没综合| 亚洲五月天丁香| 青草久久国产| 中文字幕精品亚洲无线码一区| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合久久99| 99久久成人亚洲精品观看| 日日夜夜操网爽| 中文亚洲av片在线观看爽| 男女做爰动态图高潮gif福利片| 制服丝袜大香蕉在线| 国产麻豆成人av免费视频| 夜夜躁狠狠躁天天躁| 亚洲欧美精品综合一区二区三区| www日本黄色视频网| 在线永久观看黄色视频| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 欧美精品啪啪一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲国产高清在线一区二区三| 午夜福利高清视频| 日韩欧美精品v在线| 国产伦精品一区二区三区视频9 | 两个人看的免费小视频| 亚洲午夜精品一区,二区,三区| 欧美又色又爽又黄视频| 在线观看一区二区三区| 久久亚洲精品不卡| 亚洲av日韩精品久久久久久密| www.www免费av| 最新在线观看一区二区三区| av黄色大香蕉| 91在线观看av| 国产亚洲精品久久久久久毛片| 神马国产精品三级电影在线观看| 88av欧美| 国产成人精品久久二区二区91| 十八禁人妻一区二区| 午夜精品在线福利| 亚洲av电影不卡..在线观看| xxx96com| 好看av亚洲va欧美ⅴa在| 日本黄大片高清| 久久久久亚洲av毛片大全| 国产av在哪里看| 国产野战对白在线观看| 国产精品亚洲一级av第二区| 久9热在线精品视频| 免费搜索国产男女视频| 69av精品久久久久久| 欧美日韩乱码在线| 中国美女看黄片| 美女 人体艺术 gogo| 欧美另类亚洲清纯唯美| 国产精品野战在线观看| 国产精品亚洲一级av第二区| 久久久久亚洲av毛片大全| 色综合亚洲欧美另类图片| 国产一区二区激情短视频| av视频在线观看入口| 亚洲欧美日韩高清专用| 99久久综合精品五月天人人| 啦啦啦观看免费观看视频高清| 欧美激情久久久久久爽电影| 国产爱豆传媒在线观看| 国产91精品成人一区二区三区| 俄罗斯特黄特色一大片| 欧美乱妇无乱码| 久久久水蜜桃国产精品网| 免费无遮挡裸体视频| 波多野结衣巨乳人妻| 欧美日本视频| 岛国在线观看网站| 女同久久另类99精品国产91| 日韩欧美国产一区二区入口| 在线永久观看黄色视频| 免费看美女性在线毛片视频| 成年人黄色毛片网站| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 99国产精品一区二区三区| 国内少妇人妻偷人精品xxx网站 | 男人和女人高潮做爰伦理| 亚洲一区高清亚洲精品| 日日夜夜操网爽| 啦啦啦韩国在线观看视频| 99视频精品全部免费 在线 | 国产伦一二天堂av在线观看| 国产三级在线视频| 老鸭窝网址在线观看| 国产精品永久免费网站| 国产高清视频在线播放一区| 免费看美女性在线毛片视频| 日韩欧美在线二视频| 熟女电影av网| 天堂√8在线中文| 国产精品美女特级片免费视频播放器 | 特级一级黄色大片| 五月伊人婷婷丁香| 日本一二三区视频观看| 亚洲中文日韩欧美视频| 国产精品av视频在线免费观看| 亚洲五月天丁香| 九色国产91popny在线| 麻豆久久精品国产亚洲av| 国产三级黄色录像| 婷婷丁香在线五月| 成人特级黄色片久久久久久久| 波多野结衣高清作品| bbb黄色大片| 亚洲无线观看免费| 国产主播在线观看一区二区| 国产欧美日韩一区二区精品| 国产亚洲精品av在线| 少妇人妻一区二区三区视频| 欧美性猛交黑人性爽| 免费人成视频x8x8入口观看| 高清毛片免费观看视频网站| 在线观看一区二区三区| 男女床上黄色一级片免费看| 久久久久国内视频| 99久久成人亚洲精品观看| 亚洲午夜理论影院| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 99热只有精品国产| 免费搜索国产男女视频| 午夜激情欧美在线| 国产成人啪精品午夜网站| 亚洲午夜理论影院| 欧美一区二区精品小视频在线| 国产蜜桃级精品一区二区三区| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 亚洲avbb在线观看| 精品一区二区三区av网在线观看| 亚洲欧美日韩卡通动漫| 18美女黄网站色大片免费观看| 精品一区二区三区四区五区乱码| 最新美女视频免费是黄的| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 久久精品影院6| 真人一进一出gif抽搐免费| 精品国产乱子伦一区二区三区| 国产黄片美女视频| 日本五十路高清| 中文字幕人妻丝袜一区二区| 国产精品久久久久久人妻精品电影| 中文字幕精品亚洲无线码一区| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三| 国产主播在线观看一区二区| 男女之事视频高清在线观看| 