• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of Hf–Sr–Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fusion in geological materials

    2018-06-27 10:07:56ZhianBaoChunleiZongLinruFangHonglinYuanKaiyunChenMengningDai
    Acta Geochimica 2018年2期

    Zhian Bao?Chunlei Zong?Linru Fang?Honglin Yuan?Kaiyun Chen?Mengning Dai

    1 Introduction

    Laser ablation multi-collector inductively coupled plasma mass spectrometry(LA-MC-ICP-MS)has been applied widely to analyze geological,environmental,material,and archaeological samples due to the technique’s rapid sample preparation process,in situ analysis capability,high spatial resolution,and rapid analysis time(Woodhead et al.2004;Iizuka and Hirata 2005;Yuan et al.2008;Huang et al.2015;Bao et al.2016a;Zhian et al.2016).However,unavoidable isobaric interference(e.g.,87Rb,144Sm,176Yb,and176Lu),molecular interference (e.g.,43Ca44Ca,42Ca44Ca,48Ca38Ar,130Ba14N,and130Ba16O)(Ramos et al.2004;Iizuka and Hirata 2005;Foster and Vance 2006;Muller and Anczkiewicz 2016),and low elemental concentrations mean LA-MC-ICP-MS data must be evaluated carefully to obtain accurate isotopic ratios.Thus,bulk digestion and ion-exchange chemistry are still required for accurate isotopic ratio analyses.The conventional bulk solution analysis can obtain accurate isotopic compositions even at low concentrations in solid,liquid,and gaseous samples.The complete recovery of Sr,Nd,and Hf from intrusive rocks with refractory minerals is a prerequisite for obtaining accurate isotopic compositions.A closed acid digestion bomb has been commonly used for routine isotopic ratio analysis because the boiling point of the reagents is increased by the pressure generated in the closed vessel.The increased temperature and pressure can significantly shorten sample decomposition time and allow the digestion of the refractory phases(Potts and Robinson 2003).In addition,the high-pressure PTFE bomb method has the advantage of a low procedural blank using ultrapure Hf/HNO3/HClO4.However,the disadvantages of bomb dissolution include the greater intensity of labor required,high cost of the bomb-jacket set,long reaction times(5–7 days)(Weis et al.2006;Yang et al.2011;Li et al.2014,2015),and increased danger due to the high pressure produced within the vessel.Another digestion method uses lithium metaborate or Na2O2flux to rapidly dissolve all the refractory minerals in rock powder.However,the threefold weight required of lithium metaborate can be troublesome due to contamination by Nd,Sr,and Hf,which inhibits accurate determination of isotopic composition.The procedural blanks are relatively higher for Nd[370 pg(Kleinhanns et al.2002),1500 pg(Le Fèvre and Pin 2005),~100 pg(large crucible)(Ulfbeck et al.2003),1–3 ng(Tomascak et al.1996)]and Hf[330 pg(Kleinhanns et al.2002),~140 pg(large crucible)(Ulfbeck et al.2003),100±20 pg(large crucible)(Bizzarro et al.2003)],thereby making this method inappropriate for geological samples with low concentrations(<0.5 μg·g-1).Considering the potential blank effect from flux reagents and the long reaction time of bomb dissolution, flux-free fusion combined with rapid acid dissolution is required for the accurate determination of Hf–Sr–Nd isotopic ratios.

    Recently,a new method was developed that combines the flux-free fusion technique with rapid Hf/HNO3/HClO4digestion using a high-temperature furnace and a boron nitride(BN)crucible for bulk trace element analyses in silicate rocks by ICP-MS(Bao et al.2016b).The main advantages of the digestion method using a flux-free fusion technique are reduced digestion time,and the lack of requirement for lithium metaborate and high-pressure digestion bomb.Some small undissolved zircon grains still remain in the fused glass,but the Zr and Hf concentrations are identical to the reference values after rapid acid dissolution,thereby guaranteeing that accurate Hf–Sr–Nd isotopic compositions can be determined.

    The aim of this study was to accurately determine the Hf–Sr–Nd isotopic compositions in the same rock powder aliquots in the form of a pure Hf–Sr–Nd solution,thereby eliminating the use of lithium metaborate and a highpressure digestion bomb.Rapid dissolution(6 h)by Hf/HNO3/HClO4in a closed screw-top Savillex vial on a hotplate was used to enhance efficiency.We also evaluated the effects of the fusion temperature and fusion time on the isotopic ratios.The flux-free fusion and closed vessel rapid Hf/HNO3/HClO4digestion method was also used successfully to determine Hf–Sr–Nd isotopes in a series of international certified reference materials(CRMs),including those with refractory accessory minerals.

    2 Experimental methods

    2.1 Chemicals and other materials

    Ultrapure water with a resistivity of 18.2 MΩ·cm-1was obtained from a Milli-Q water purification system(Millipore,Bedford,MA,USA).Commercially available hydrofluoric acid(Hf,40%v/v,GR grade),hydrochloric acid(HCl,38%v/v,GR grade),nitric acid(HNO3,68%v/v,GR grade),and perchloric acid(HClO4,70%v/v,GR grade)were further distilled in a sub-boiling distillation system.The Savillex vials were cleaned in hot(130°C)GR-grade HNO3for 2 days and GR-grade HCl for 2 days,followed by 2 days in hot high-purity HCl and 2 days in hot high-purity HNO3,2 days in hot ultrapure water,and a rinse with cold ultrapure water.A BN vessel was designed to melt 600 mg rock powder at high temperature and it then be rapidly quenched in ultrapure water.The BN crucibles were heated at 500°C for 2 min to remove all volatile components before use.Each crucible(900 mm3)was placed in a high-temperature furnace and heated to a stable temperature(measured with a thermocouple)using high-resistance silicon molybdenum bars(purity=99.9%,melting point=2000°C)underan argon gas flow(1.0 L·min-1)to maintain an inert atmosphere.Further details of the BN crucibles and high-temperature furnace can be found in previous studies(Bao et al.2016b;Zhian et al.2016).

    Experiments were performed using five extrusive reference materials[BCR-2,BHVO-2,GSR-3(basalt powder),AGV-2(andesite powder),and RGM-2(rhyolite powder)], five intrusive rocks[QLO-1(quartz latite powder),G-2,GSR-1(granite),GSP-2(granodiorite),and W-2(diabase)],which were obtained from the United States Geological Survey(USGS)and Chinese National Research Center for Certified Reference Materials.The CRMs had a wide range of SiO2content—from 44.6%to 73.4%m/m.Previously published values of CRMs’Hf–Sr–Nd isotopic compositions were taken from the GeoReM database(Jochum et al.2005).All CRMs were prepared directly from 200-mesh powders dried at 105°C in an oven for 1 h prior to melting.

