• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elemental characteristics of lacustrine oil shale and its controlling factors of palaeo-sedimentary environment on oil yield:a case from Chang 7 oil layer of Triassic Yanchang Formation in southern Ordos Basin

    2018-06-27 10:07:52DeluLiRongxiLiZengwuZhuFengXu
    Acta Geochimica 2018年2期

    Delu Li?Rongxi Li?Zengwu Zhu?Feng Xu

    1 Introduction

    Regarded as one of the importantun conventional resources,oil shale is a solid organic sedimentary rock(Liu et al.2015).After being combusted by low-temperature carbonization,it can produce shale oil(Liu et al.2009).The ratio of shale oil to oil shale in unit mass is oil yield.In petroleum reserve assessments,oil yield,as a key evaluation index,has a direct influence on evaluation results(Li et al.2014).Therefore,the research on controlling factors of oil yield becomes more and more significant,especially in the lack of conventional resources nowadays.

    There are many factors affecting oil yield of lacustrine oil shale,primarily including:the foundation of hydrocarbon generation(Fahmi et al.2008),the control action of palaeosedimentary environment(Han et al.2014),later preservation condition(Brumsack 1988;Dean and Arthur 1989),etc.And the degree of effect of different factors are also various.Considering that many factors are hardly quantified,the study on controlling factors of oil yield is still in a qualitative stage(Chang et al.2012).However,with the development of elemental geochemistry,the abundant palaeosedimentary environment can be well expressed by some parameters,which can help researchers explore their correlations more accurately(Chermak and Schreiber 2014;Mapoma et al.2014).

    With superior oil yield,oil shale from Triassic Yanchang Formation in Ordos Basin has the typical lacustrine characteristics in China.Previous studies mainly concentrate on organic geochemistry and sedimentary facies(Jiang et al.2013;Yuan et al.2015),and the research on inorganic geochemistry,especially elemental geochemistry,are seldom seen before,leading to incomplete recognition.In addition,the relationships between oil yield and palaeosedimentary environment are still uncertain.So,it is vital to make an investigation on elemental geochemistry so as to further make palaeosedimentary environment clear on one hand,and to find out main controlling factors of palaeosedimentary environment on oil yield on the other hand.

    In this paper,the characteristics of oil yield and palaeosedimentary environment,including paleo-redox condition,paleosalinity,paleoclimate,hydrothermal depositional condition,paleo-hydrodynamics,and paleo-waterdepth are discussed.Then,main controlling factors of palaeosedimentary environment on oil yield are found using statistical methods.This contribution fills in gaps of study on main controlling factors of oil yield in lacustrine oil shale and has significance in guiding future exploration.

    2 Geological settings

    Located in central China,Ordos Basin is a Mesozoic depressed basin on a Paleozoic Craton with a Proterozoic crystalline basement(Wan et al.2013;Li et al.2013)(Fig.1a).According to tectonic characteristics,the basin is classified to six first order tectonic units,Yimeng Uplift,Yishan Slope,Weibei Uplift,Tianhuan Depression,Western Thrusted Zone,and Jinxi Flexure Zone.By Permian-Carboniferous,Ordos Basin belonged to the marine basin of North China Block.After Middle Triassic,the initial appearance of basin gradually formed.During Indosinian Orogeny,the whole basin was in stable condition mostly.In Upper Triassic and Early-Middle Jurassic,the basin entered a period of prosperous development.Then,the basin gradually uplifted and subducted in Early Cretaceous and Weibei Uplift deposited mainly in receiving sediments.After that,tectonic orogenies developed variably and Ordos Basin underwent reformation(Li et al.2011,2013;Yang et al.2016;Qiu et al.2014,2015).Since the Eocene epoch,the lifting of Weibei Uplift gradually increased until now(Fig.2)(Wang et al.2010).The Triassic Upper Yanchang Formation from the southern basin is dominated by the fluvial-lacustrine depositional system with a thickness of 1000–1300 m(Qiuetal.2015)and divided into 10oil layers(Chang 10-Chang 1 from the bottom to the top in order)according to the sedimentary cycle.The whole formation represents an integrated lacustrine transgressive-lacustrine regressive cycle and early Chang 7 oil layer is regarded as the most developmental period of the lake(He 2003).Previous studies indicated that Chang 7 oil layer in the north of Weibei Uplift deposited in semi deep–deep lake facies(Yang et al.2016)and the lithologies at the bottom are mainly oil shale and silty mudstone with a deep lake environment(Fig.1b).Modified after Qiu et al.(2014).

    3 Samples and analysis methods

    Attaching to Weibei Uplift,the studied area is located in southern Ordos Basin(Fig.1a).A total of 25 oil shale samples from four drillings were collected(Fig.3).