亚洲一区高清亚洲精品| 国产欧美日韩精品一区二区| 一区二区三区激情视频| 久久精品国产亚洲av香蕉五月| 观看美女的网站| 午夜激情福利司机影院| 国产精品野战在线观看| av在线蜜桃| 日本精品一区二区三区蜜桃| 中国美女看黄片| 蜜桃久久精品国产亚洲av| 亚洲午夜精品一区,二区,三区| 中文字幕人成人乱码亚洲影| 国产精品女同一区二区软件 | 成人三级做爰电影| 757午夜福利合集在线观看| 国产男靠女视频免费网站| 国产三级黄色录像| 最近在线观看免费完整版| 最近最新中文字幕大全电影3| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 俄罗斯特黄特色一大片| 国产精品美女特级片免费视频播放器 | 在线观看舔阴道视频| 一区二区三区激情视频| 美女大奶头视频| 哪里可以看免费的av片| 国产成人影院久久av| 国产精品 欧美亚洲| 亚洲av五月六月丁香网| 欧美在线黄色| 亚洲精品中文字幕一二三四区| 精品熟女少妇八av免费久了| 久久久久久久久免费视频了| 亚洲人成网站在线播放欧美日韩| 久久精品夜夜夜夜夜久久蜜豆| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品| www日本在线高清视频| 欧美av亚洲av综合av国产av| 国产欧美日韩精品亚洲av| 18禁裸乳无遮挡免费网站照片| 在线播放国产精品三级| 成人国产综合亚洲| 啦啦啦免费观看视频1| 在线观看美女被高潮喷水网站 | 身体一侧抽搐| 国产黄片美女视频| 伊人久久大香线蕉亚洲五| 免费高清视频大片| 国产真实乱freesex| 一级毛片女人18水好多| 不卡一级毛片| 长腿黑丝高跟| 国产真实乱freesex| 窝窝影院91人妻| 波多野结衣高清无吗| 麻豆av在线久日| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 三级毛片av免费| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 国产成人系列免费观看| 99热6这里只有精品| 精品不卡国产一区二区三区| 国产成人精品久久二区二区91| 美女被艹到高潮喷水动态| 久久精品夜夜夜夜夜久久蜜豆| 久久久久国内视频| 亚洲人成网站高清观看| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 免费看十八禁软件| 最近最新中文字幕大全电影3| 亚洲精品在线美女| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 中亚洲国语对白在线视频| 在线国产一区二区在线| 十八禁网站免费在线| 99久久综合精品五月天人人| 亚洲精品一区av在线观看| 欧美乱妇无乱码| 成人国产综合亚洲| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 国产91精品成人一区二区三区| 久久久色成人| 黑人操中国人逼视频| 欧美又色又爽又黄视频| 国产精品精品国产色婷婷| 亚洲欧美精品综合久久99| 国产黄片美女视频| 18禁国产床啪视频网站| 国产真实乱freesex| 亚洲最大成人中文| 中文字幕熟女人妻在线| 免费一级毛片在线播放高清视频| 88av欧美| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 国产成人一区二区三区免费视频网站| 国产午夜精品论理片| av在线蜜桃| 久久精品国产综合久久久| 婷婷亚洲欧美| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| 色综合婷婷激情| avwww免费| 欧美日韩乱码在线| 老司机午夜福利在线观看视频| 91老司机精品| 欧美日韩国产亚洲二区| 久久精品人妻少妇| 久久精品aⅴ一区二区三区四区| 成人无遮挡网站| 99热精品在线国产| 男女午夜视频在线观看| 美女cb高潮喷水在线观看 | 亚洲国产看品久久| 亚洲欧美激情综合另类| 波多野结衣高清无吗| 久久久久国内视频| xxx96com| 国产精品一区二区精品视频观看| 国产伦精品一区二区三区四那| 真实男女啪啪啪动态图| 久久人人精品亚洲av| 麻豆av在线久日| 看黄色毛片网站| 99国产极品粉嫩在线观看| 舔av片在线| 久久热在线av| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 99国产精品99久久久久| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩一级在线毛片| 欧美最黄视频在线播放免费| 999久久久国产精品视频| 在线观看美女被高潮喷水网站 | 女同久久另类99精品国产91| 十八禁网站免费在线| 久久精品国产99精品国产亚洲性色| 婷婷亚洲欧美| 中文字幕人妻丝袜一区二区| 在线免费观看不下载黄p国产 | 