    Three international standard solutions—NIST NBS-987,JNDi-1,and JMC 475 Hf—were used to monitor the conditions during an analytical session.Conventional cation-exchange resin(AG50W-X8,200–400 mesh)was purchased from BioRad(Richmond,CA,USA).Prepacked extraction chromatography materials(Sr Spec resin and Ln Spec resin,100–150 mesh,1.5 mL)were purchased from Eichrom Industries(Darien,IL,USA).

    2.2 Sample digestion

    In this study,we aimed to obtain accurate isotopic compositions for the CRMs.Therefore,we describe our fusion process in further detail to provide the reader with sufficient information to evaluate and apply our method(Bao et al.2016b).We fused felsic intrusive rock powders with refractory accessory minerals at 1600°C for 1 min and extrusive rocks at 1400°C for 1 min to obtain fused glasses.All of the chemical preparations were conducted on special class-100 work benches inside a class-1000 clean laboratory.The procedures used for fused glass decomposition in this study were as follows.(1)Approximately 100 mg of fusion fragments was weighed into a 15-mL screw-top Savillexvial.(2)Hf/HNO3/HClO4(1.5 mL/1.5 mL/10 μL)were added to the Savillex vial so the fused glass fragments were completely soaked with acid.(3)The vial was tightly capped and then vibrated ultrasonically for 30 min.(4)The vial was opened and the sample dried on a plate at 140°C by evaporating to incipient dryness.(5)Hf/HNO3(1.5 mL each)were added to the dried sample and the vial screwed and left on a plate at 150°C for 6 h.(6)The vial was opened and evaporated to dryness at 150°C.(7)Next,2 mL HNO3was added to the sample and the residue was converted to the HNO3form,before drying at 150°C.(8)Subsequently,2 mL HCl was added to the dried sample to convert to HCl form and it was dried at 150°C.(9)Finally,the solution collected after digestion with 2 mL 1.7-M HCl and centrifuging for 10 min was prepared for Rb–Sr,Sm–Nd,and Lu–Hf separation.

    2.3 Hf,Sr,and Nd separation

    Accurate determination of the Hf–Sr–Nd isotopic ratios required high purity samples in order to avoid polyatomic and isobaric interference.Thus,traditional column chromatography was used to separate high purity Hf–Sr–Nd solutions(Fig.1)and to evaluate the influence of the hightemperature fusion procedure.Hf–Sr–Nd were all purified from the same sample solution.The procedures for Hf–Sr–Nd separation were described by Yang et al.(2010),Zong et al.(2012)and Zong(2012).The solution collected after digestion and centrifugation was loaded into a quartz column packed with BioRad AG50W-X8 resin(200–400 mesh),which was pre-conditioned with 11 mL 6-M HCl and 12 mL 1.7-M HCl.Hf was collected with 2.2 mL 1.7-M HCl and prepared for further Ti and Hf purification using Ln Spec resin.Next,10 mL 1.7-M HCl was used to elute Rb.Sr was then collected with 6 mL 3-M HCl,and Y was eluted with 4 mL 3-M HCl.The rare earth elements(REEs)Sm and Nd were collected with 10 mL 6-M HCl and it prepared for further purification using Ln Spec resin.The solution collected containing Ti and Hf was loaded into Ln Spec resin(100–150 mesh,1.5 mL),where the color of the Ln Spec resin changed from orange-red to white,thereby indicating that all of the titanium was separated from Hf using a mixture of 4 M HCl+0.5%H2O2.Finally,Hf was extracted from the column with 3 mL 2-M Hf,and collected in an 8-mL PFA Savillex Vial,before gently evaporating to dryness.This fraction was dissolved in 10 μL concentrated HF,diluted to 5 mL with 2%HNO3,and used for MC-ICP-MS analysis.In order to minimize the isobaric interference of87Rb on87Sr,especially for felsic rocks with high Rb concentrations,the solution collected containing Sr and Rb was gently evaporated to dryness and diluted with 5 mL 8-M HNO3before purification by the third column.The third column packed with Sr Spec resin was pre-conditioned with 10 mL 8-M HNO3before loading the separated solution.Next,20 mL 8-M HNO3was used to wash the resin to remove Rb interference and 10 mL 0.05-M HNO3was used to extract the purified Sr solution.In order to remove the isobaric interference effect due to144Sm on144Nd,the collected REE solution was gently evaporated to dryness and diluted with 0.5 mL 0.25-M HCl before purification by the fourth column.The fourth column packed with Ln Spec resin(100–150 mesh)was pre-conditioned with 10 mL citric acid,10 mL 6-M HCl,10 mL high purity Milli-Q water,and 6 mL 0.25-M HCl,before loading the REE solution.Subsequently,4 mL 0.25-M HCl was used to wash the resin to remove La,Ce,and Pr,and 10 mL 0.25-M HCl was then used to elute the purified Nd solution.Next,10 mL 6-M HCl was used to elute Sm from the column and 10 mL 0.25-M HCl was used to re-equilibrate the Ln Spec resin column.The pure Nd solution collected was evaporated to dryness,dissolved into 2 mL 2%HNO3,and used for Nd analysis.