    For oil yield of oil shale analysis,samples are ground till particle size is under 3 mm,then 50 g of them is enclosed into aluminum retort with low-temperature carbonization method.The procedures follow the Chinese standard methods SH/T 0508-1992.The analytical error is within 5%.The experiment is conducted at Shaanxi Coal Geological Laboratory Co.,Ltd.

    The samples for element analysis were all crushed and ground to less than 200 mesh,using X-ray fluorescence spectrometry(XRF)and inductively-coupled plasma mass spectrometer with AA-6800at omicabsorption spectroscopy,UV-2600 ultraviolet–visible spectrophotometer and Perkin Elmer SciexElan 6000.The analytical procedures follow Chinese National Standard GB/T14506.1~14-2010 and GB/T14506.30-2010.The analytical uncertainty is within 5%.The analyses are at Analytical Center,No.203 Research Institute of Nuclear Industry.

    4 Results

    4.1 Oil shale and its oil yield characteristics

    Oil shale from Chang 7 oil layer in the study area is characterized by black and brown color and lamina shape with greasy luster and jagged fracture.The oil shale thickness is generally over 10 meters with fossils of fish scale and plant stems.The oil yields of 21 oil shale samples from Chang 7 oil layer range from 1.40%to 9.10%with an average of5.01% (Table 1).According to National resource assessment(Zhao et al.1991),the oil shale quality is classified to middle-grade criterion.

    4.2 Major element geochemistry

    Fig.1 The tectonic map of Ordos Basin and stratigraphic column of the Upper Triassic Yanchang Formation.a The tectonic map of Ordos Basin and location of studied section,b stratigraphic column of Upper Triassic Yanchang formation

    Major oxides data show that SiO2content ranks the most abundant content(36.42%–64.70%)in all oxides.Al2O3(10.69%–20.15%),TFe2O3(total iron)(3.61%–11.27%)and K2O(1.49%–4.11%)are the second most abundant oxides.The rest of the oxides(MgO,Na2O,P2O5,MnO,and TiO2)have a concentration of less than 4%.SiO2mainly occurs in quartz and clay minerals(Fu et al.2010a,b).The Al/Si ratio of shale samples is from 0.25 to 0.42(Table 1),indicating that SiO2is primarily related with quartz.The correlation coefficient(r=0.47)between SiO2and Al2O3further support the recognition.The element Al is usually from clay minerals(Fu et al.2010a,b)and the relatively high content of Al2O3manifest that clay minerals commonly occurs in oil shale samples(Fig.4a).MgO concentration holds a positive correlation(r=0.72)with Al2O3,implying Mg is also from clay minerals.Generally,a high concentration of CaO is related with abundant bivalve and gastropod fossil remains and low concentration may refer to fossil remains in oil shale(Mukhopadhyay et al.1998;Fu et al.2010a,b).The content of CaO is relatively low(0.39%–3.59%),elucidating that Ca possibly exists in organic matter partially.The fossils of fish scale in oil shale bedding can also demonstrate this.A mass of framboids of pyrite in oil shale samples in SEM analyses can support that Fe is mainly associated with pyrite(Fig.4b).

    4.3 Trace element geochemistry

    Table 2 shows the results of trace elements of 21 oil shale samples from Chang 7 oil layer.The relatively high average concentrations of trace elements in oil shale samplesare Ba (622.35 μg/g),Sr(241.70 μg/g),V(192.87 μg/g),Zr(145.69 μg/g),Rb(120.93 μg/g),and Zn(101.79 μg/g),whereas all the other elements occur in amounts smaller than 100 μg/g.Enrichment factor(EF)is always calculated to evaluate the element enrichment degree(Patterson et al.1986),which was defined as the ratio of the concentration of an element in samples to the corresponding value of Upper Continental Crust(UCC)(Rudnick and Gao 2003).As seen from Table 3 and Fig.5,trace elements can be classified into three types,according to enrichment state.(1)Extremely concentrated type(average EF>5):As,U,Cd,and Mo.(2)Concentrated type(1<average EF<5):V,Cu,Zn,Ga,Pb,Rb,Cs,Th,Nb,Hf,Ta,Li,Be,In,Bi,and B.(3)Depleted type(average EF<1):Cr,Sr,Zr,Ba,Sc,Co,and Ni.As a whole,oil shale from Chang 7 oil layer is characterized by enrichment of metallic elements.

    Usually,Cu concerns biological growth and Mo is chalcophile elements(Sun et al.2015).Their concentrations in oil shale samples represent the prosperity of living substance during sedimentation.Element U shows+6 valence under the oxidizing condition and can hardly enrich,while in reducing environment,U shows+4 valence,leading to enrichment(Fan et al.2012).The extreme concentration of U suggests that oil shale may deposit in reducing environment.Element Ba is more prone to subside after entering the lake(Sun et al.1997),so its content gradually decreases along with the increase of distance from the lakeshore.The average EF of Ba shows a little deficit,indicating that oil shale deposit away from the lakeshore and more in depocenter.In addition,the content of Sr has a close relationship with Ca because of adsorption from biogenic shells.The average EF of Sr is a deficit,which is in accordance with low CaO concentration.