18禁美女被吸乳视频| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3| 热99在线观看视频| 久久伊人香网站| 精华霜和精华液先用哪个| 桃色一区二区三区在线观看| 免费看a级黄色片| 国产成人aa在线观看| 黄色 视频免费看| 免费观看的影片在线观看| 又紧又爽又黄一区二区| 俺也久久电影网| 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 国产精品久久久久久久电影 | 18禁观看日本| 久久久久久大精品| 首页视频小说图片口味搜索| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 国产成人欧美在线观看| 午夜两性在线视频| 我要搜黄色片| 真实男女啪啪啪动态图| 黄片小视频在线播放| 国产av一区在线观看免费| 色噜噜av男人的天堂激情| www国产在线视频色| 午夜福利18| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 欧美丝袜亚洲另类 | 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久,| 成人一区二区视频在线观看| 国产一区二区在线av高清观看| 免费在线观看日本一区| 国产一区二区在线av高清观看| 免费观看精品视频网站| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 亚洲熟妇熟女久久| 波多野结衣巨乳人妻| 国产精品日韩av在线免费观看| 国产精品一区二区精品视频观看| 99久久无色码亚洲精品果冻| 欧美日韩综合久久久久久 | 亚洲av成人一区二区三| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 九九热线精品视视频播放| 亚洲中文日韩欧美视频| 久久中文字幕一级| 757午夜福利合集在线观看| 国产高清有码在线观看视频| 婷婷精品国产亚洲av| 免费人成视频x8x8入口观看| 在线a可以看的网站| 一边摸一边抽搐一进一小说| 欧美日韩综合久久久久久 | 亚洲色图av天堂| 91久久精品国产一区二区成人 | 久久久久久人人人人人| 中文字幕精品亚洲无线码一区| 日韩精品青青久久久久久| 久久这里只有精品19| 大型黄色视频在线免费观看| 久久久久性生活片| 亚洲自拍偷在线| 久久草成人影院| ponron亚洲| 免费搜索国产男女视频| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| 曰老女人黄片| 国产一区二区在线av高清观看| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 黄片大片在线免费观看| 日本熟妇午夜| 亚洲国产欧美人成| 国产精品永久免费网站| 在线视频色国产色| 欧美色欧美亚洲另类二区| 国产野战对白在线观看| 精品99又大又爽又粗少妇毛片 | 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆| 亚洲欧美精品综合久久99| 在线观看一区二区三区| 九色国产91popny在线| 亚洲熟妇中文字幕五十中出| 亚洲国产欧美网| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 中亚洲国语对白在线视频| 亚洲中文字幕日韩| 女警被强在线播放| 2021天堂中文幕一二区在线观| 桃色一区二区三区在线观看| 亚洲国产看品久久| 观看免费一级毛片| 国产亚洲欧美在线一区二区| 搞女人的毛片| 国内毛片毛片毛片毛片毛片| 一级毛片高清免费大全| 亚洲专区字幕在线| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区| 性欧美人与动物交配| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产日本99.免费观看| 身体一侧抽搐| 中国美女看黄片| 色老头精品视频在线观看| 成人特级av手机在线观看| 亚洲在线自拍视频| 90打野战视频偷拍视频| 亚洲专区字幕在线| 欧美xxxx黑人xx丫x性爽| 欧美日韩黄片免| 日韩有码中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 欧美日本视频| 久久亚洲真实| 身体一侧抽搐| 国产97色在线日韩免费| 日本精品一区二区三区蜜桃| 亚洲自拍偷在线| 熟女人妻精品中文字幕| 黄色成人免费大全| 91av网站免费观看| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 黑人欧美特级aaaaaa片| 国产一区在线观看成人免费| av片东京热男人的天堂| 国语自产精品视频在线第100页| 人妻夜夜爽99麻豆av| 久久精品91无色码中文字幕| 免费无遮挡裸体视频| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看| 