    Fig.1 Hf–Sr–Nd separation scheme used in this study

    2.4 Mass spectrometry analytical procedure

    Isotopic composition measurements were performed using a Nu II MC-ICP-MS instrument(Nu Instrument,Wrexham,UK)at the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an.The typical instrument parameters and configurations of Faraday cups are summarized in Tables 1 and 2.The purified Sr and Nd solution was taken up with 2 mL 2%HNO3,while the purified Hf solution was adopted with trace ultrapure Hf.The solution was self-aspirated at an uptake rate of 100 μL min-1through a standard PFA nebulizer and desolvated with an AridusTMsystem.Solution standards comprising NIST NBS-987 for Sr,JMC 475 for Hf,and JNDi-1 for Nd were measured during the same MC-ICP-MS runs as the samples.The data were corrected for mass fractionation by normalizing to86Sr/88Sr=0.1194,146Nd/144Nd=0.7219,and179Hf/177Hf=0.7325,according to an exponential law.Hf–Sr–Nd isotope analyses comprised two blocks of 20 cycles per block with an integration time of 10 s per cycle.The wash-out time(180 s)and time for sample transfer(120 s)resulted in an average instrument time of 12 min per sample.The87Sr signal intensity was corrected for potential interference caused by the remaining isobaric overlap effect of87Rb on87Sr by using an87Rb/85Rb value of 0.3857.After column chemistry,the85Rb/88Sr ratios obtained were<2× 10-5for the analysis of fused glasses.Finally,the87Sr/86Sr ratios were determined accurately after correction and they were normalized to SRM 98787Sr/86Sr=0.710248(Howarth and McArthur 1997)for mass fractionation using the standard-sample-standard bracketing(SSB)method.Most of the Sr isotopic data were obtained at an internal precision of≤0.000010(2SE).The144Nd signal intensity was corrected for potential interference caused by the remaining isobaric overlap effect of144Sm on144Nd.After column chemistry,the144Sm/144Nd ratios obtained were<2.5× 10-5for the analysis of fused glasses.Finally,the143Nd/144Nd ratios were determined accurately after correction and they were normalized to JNDi-1143Nd/144Nd=0.512115(Tanaka et al.2000)for mass fractionation using the SSB method.Most of the Nd isotopic data were obtained at an internal precision of≤0.000006(2SE).In addition,the stable145Nd/144Nd ratio(0.348400±13,n=80)obtained after isobaric interference correction agreed with the recommended value of 0.348415 obtained by TIMS(Wasserburg et al.1981),which confirmed the feasibility of the data.173Yb and175Lu were monitored to evaluate isobaric interference of176Lu and176Yb on176Hf.The effects of these types of interference were corrected on-line using the following values for the stable ratios:176Yb/173Yb=0.79323 and176Lu/175Lu=0.026528.The176Hf/177Hf isotopic ratiosdid not differ significantly before or after interference correction because of the low Lu/Hf and Yb/Hf ratios(≤1× 10-5)after column chemistry.In this study,JMC 475 yielded a value of 0.282172±18(2SD,n=70),which agreed well with the recommended value of 0.282163(Blichert-Toft et al.1997).Therefore,all the176Hf/177Hf ratios measured for the CRMs were normalized to the recommended value of 0.282163.In addition,31 analyses of Alfa Hfgave a176Hf/177Hfvalue of 0.282193±11(2SD),which was identical to the values of 0.282192± 6(2σ,n=12)determined by Lu et al.(2007)and 0.282189±19(2SD)by Yang et al.(2011),within 2 s error.The87Sr/86Sr,143Nd/144Nd,and176Hf/177Hf ratios measured for the NBS-987,JNDi-1,and JMC 475 reference solutions during the same analytical sessions as the purified sample solutions were 0.710254±25(2SD,n=60),0.512107±20(2SD,n=56),and 0.282172±18(2SD,n=56),respectively.These isotopic ratios were identical to the previously determined values of 0.710248(Howarth and McArthur 1997)(SRM 987),0.512115±7(Tanaka et al.2000)(JNDI),and 0.282163±9(Blichert-Toft et al.1997)(JMC 475),respectively,within 2 s error.

    Table 1 Typical instrument operating conditions and data acquisition parameters for Hf–Sr–Nd measurements

    Table 2 Faraday cup configurations for Hf–Sr–Nd isotopic measurements

    3 Results and discussion

    3.1 Effects of fusion temperature and time

    Fig.2 Individual87Sr/86Sr,143Nd/144Nd,and176Hf/177Hf analyses for GSP-2 fused at different conditions and analyzed by MC-ICP-MS.For comparison,at the far right side of each figure,the points in white represent reference values obtained by Weis et al.(2006)and the gray area represents two standard deviations for the replicate analyses obtained using MC-ICP-MS.For individual analyses,error bars correspond to the two-sigma error based on the measured isotopic ratio

    The granodiorite reference material GSP-2 contained many refractory minerals(e.g.,zircon,rutile,and monazite)and it was used to ascertain the effects of fusion temperature and time on isotopic compositions.An internal normalization approach and the SSB method were used to correct for mass fractionation during analytical sessions.The Hf–Sr–Nd isotopic results obtained for GSP-2 using different fusion conditions are shown in Fig.2.The176Hf/177Hf value ranged from 0.282019 to 0.281978 when the fusion temperature was 1400°C,but it decreased to 0.281959 at 1500°C for 1 min,and then agreed with the reference value of 0.281949±8(Weis et al.2007)when the temperature was 1500 °C for 5 min or 1600 °C.The Hf isotope compositions depended on the recovery of Hf,especially in intrusive rocks with zircon,and the concentration of Hf agreed well with the reference values at 1500 °C for 10 min or 1600 °C(Bao et al.2016b),so fusion at 1500 °C for 10 min or 1600 °C was used to obtain accurate Hf isotopic compositions.The results in Fig.2 indicate that the87Sr/86Sr values obtained after 5 min at 1500 °C or 1600 °C were identical to the results recommended by Weis et al.(2006),within 2 s error.The other87Sr/86Sr values ranged from 0.764755 to 0.765052—lower than the reference,thereby indicating that accessory minerals containing Sr might not have been dissolved in the final solution.The Nd isotopic compositions measured by MC-ICP-MS ranged from 0.511367 to 0.511385,within the range of MC-ICP-MS values(0.511374±11,n=14)obtained by Weis et al.(2006).Our143Nd/144Nd results support the recently published conclusion of Bao et al.(2016b)that Nd can reach 100%–110%recovery by eliminating consideration of fusion temperature and time.Based on the full recovery of trace elements,the Hf–Sr–Nd isotopic compositions obtained by fusion at 1600°C for 1 min agreed with the reference values,where the short heating time suppressed evaporation of the volatile elements and reduced the risk of contamination from the environment.Thus,a high temperature and minimum heating time(1600°C for 1 min)are recommended for the fusion of intrusive rock samples.In addition,1400°C for 1 min is recommended for extrusive rock samples without refractory accessory minerals based on this study.

    3.2 Validation of the rapid acid digestion method and final results

    Ten CRMs with a wide range of matrix compositions(from mafic to felsic)were selected to assess the analytical reproducibility and feasibility of our rapid acid digestion method after high-temperature fusion.We used the Hf–Sr–Nd isotopic ratios obtained by high-pressure PTFE bomb(190°C for 120 h)as reference values for GSR-1,RGM-2,and QLO-1.Approximately 100 mg of fused glass was rapidly digested(6 h)by Hf/HNO3/HClO4in a closed screw-top Savillex vial on a hotplate without requiring high-pressure PTFE bomb.Five batches of 100-mg fused fragments were separated for Hf–Sr–Nd isotope analysis using the chemical separation method described above.Some CRMs digested with a high-pressure PTFE bomb for Hf–Sr–Nd were measured in the same MC-ICP-MS runs as the samples(Table 3).The Hf–Sr–Nd isotopic compositions obtained using the rapid acid dissolution methods are shown in Table 4.The Hf–Sr–Nd isotopic ratios obtained for GSP-2,AGV-2,and BHVO-2 using a high-pressure PTFE bomb agree with previously published values within 2 s uncertainty,verifying the quality of our Hf–Sr–Nd isotopic compositions using high-pressure PTFE bomb.