    5 Discussions

    5.1 Paleo-environment analysis

    5.1.1 Paleo-redox condition

    Paleo-redox condition plays an important role in the preservation of organic matter.Some redox-sensitive trace elements can reconstruct it well.In this study,in view of elements sensibility, V/Cr, V/(V+Ni), U/Th,δU[δU=2U/(U+Th/3)],and AU(AU=U-Th/3)are applied to judge redox condition comprehensively.

    Fig.3 Oil shale drill sections from the bottom of Chang 7 oil layer,showing sampling locations

    Table 1 Concentrations of oil yield,major elements and parameter of samples from Chang 7 oil layer(units in%)

    Fig.4 a Clay minerals of oil shale sample(ZK702)and b framboids of pyrite of oil shale sample(ZK2709)in SEM

    Generally,V/Cr>4.25 indicates a strong reducing condition,and V/Cr with 2–4.25 shows reducing condition,and V/Cr<2.00 implies oxidation environment(Teng et al.2004).V/(V+Ni)>0.5 shows reducing condition.On the contrary,it shows oxidation condition(Tribovillard et al.2006).U/Th>1.25 elucidates strong reducing condition and U/Th in 0.75–1.25 represents the reducing condition,while U/Th<0.75 means oxidation condition(Ernst 1970;Jones and Manning 1994).δU<1 suggests strong reducing environment,and δU > 1 implies oxidation condition(Zhao et al.2016).AU>12 ppm means a strong reducing condition,and when it is below 5 ppm,it means oxidation condition(Teng et al.2005;Deng and Qian 1993).

    All kinds of parameters showing paleo-environment are all listed in Table 4.The averages of V/Cr,V/(V+Ni),U/Th,δU and AU in oil shale samples are 2.90,0.85,1.50,2.24,and 24.21(Table 4).All parameters of oil shale samples show reducing-strong reducing environment during sedimentation.As can be seen from Table 4,the parameters of oil shale samples from ZK2709 and ZK719 are lower than the parameters from ZK702 and ZK1501 in varying degrees,implying the paleo-redox condition in the eastern area is more reducing than in the western area(Table 5).

    5.1.2 Paleosalinity

    Boron is a diffluent element,being in sedimentary rocks of hydrosphere or upper crust and it can be easily adsorbed by clay minerals.Once fixed in clay minerals,boron can hardly redissolve when the solubility of boron decreases(Zheng et al.2016).Therefore,the content of boron can be used to analyze paleosalinity(Xiao et al.1999;Lendergren and Carvajal 1969).Walker(1963)calculated Equivalent Boron through the content of boron and K2O to judge paleosalinity. The formula is Equivalent Boron=11.8×(B×8.5/K2O%)/[1.70×(11.8-K2O%)].B represents the content of boron.Degens et al.(1958)and Keith and Bystrom(1959)proposed the scope of sea water and fresh water by Equivalent Boron.When Equivalent Boron is in the range of 300–400,200–300 and<200 ppm,it means sea water,brackish water,and fresh water deposit.As calculated in Table 4,the content of Equivalent Boron in oil shale samples is from 39.90 to 234.70 with an average of 100.89,indicating that the sedimentary water is mainly fresh water.Adams et al.(1965)put forward to an equation to calculate paleosalinity.The equation is Sp=0.0977x-7.043.Sp represents paleosalinity(‰)and x represents Equivalent Boron.Previous study classified water by paleosalinity(Qin 2005),however,in order to unify standard of above salinity,we reconsider the classification and regard <5‰,5–18‰,and >18‰ as fresh water,brackish water,and sea water.The result of Sp is 0.21‰–15.89‰ (average 6.21‰),showing the character of fresh water and brackish water sedimentation(Table 5).

    Sr/Ba ratio can also be used to reconstruct paleosalinity.After counting Sr/Ba of samples in 13 sea floors,Sr/Ba from 0.8 to 1.0 is regarded as marine deposit and below 0.6 is regarded as a lacustrine deposit(Wang and Wu 1983).Thus,Sr/Ba ratio with>1,0.6–1,and<0.6 are treated as sea water,brackish water,and fresh water.The Sr/Ba in oil shale samples from Chang 7 oil layer is in the range of 0.23–0.69(average 0.38),suggesting mainly fresh water deposition(Table 5).In summary,the paleosalinity of water during oil shale sedimentation could be mainly fresh water and brackish water.

    ?

    ?