女生性感内裤真人,穿戴方法视频| 久久人妻av系列| 久久久成人免费电影| 亚洲一区高清亚洲精品| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 亚洲欧美日韩卡通动漫| 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 色av中文字幕| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 欧美大码av| 午夜福利18| 女警被强在线播放| 又粗又爽又猛毛片免费看| 日韩有码中文字幕| 12—13女人毛片做爰片一| 国产淫片久久久久久久久 | 深夜精品福利| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 高潮久久久久久久久久久不卡| 亚洲国产欧洲综合997久久,| 亚洲第一电影网av| 国产精品久久久久久精品电影| 精品久久久久久成人av| 在线观看一区二区三区| 亚洲avbb在线观看| av欧美777| 男女之事视频高清在线观看| 亚洲av电影不卡..在线观看| 久久性视频一级片| 三级毛片av免费| 人妻夜夜爽99麻豆av| 又大又爽又粗| 手机成人av网站| 欧美激情在线99| 久久久久免费精品人妻一区二区| 免费高清视频大片| 欧美大码av| 日韩成人在线观看一区二区三区| 美女午夜性视频免费| 午夜激情福利司机影院| 成人av一区二区三区在线看| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲精品国产色婷小说| 国产99白浆流出| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 999精品在线视频| 久久久色成人| 国产精品综合久久久久久久免费| 国产成人一区二区三区免费视频网站| 网址你懂的国产日韩在线| 变态另类成人亚洲欧美熟女| 成人午夜高清在线视频| 日韩欧美在线乱码| 亚洲精品美女久久久久99蜜臀| 99热这里只有是精品50| 老汉色∧v一级毛片| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 精品国产三级普通话版| 美女扒开内裤让男人捅视频| www日本黄色视频网| 校园春色视频在线观看| 婷婷亚洲欧美| 日韩欧美精品v在线| 少妇的丰满在线观看| 男女做爰动态图高潮gif福利片| 99热这里只有精品一区 | 长腿黑丝高跟| 亚洲av片天天在线观看| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 听说在线观看完整版免费高清| 欧美在线一区亚洲| 搞女人的毛片| 18禁美女被吸乳视频| 色综合婷婷激情| 亚洲国产欧美人成| 精品国内亚洲2022精品成人| 欧美午夜高清在线| 国产一区二区三区在线臀色熟女| 国产精品电影一区二区三区| 亚洲国产欧美人成| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 淫妇啪啪啪对白视频| 久久久久久大精品| 超碰成人久久| 91久久精品国产一区二区成人 | 国产97色在线日韩免费| av天堂中文字幕网| 亚洲美女视频黄频| 国产av一区在线观看免费| 午夜a级毛片| 法律面前人人平等表现在哪些方面| 国产一区二区在线观看日韩 | 午夜两性在线视频| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 天天躁狠狠躁夜夜躁狠狠躁| 色尼玛亚洲综合影院| 长腿黑丝高跟| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| 天天一区二区日本电影三级| 国产精品久久久久久人妻精品电影| 日本成人三级电影网站| 一本一本综合久久| x7x7x7水蜜桃| 久久久久亚洲av毛片大全| 两人在一起打扑克的视频| 国产av在哪里看| 女人被狂操c到高潮| av国产免费在线观看| 美女 人体艺术 gogo| 高潮久久久久久久久久久不卡| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 久久香蕉国产精品| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 国产午夜精品论理片| 18禁美女被吸乳视频| 一个人看的www免费观看视频| 最近最新免费中文字幕在线| 亚洲精品在线美女| 国产成人av教育| 搡老岳熟女国产| 亚洲第一电影网av| 亚洲 欧美 日韩 在线 免费| 久久久精品欧美日韩精品| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 国产毛片a区久久久久| 日韩高清综合在线| 99久久久亚洲精品蜜臀av| 九九热线精品视视频播放| 精品99又大又爽又粗少妇毛片 | 伊人久久大香线蕉亚洲五| 国内精品久久久久久久电影|