    As shown in Table 4,the176Hf/177Hf ratios obtained for the CRMs had an internal precision better than 0.000009(2SE).The two standard deviation values were all below 18 ppm for all the CRMs.As shown in Fig.3 and Table 4,the average176Hf/177Hf values obtained for GSP-2,G-2,QLO-1,and GSR-1 agree well with previously published data,indicating that the resistant minerals(e.g.,zircon and rutile)containing hafnium were completely decomposed by Savillex vial digestion.Compared with the conventional high-pressure PTFE bomb digestion method for 4–7 days,flux-free fusion combined with rapid acid dissolution in a capped Savillex vial on a hotplate effectively dissolved diverse rocks and was 16–28 times faster.The87Sr/86Sr and143Nd/144Nd ratios for all the analyzed CRMs were obtained with an internal precision greater than 0.000014(2SE).Table 4 and Fig.3 show that the87Sr/86Sr and143Nd/144Nd values obtained in this study agree well with previously published values acquired by TIMS or MC-ICPMS(high-pressure PTFE bomb method).The87Sr/86Sr and143Nd/144Nd values also verified the feasibility of the new method developed in this study.As shown in Table 4, five replicate measurements of the 10 CRMs yielded external reproducibility of87Sr/86Sr,143Nd/144Nd,and176Hf/177Hf better than ±0.000030(2SD),±0.000030(2SD),and±0.000018(2SD),respectively,excluding the87Sr/86Sr values for GSP-2 and GSR-1(2SD<0.000071).In fact,the external reproducibility of the87Sr/86Sr values obtained by the high-pressure PTFE bomb method were 0.000060 for GSP-2 and GSR-1,thereby indicating that the Sr isotopes were heterogeneous in some intrusive felsic rocks in the 100-mg size range(Raczek et al.2003;Weis et al.2006).In general,the reproducibility and precision of the87Sr/86Sr,143Nd/144Nd,and176Hf/177Hf values obtained by the proposed method in this study were satisfactory and completely suitable for geochemical and petrological studies.In addition,the Hf–Sr–Nd isotopic values obtained for the 10 CRMs verified the feasibility and usefulness of the flux-free fusion method combined with rapid acid digestion.

    3.3 Comparison with the high-pressure PTFE bomb and flux fusion methods

    A low total procedural blank level is essential for the accurate determination of Hf–Sr–Nd isotopic ratios.The typical total procedural blanks of Hf–Sr–Nd,including sample digestion,column chemistry,and mass spectrometric measurements,were approximately 150 pg for Sr,75 pg for Nd,and 70 pg for Hf,which were identical to previous values.For the Hf–Sr–Nd analyses,the blanks were negligible relative to the amount of analytes contained in 100 mg of silicate rocks,and no correction of the measured isotopic ratios was required.Details of the Hf–Sr–Nd procedural blanks obtained with different methods are shown in Table 5.The procedural blanks obtained for Hf–Sr–Nd in this study were identical using the high-pressure PTFE bomb method and with capped Teflon Savillex vials on a hotplate.The procedural blank for Nd was approximately 75 pg in this study,which was lower than that obtained by flux fusion,i.e.,100 pg to 1.5 ng.The higher Nd procedural blank was caused by the fluxing agent(Le Fèvre and Pin 2005).The Hf blanks were about 70 pg using both acid-based digestion and flux-free fusion in this study,which agreed well with the high purity flux fusion method(57 pg),but they were lower than the blanks obtained previously by flux fusion without purification(100–330 pg).Le Fèvre and Pin(2001) indicated that the REE concentrations in commercially available fluxes are variable and usually high,so a high purity flux should be used to obtain accurate isotopic ratios.Based on the procedural blanks for Nd and Hf,the flux-free fusion method is recommended for determining Nd–Hf isotopic ratios because the high procedural blank(>300 pg)makes this procedure inappropriate for samples with low concentrations(Nd,Hf< 0.5 μg·g-1).

    Table 3 Sr,Nd,and Hf isotopic ratios determined for the CRMs using the high pressure PTFE bomb method and MC-ICP-MS

    ?

    ?

    Fig.3 Comparisons of the Hf–Sr–Nd isotopic ratios obtained using the new method developed in this study and reference values

    Acid-based digestion obtained low procedural blanks for the Hf–Sr–Nd isotopic ratios,but 4–7 days with a high pressure PTFE bomb should be used to ensure complete digestion,especially for felsic rocks containing many refractory phases.The digestion time(6 h)was shorter by 16–28 times in Savillex vials without a high-pressure PTFE bomb after flux-free fusion,compared to the traditional high-pressure PTFE bomb.The technique developed in this study for flux-free fusion and the rapid acid digestion of samples before Hf–Sr–Nd isotopic analysis facilitates rapid sample digestion with low procedural blanks.Moreover,this technique is applicable to a wide range of samplematrices and does not require the use of a high-pressure PFTE bomb.

    Table 5 Sr–Nd–Hf procedural blank values and digestion times reported for acid-based digestion and flux fusion compared with the results obtained in this study

    4 Conclusion

    In this study,we developed a rapid acid digestion method in Savillex vials without a high-pressure PTFE bomb after flux-free fusion to measure the87Sr/86Sr,143Nd/144Nd,and176Hf/177Hf isotopic ratios in the same digested samples.The flux-free fusion method avoided using lithium metaborate or Na2O2fluxes and it reduced the contamination for Nd,Sr,and Hf,thereby yielding lower procedural blanks compared with the flux fusion method.Rapid acid digestion in capped Savillex vials reduced the digestion time and eliminated the need for a high-pressure digestion bomb.Therefore,rapid acid digestion after flux-free fusion had significant advantages compared with existing methods in terms of simplicity,digestion efficiency,and total procedural blank,especially for intrusive felsic rocks.Finally,replicate analyses of international CRMs indicated thatthe143Nd/144Nd,176Hf/177Hf,and87Sr/86Sr isotopic ratios obtained were identical to previously published values acquired using MC-ICP-MS or TIMS,which also verified the feasibility of the new method developed in this study.Our technique for flux-free fusion and the rapid acid digestion of samples is suitable for the determination of trace elements in rock samples.

    AcknowledgementsWe would like to thank the editors and anonymous reviewers who helped to improve this manuscript.This study was supported by the National Natural Science Foundation of China(Grant Nos.41421002,41427804,and 41373004)and the MOST Research Foundation from the State Key Laboratory of Continental Dynamics(Grant Nos.BJ08132-1,207010021,and 201210004).

    Bao Z,Yuan W,Yuan H,Liu X,Chen K,Zong C(2016a)Nonmatrix-matched determination of lead isotope ratios in ancient bronze artifacts by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry.Int J Mass Spectrom 402:12–19

    Bao Z,Zhang H,Yuan H,Liu Y,Chen K,Zong C(2016b)Flux-free fusion technique using boron nitride vessel and rapid acid digestion for trace elements determination by ICP-MS.J Anal At Spectrom 31(11):2261–2271

    Bizzarro M,Baker JA,Ulfbeck D(2003)A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS.Geostand Newsl 27(2):133–145

    Blichert-Toft J,Chauvel C,Albarède F(1997)Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS.Contrib Miner Petrol 127(3):248–260

    Carpentier M,Weis D,Chauvel C(2014)Fractionation of Sr and Hf isotopes by mineral sorting in Cascadia Basin terrigenous sediments.Chem Geol 382:67–82

    Chauvel C,Bureau S,Poggi C(2011)Comprehensive chemical and isotopic analyses of basalt and sediment reference materials.Geost and Geoanal Res 35(1):125–143

    Chen JY,Yang JH,Zhang JH,Sun JF,Wilde SA(2013)Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China:zircon U–Pb age and Sr–Nd–Hf–O isotopic evidence.Lithos 162–163(2):140–156

    Cheng T,Nebel O,Sossi P,Chen F(2015)Assessment of hafnium and iron isotope compositions of Chinese national igneous rock standard materials GSR-1(granite),GSR-2(andesite),and GSR-3(basalt).Int J Mass Spectrom 386(1):61–66

    Chu NC,Taylor RN,Chavagnac V,Nesbitt RW,Boella RM,Milton JA,German CR,Bayon G,Burton K(2002)Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections.J Anal At Spectrom 17(12):1567–1574

    Chu Z,Chen F,Yang Y,Guo J(2009)Precise determination of Sm,Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry.J Anal At Spectrom 24(11):1534–1544

    Connelly JN,Ulfbeck DG,Thrane K,Bizzarro M,Housh T(2006)A method for purifying Lu and Hf for analyses by MC-ICP-MS using TODGA resin.Chem Geol 233(1):126–136

    Foster GL,Vance D(2006)In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS.J Anal At Spectrom 21(3):288–296

    Fourny A,Weis D,Scoates JS(2016)Comprehensive Pb–Sr–Nd–Hf isotopic,trace element,and mineralogical characterization of mafic to ultramafic rock reference materials.Geochem Geophys Geosyst 17(3):739–773

    Howarth RJ,McArthur JM(1997)Statistics for strontium isotope stratigraphy:a robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma,with look-up table for derivation of numeric age.J Geol 105(4):441–456

    Huang C,Yang YH,Yang JH,Xie LW(2015)In situ simultaneous measurement of Rb–Sr/Sm–Nd or Sm–Nd/Lu–Hf isotopes in natural minerals using laser ablation multi-collector ICP-MS.J Anal At Spectrom 30(4):994–1000

    Iizuka T,Hirata T(2005)Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique.Chem Geol 220(1–2):121–137

    Jochum KP,Nohl U,Herwig K,Lammel E,Stoll B,Hofmann AW(2005)GeoReM:a new geochemical database for reference materialsand isotopic standards.Geostand Geoanal Res 29(3):333–338

    Kleinhanns IC,Kreissig K,Kamber BS,Meisel T,N?gler TF,Kramers JD(2002)combined chemical separation of Lu,Hf,Sm,Nd,and REEs from a single rock digest:precise and accurate isotope determinations of Lu-Hf and Sm-Nd using multicollector-ICPMS.Anal Chem 74(1):67–73

    Le Fèvre B,Pin C(2001)An extraction chromatography method for Hf separation prior to isotopic analysis using multiple collection ICP-mass spectrometry.Anal Chem 73(11):2453–2460

    Le Fèvre B,Pin C(2005)A straightforward separation scheme for concomitant Lu–Hf and Sm–Nd isotope ratio and isotope dilution analysis.Anal Chim Acta 543(1–2):209–221

    Li CF,Li XH,Li QL,Guo JH,Li XH(2011)Directly determining143Nd/144Nd isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm-Nd.J Anal At Spectrom 26(10):2012–2022

    Li CF,Li XH,Li QL,Guo JH,Li XH,Yang YH(2012)Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme.Anal Chim Acta 727(10):54–60

    Li CF,Guo JH,Yang YH,Chu ZY,Wang XC(2014)Single-step separation scheme and high-precision isotopic ratios analysis of Sr–Nd–Hf in silicate materials.J Anal AtSpectrom 29(8):1467–1476

    Li CF,Wang XC,Li YL,Chu ZY,Guo JH,Li XH(2015)Ce-Nd separation by solid-phase micro-extraction and its application to high-precision142Nd/144Nd measurements using TIMS in geological materials.J Anal At Spectrom 30(4):895–902

    Li CF,Wang XC,Guo JH,Chu ZY,Feng LJ(2016)Rapid separation scheme of Sr,Nd,Pb,and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. J Anal At Spectrom 31(5):1150–1159

    Lu Y,Makishima A,Nakamura E(2007)Purification of Hf in silicate materials using extraction chromatographic resin,and its application to precise determination of176Hf/177Hf by MC-ICP-MS with179Hf spike.J Anal At Spectrom 22(1):69–76

    Mahlen NJ,Beard BL,Johnson CM,Lapen TJ(2013)An investigation of dissolution methods for Lu-Hf and Sm-Nd isotope studies in zircon-and garnet-bearing whole-rock samples.Geochem Geophys Geosyst 9(1):690–701

    Muller W,Anczkiewicz R(2016)Accuracy of laser-ablation(LA)-MC-ICPMS Sr isotope analysis of(bio)apatite—a problem reassessed.J Anal At Spectrom 31(1):259–269

    Nebel O,Morel MLA,Vroon PZ(2009)Isotope dilution determinations of Lu,Hf,Zr,Ta and W,and Hf isotope compositions of NIST SRM 610 and 612 glass wafers.Geostand Geoanal Res 33(4):487–499

    Potts PJ,Robinson P(2003)Sample preparation of geological samples, soils and sediments. Compr Anal Chem 41(03):723–763

    Raczek I,Jochum KP,Hofmann AW(2003)Neodymium and strontium isotope data for USGS reference materials BCR-1,BCR-2,BHVO-1,BHVO-2,AGV-1,AGV-2,GSP-1,GSP-2 and eight MPI-DING reference glasses. Geostand Newsl 27(2):173–179

    Ramos FC,Wolff JA,Tollstrup DL(2004)Measuring87Sr/86Sr variations in minerals and groundmass from basalts using LAMC-ICPMS.Chem Geol 211(1–2):135–158

    Tanaka T,Togashi S,Kamioka H,Amakawa H,Kagami H,Hamamoto T,Yuhara M,Orihashi Y,Yoneda S,Shimizu H,Kunimaru T,Takahashi K,Yanagi T,Nakano T,Fujimaki H,Shinjo R,Asahara Y,Tanimizu M,Dragusanu C(2000)JNdi-1:a neodymium isotopic reference in consistency with LaJolla neodymium.Chem Geol 168(3–4):279–281

    Tomascak BP,Krogstad JE,Walker JR(1996)Nature of the crust in Maine,USA:evidence from the Sebago batholith.Contrib Miner Petrol 125(1):45–59

    Ulfbeck D,Baker J,Waight T,Krogstad E(2003)Rapid sample digestion by fusion and chemical separation of Hf for isotopic analysis by MC-ICPMS.Talanta 59(2):365–373

    Wasserburg GJ,Jacobsen SB,DePaolo DJ,McCulloch MT,Wen T(1981)Precise determination of SmNd ratios,Sm and Nd isotopic abundances in standard solutions.Geochim Cosmochim Acta 45(12):2311–2323

    Weis D,Kieffer B,Maerschalk C,Barling J,Jong J,Williams GA,Hanano D,Pretorius W,Mattielli N,Scoates JS,Goolaerts A,Friedman RM,Mahoney JB(2006)High-precision isotopic characterization of USGS reference materials by TIMS and MCICP-MS.Geochem Geophys Geosyst 7(8):139–149

    Weis D,Kieffer B,Hanano D,Nobre Silva I,Barling J,Pretorius W,Maerschalk C,Mattielli N(2007)Hf isotope compositions of U.S.Geological Survey reference materials.Geochem Geophys Geosyst 8(6):122–125

    Woodhead J,Hergt J,Shelley M,Eggins S,Kemp R(2004)Zircon Hf-isotope analysis with an excimer laser,depth profiling,ablation of complex geometries,and concomitant age estimation.Chem Geol 209(1–2):121–135

    Yang YH,Zhang HF,Chu ZY,Xie LW,Wu FY(2010)Combined chemical separation of Lu,Hf,Rb,Sr,Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf,Rb–Sr and Sm–Nd isotope systems using multi-collector ICP-MS and TIMS.Int J Mass Spectrom 290(2–3):120–126

    Yang YH,Wu FY,Wilde SA,Xie LW(2011)A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards.Int J Mass Spectrom 299(1):47–52

    Yang YH,Wu FY,Liu ZC,Chu ZY,Xie LW,Yang JH(2012)Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Srspecific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement.J Anal At Spectrom 27(3):516–522

    Yang YH,Wu FY,Xie LW,Chu ZY,Yang JH(2014)Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry.Spectrochim Acta,Part B 97(7):118–123

    Yuan HL,Gao S,Dai MN,Zong CL,Günther D,Fontaine GH,Liu XM,Diwu CR(2008)Simultaneous determinations of U–Pb age,Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS.Chem Geol 247(1–2):100–118

    Zhian B,Honglin Y,Chunlei Z,Ye L,Kaiyun C,Yulin Z(2016)Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fsLA-(MC)-ICP-MS.J Anal At Spectrom 31(4):1012–1022

    Zong C(2012)Chemical separation of Pb,Sr,Nd,Hf isotopes from a single rock dissolution and its geological application].Northwest University,Xi’an(in Chinese)

    Zong C,Yuan H,Dai M(2012)A feasibility study on chemical separation of Pb,Sr and Nd from the same single dissolution of geological sample.Rock Miner Anal 31(6):945–949(in Chinese with English abstract)

    国产精品免费一区二区三区在线| 国产高清三级在线| 国产亚洲精品综合一区在线观看| 精品国产亚洲在线| 久久亚洲精品不卡| 国产精品女同一区二区软件 | 欧美在线一区亚洲| 国产97色在线日韩免费| 亚洲国产欧美网| 两个人的视频大全免费| 免费电影在线观看免费观看| 欧美成人a在线观看| 亚洲精品456在线播放app | 国产色爽女视频免费观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线在线| 久久精品影院6| 国产亚洲av嫩草精品影院| 99久久综合精品五月天人人| 国产午夜精品论理片| 男人舔奶头视频| 变态另类丝袜制服| 黄片大片在线免费观看| 午夜福利成人在线免费观看| 免费看光身美女| 国产亚洲欧美98| 亚洲av中文字字幕乱码综合| av在线蜜桃| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| 亚洲avbb在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜影院日韩av| 露出奶头的视频| 可以在线观看的亚洲视频| 国产色婷婷99| 欧美最新免费一区二区三区 | 五月玫瑰六月丁香| 男插女下体视频免费在线播放| 丰满人妻熟妇乱又伦精品不卡| 网址你懂的国产日韩在线| 欧美av亚洲av综合av国产av| 国产亚洲欧美在线一区二区| 国产真实乱freesex| 亚洲欧美日韩高清在线视频| 午夜福利在线观看免费完整高清在 | 国内揄拍国产精品人妻在线| 成人午夜高清在线视频| 亚洲精品456在线播放app | 亚洲av中文字字幕乱码综合| 中文字幕av成人在线电影| 国产av不卡久久| 最近在线观看免费完整版| 国产高清三级在线| 亚洲精品在线美女| 国产精品免费一区二区三区在线| 免费看十八禁软件| 欧美国产日韩亚洲一区| 国产精品99久久99久久久不卡| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 亚洲精品456在线播放app | 99久久精品一区二区三区| 国产99白浆流出| 午夜免费观看网址| 天天躁日日操中文字幕| 熟女少妇亚洲综合色aaa.| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻,人人澡人人爽秒播| 久久精品综合一区二区三区| 麻豆成人午夜福利视频| 成人欧美大片| 大型黄色视频在线免费观看| a级毛片a级免费在线| 无人区码免费观看不卡| 在线国产一区二区在线| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 午夜激情欧美在线| 色综合婷婷激情| 午夜福利在线在线| 亚洲av一区综合| 亚洲精品456在线播放app | 国产亚洲精品综合一区在线观看| 日本五十路高清| 亚洲性夜色夜夜综合| 非洲黑人性xxxx精品又粗又长| 一区二区三区国产精品乱码| 亚洲av成人不卡在线观看播放网| 舔av片在线| 日本黄色片子视频| 国产熟女xx| 搡老岳熟女国产| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 在线a可以看的网站| 亚洲,欧美精品.| 久久午夜亚洲精品久久| 窝窝影院91人妻| 国产精品影院久久| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片 | 久久精品亚洲精品国产色婷小说| 中文字幕人成人乱码亚洲影| 色播亚洲综合网| 国产在视频线在精品| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 三级毛片av免费| 91在线观看av| 97人妻精品一区二区三区麻豆| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 欧美日韩一级在线毛片| 中文字幕av在线有码专区| 无遮挡黄片免费观看| 两个人视频免费观看高清| 欧美中文综合在线视频| 亚洲电影在线观看av| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器| 国产精品亚洲美女久久久| 3wmmmm亚洲av在线观看| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 天天添夜夜摸| 91麻豆av在线| av天堂中文字幕网| 日本精品一区二区三区蜜桃| bbb黄色大片| 日韩欧美在线乱码| 一级a爱片免费观看的视频| 69av精品久久久久久| 久久久久精品国产欧美久久久| 欧美三级亚洲精品| 九九热线精品视视频播放| 少妇的丰满在线观看| 精品福利观看| 男女床上黄色一级片免费看| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 一a级毛片在线观看| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 一夜夜www| 蜜桃久久精品国产亚洲av| 午夜两性在线视频| АⅤ资源中文在线天堂| 午夜激情欧美在线| 亚洲中文字幕一区二区三区有码在线看| 女生性感内裤真人,穿戴方法视频| 在线看三级毛片| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 久9热在线精品视频| 欧美日韩国产亚洲二区| 日韩欧美一区二区三区在线观看| 男人和女人高潮做爰伦理| 久久久久久久亚洲中文字幕 | 国产精品1区2区在线观看.| 色在线成人网| 18禁在线播放成人免费| 久久久久性生活片| 老司机深夜福利视频在线观看| 精品久久久久久,| 69人妻影院| 老司机福利观看| 色老头精品视频在线观看| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站 | 狠狠狠狠99中文字幕| x7x7x7水蜜桃| 99热精品在线国产| 国产免费男女视频| 美女大奶头视频| 国产高清有码在线观看视频| 精品午夜福利视频在线观看一区| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 最新在线观看一区二区三区| 91九色精品人成在线观看| 国产三级中文精品| or卡值多少钱| 在线观看日韩欧美| 国产综合懂色| 欧美最新免费一区二区三区 | 欧美绝顶高潮抽搐喷水| 人人妻,人人澡人人爽秒播| 成人特级av手机在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩高清在线视频| 亚洲成人久久性| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 色av中文字幕| 国产精品乱码一区二三区的特点| 啦啦啦免费观看视频1| av视频在线观看入口| 国产精品久久电影中文字幕| 亚洲色图av天堂| 无遮挡黄片免费观看| 听说在线观看完整版免费高清| 亚洲国产色片| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av涩爱 | 亚洲在线观看片| 伊人久久精品亚洲午夜| 可以在线观看毛片的网站| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| 精品一区二区三区人妻视频| 亚洲七黄色美女视频| 免费在线观看日本一区| 国产成人系列免费观看| 日韩亚洲欧美综合| 日韩国内少妇激情av| 久久久久久久久大av| 国产成人av教育| 国产精品国产高清国产av| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| 亚洲av电影不卡..在线观看| 国产高潮美女av| 狠狠狠狠99中文字幕| 亚洲天堂国产精品一区在线| 国产三级在线视频| 在线观看午夜福利视频| 亚洲国产日韩欧美精品在线观看 | 九色国产91popny在线| 亚洲精品在线观看二区| 免费看十八禁软件| 中文资源天堂在线| 97超视频在线观看视频| 欧美中文日本在线观看视频| 欧美日韩黄片免| 狠狠狠狠99中文字幕| 免费人成在线观看视频色| www日本黄色视频网| 男人和女人高潮做爰伦理| 国产探花极品一区二区| 男女床上黄色一级片免费看| 亚洲第一欧美日韩一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 啪啪无遮挡十八禁网站| 小蜜桃在线观看免费完整版高清| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| 亚洲va日本ⅴa欧美va伊人久久| 变态另类丝袜制服| 国产在视频线在精品| 精品久久久久久,| 精品欧美国产一区二区三| 搞女人的毛片| 亚洲av成人av| 内地一区二区视频在线| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| 亚洲一区二区三区不卡视频| 国产成人福利小说| 亚洲国产精品久久男人天堂| av天堂在线播放| 国产成人影院久久av| 欧美日韩国产亚洲二区| 午夜免费观看网址| 国产69精品久久久久777片| 国产极品精品免费视频能看的| 国内毛片毛片毛片毛片毛片| 啦啦啦观看免费观看视频高清| 一a级毛片在线观看| 国产麻豆成人av免费视频| 欧美日韩综合久久久久久 | 久久精品91蜜桃| 久久6这里有精品| 欧美高清成人免费视频www| 色吧在线观看| 欧美3d第一页| 亚洲成人免费电影在线观看| 观看美女的网站| 国产 一区 欧美 日韩| 精品久久久久久,| 国产美女午夜福利| 国产精品亚洲一级av第二区| 男女之事视频高清在线观看| 国产精品野战在线观看| 深夜精品福利| 亚洲欧美精品综合久久99| 亚洲成人久久性| 日韩欧美精品免费久久 | 午夜影院日韩av| 精品欧美国产一区二区三| 国产精品国产高清国产av| 嫩草影院精品99| 国产在视频线在精品| av中文乱码字幕在线| 午夜精品在线福利| 99视频精品全部免费 在线| 搡老妇女老女人老熟妇| 午夜免费男女啪啪视频观看 | 一级毛片高清免费大全| 国产高清视频在线观看网站| 日本在线视频免费播放| 亚洲欧美日韩无卡精品| 国产成人av教育| 麻豆久久精品国产亚洲av| а√天堂www在线а√下载| 亚洲国产欧美网| 国产精品三级大全| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 欧美丝袜亚洲另类 | 国产毛片a区久久久久| 国产高清视频在线观看网站| 99久久成人亚洲精品观看| 丁香欧美五月| 中文字幕精品亚洲无线码一区| 悠悠久久av| 一边摸一边抽搐一进一小说| 婷婷亚洲欧美| 欧美一区二区亚洲| 免费观看精品视频网站| 国产91精品成人一区二区三区| 色综合欧美亚洲国产小说| 欧美日本亚洲视频在线播放| 免费在线观看亚洲国产| 午夜福利高清视频| www.www免费av| 亚洲色图av天堂| 制服丝袜大香蕉在线| 成人精品一区二区免费| 国产成年人精品一区二区| 黄色丝袜av网址大全| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 午夜影院日韩av| 久99久视频精品免费| 动漫黄色视频在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 真实男女啪啪啪动态图| av欧美777| 国产亚洲欧美98| 女人高潮潮喷娇喘18禁视频| 美女 人体艺术 gogo| 麻豆久久精品国产亚洲av| 午夜免费激情av| 国产黄片美女视频| 日韩欧美免费精品| 欧美绝顶高潮抽搐喷水| 欧美性猛交╳xxx乱大交人| 真人做人爱边吃奶动态| 美女黄网站色视频| 男女那种视频在线观看| 欧美日韩黄片免| 午夜老司机福利剧场| 又黄又爽又免费观看的视频| 香蕉丝袜av| 9191精品国产免费久久| 丰满的人妻完整版| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 特大巨黑吊av在线直播| 村上凉子中文字幕在线| 国内精品久久久久久久电影| 午夜福利在线在线| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 精品一区二区三区人妻视频| 午夜精品在线福利| 国产午夜福利久久久久久| 日韩高清综合在线| 九九在线视频观看精品| 男插女下体视频免费在线播放| 成年女人看的毛片在线观看| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久 | 亚洲片人在线观看| 色av中文字幕| 一a级毛片在线观看| 99久国产av精品| 亚洲国产精品999在线| 免费看日本二区| 亚洲成人中文字幕在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 精品午夜福利视频在线观看一区| 国产真人三级小视频在线观看| 成年女人毛片免费观看观看9| 无遮挡黄片免费观看| 欧美丝袜亚洲另类 | 亚洲专区中文字幕在线| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 国产美女午夜福利| 亚洲精品亚洲一区二区| aaaaa片日本免费| av天堂在线播放| 老司机午夜十八禁免费视频| 亚洲精品一区av在线观看| 成人鲁丝片一二三区免费| 国产午夜精品久久久久久一区二区三区 | 精品一区二区三区av网在线观看| 99在线人妻在线中文字幕| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| 成人精品一区二区免费| 久久久精品欧美日韩精品| 欧美日本视频| 免费大片18禁| www日本在线高清视频| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 久久久久九九精品影院| 精品一区二区三区人妻视频| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影| 国产黄色小视频在线观看| 日本熟妇午夜| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 99在线视频只有这里精品首页| 成年女人看的毛片在线观看| 在线观看日韩欧美| 午夜福利在线在线| 国产精品亚洲av一区麻豆| 精品久久久久久久毛片微露脸| 国产av麻豆久久久久久久| 久久久精品欧美日韩精品| 中文资源天堂在线| 免费搜索国产男女视频| 午夜福利在线观看免费完整高清在 | 成人av在线播放网站| 91字幕亚洲| 非洲黑人性xxxx精品又粗又长| 亚洲真实伦在线观看| 中出人妻视频一区二区| 久久久久久久久大av| 亚洲av成人精品一区久久| 国产一区二区亚洲精品在线观看| 韩国av一区二区三区四区| 一个人免费在线观看电影| 婷婷亚洲欧美| 桃红色精品国产亚洲av| 在线观看av片永久免费下载| 成年免费大片在线观看| www.色视频.com| 中文字幕久久专区| 九九热线精品视视频播放| 欧美日韩国产亚洲二区| 亚洲黑人精品在线| 一区二区三区激情视频| 国产美女午夜福利| 色噜噜av男人的天堂激情| 天堂影院成人在线观看| 亚洲av成人av| 亚洲国产日韩欧美精品在线观看 | 一区二区三区激情视频| 午夜激情福利司机影院| 精品国产三级普通话版| 怎么达到女性高潮| 最近视频中文字幕2019在线8| 国产探花极品一区二区| 欧美成人一区二区免费高清观看| 一进一出抽搐gif免费好疼| 性欧美人与动物交配| avwww免费| 午夜久久久久精精品| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 麻豆成人午夜福利视频| 一级a爱片免费观看的视频| 国产在视频线在精品| 国产国拍精品亚洲av在线观看 | 少妇的逼好多水| 久久久久久久久中文| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器| 久久精品国产自在天天线| 观看免费一级毛片| 色综合站精品国产| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 麻豆久久精品国产亚洲av| 亚洲一区高清亚洲精品| 一进一出好大好爽视频| 99久久精品一区二区三区| 69人妻影院| 熟女电影av网| 18禁黄网站禁片午夜丰满| www日本黄色视频网| 两个人看的免费小视频| 国内毛片毛片毛片毛片毛片| 国产黄片美女视频| 女警被强在线播放| 亚洲成人中文字幕在线播放| 九色国产91popny在线| 中文字幕熟女人妻在线| 女同久久另类99精品国产91| 给我免费播放毛片高清在线观看| 日本成人三级电影网站| 欧美xxxx黑人xx丫x性爽| 色老头精品视频在线观看| 国产伦人伦偷精品视频| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 精品国内亚洲2022精品成人| 床上黄色一级片| 中文字幕高清在线视频| 国产一区二区亚洲精品在线观看| 精品国内亚洲2022精品成人| 国产国拍精品亚洲av在线观看 | 成人av一区二区三区在线看| 黄片大片在线免费观看| 国产精品1区2区在线观看.| 日韩高清综合在线| 国产午夜福利久久久久久| 精品一区二区三区视频在线 | 少妇人妻精品综合一区二区 | 叶爱在线成人免费视频播放| 久久精品国产亚洲av涩爱 | 老汉色av国产亚洲站长工具| 国产 一区 欧美 日韩| 精品人妻1区二区| 亚洲成人久久爱视频| 成人国产一区最新在线观看| 51国产日韩欧美| 午夜免费成人在线视频| 欧美黄色淫秽网站| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 久久久成人免费电影| 最新美女视频免费是黄的| 亚洲精品美女久久久久99蜜臀| 日韩大尺度精品在线看网址| www.999成人在线观看| 亚洲欧美日韩高清在线视频| 波多野结衣高清作品| 美女被艹到高潮喷水动态| 国产三级黄色录像| 在线观看舔阴道视频| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 天天躁日日操中文字幕| 欧美最新免费一区二区三区 | 久久久久久久久久黄片| 真实男女啪啪啪动态图| АⅤ资源中文在线天堂| 中文字幕av在线有码专区| 国产一区二区三区在线臀色熟女| 国产熟女xx| 一夜夜www| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 久99久视频精品免费| 日韩精品青青久久久久久| e午夜精品久久久久久久| 国产爱豆传媒在线观看| 女人被狂操c到高潮| 国产不卡一卡二| 精品久久久久久久久久久久久| 久久精品国产清高在天天线| 丁香六月欧美| 免费大片18禁| 亚洲av二区三区四区| 一本一本综合久久| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 丰满人妻一区二区三区视频av | 久久精品亚洲精品国产色婷小说| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 国产伦人伦偷精品视频| 99久久九九国产精品国产免费| 国产精品久久久久久人妻精品电影| 白带黄色成豆腐渣| 男人的好看免费观看在线视频| 国产精品久久久久久久电影 | 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 99久久久亚洲精品蜜臀av| 精品99又大又爽又粗少妇毛片 | 香蕉av资源在线| 国产免费男女视频| 亚洲人成电影免费在线| 国产欧美日韩一区二区三| 9191精品国产免费久久| 成年人黄色毛片网站| 精品国产三级普通话版| 亚洲一区二区三区不卡视频| tocl精华| 一区福利在线观看| 久久香蕉国产精品|