    5.1.3 Paleoclimate

    Paleoclimate can usually affect weathering,transportation,and composition of source rocks(Zhang et al.2011).The chemical index of alteration(CIA)can reflect the paleoclimatic conditions and has gained favorable application effect(Baietal.2015).The CIA expression is CIA=100×[Al2O3/(Al2O3+CaO*+Na2O+K2O)].CaO*refers to CaO in silicate and is calculated using the expression CaO*=CaO-(10/3×P2O5)to amend the content of apatite(Cox et al.1995).The CaO*result is chosen as the minimum between calculated result and the content of Na2O(Nesbitt and Young 1982).All oxide concentrations are given in molecular proportions.When the value of CIA is 50–65,it reflects cold and dry climate during sedimentation.The value being 65–85 marks a warm and humid climate.When the value is between 85 and 100,it indicates hot and humid climate.

    The CIA of oil shale samples is from 53.92 to 78.95 with an average of 69.74(Table 5),indicating that the integral paleoclimate is a warm and humid climate.

    Meanwhile,Sr/Cu ratio can also be well applied in judging paleoclimate widely(Liang et al.2015).If Sr/Cu ratio is 1.3–5.0,it means that the paleoclimate is warm and humid.If it is over 5,it means the paleoclimate is dry and hot.The Sr/Cu of oil shale samples ranges in 1.01–12.16 with an average of 3.64,also implying that the integral paleoclimate is warm and humid.So in summary,the paleoclimate of oil shale sedimentation is warm and humid(Table 5).

    5.1.4 Hydrothermal depositional condition

    Sediments concerning hydrothermal fluid are called hydrothermal deposition(Zhong et al.2015).The activities of hydrothermal fluid are widespread and can obviously affect the concentration of trace elements and organic matter in sedimentary rocks(Chu et al.2016).Previous studies show that Fe/Ti and(Fe+Mn)/Ti ratios can be indexes of hydrothermal sediments.When Fe/Ti is above 20 or(Fe+Mn)/Ti is above 20±5,sediments are considered going through a hydrothermal fluid(Bostr?m 1983).The average of Fe/Ti and(Fe+Mn)/Ti in eastern area(ZK702 and ZK1501)are 26.87 and 27.25,indicating there are obvious hydrothermal fluid events.However,the average of Fe/Ti and(Fe+Mn)/Ti in western area(ZK2709 and ZK719)are 12.96 and 13.29(Table 5),indicating there are inconspicuous hydrothermal fluid events.

    5.1.5 Paleo-hydrodynamics

    ?

    Fig.5 Spider diagram of trace elements of oil shale from Chang 7 oil layer

    Table 4 Parameters of the palaeosedimentary environment of oil shale samples from Chang 7 oil layer

    Occurring in zircon,element Zr is a typical continental inert element and deposits in shallow water sections.Due to its active chemical property,element Rb tends to migrate and deposit in deep water with high energy(Teng et al.2005).Therefore,Zr/Rb ratio can be applied to response the variation of depth of water.The smaller Zr/Rb ratio turns,the deeper sedimentary water is and the weaker hydrodynamic force is.Teng(2004)studied Zhuozishan Formation Profile of Lower Ordovician in Ordos Basin and found that the average of Zr/Rb is 0.92,reflecting weak hydrodynamic force.The Zr/Rb of oil shale samples from Upper Paleozoic Shanxi Formation in Ordos Basin ranges from 1.25 to 4.76(average 2.12),showing relatively strong paleo-hydrodynamics(Zhao et al.2016)(Table 5).The Zr/Rb ratio of oil shale samples is from 0.64 to 1.63 with an average of 1.25,showing a weak hydrodynamic force.

    Table 5 Geochemical index of sedimentary environment and geochemical parameters of oil shale from Chang 7 oil layer

    5.1.6 Paleo-water-depth

    The content of element Co can be applied to calculate paleo-water-depth quantitatively(Wu and Zhou 2000).The calculation is H=3.05×105/[Vo×Nco/(Scot×Tco)]1.5(Wu and Zhou 2000).H:paleo-water-depth(m);Vo:deposition rate of sediments(m/Ma);Sco:Co abundance of samples;Nco:Co abundance of normal lacustrine sediments(20 ppm);Tco:Co abundance of provenance(4.68 ppm)t:contribution values of Co from provenance to samples[can be replaced by(La from samples)/(La from terrigenous detrital)ratio and La from terrigenous detrital is 38.99 ppm](Wu and Zhou 2000).The depositional rate of sediments of normal lake ranges from 150 to 300 m/Ma.Considering study location in the lake and previous researches(Zhang and Zhao 2002),we set Vo as 200 m/Ma.

    Fig.6 Correlations diagram of oil yield versus parameters of palaeosedimentary environment of oil shale from Chang 7 oil layer

    Fig.6 continued

    The calculated results indicate that paleo-water-depth during sedimentation of oil shale samples is from 6.75 to 92.16(average 45.25)(Table 5).Usually,the depth above 20 meters is defined as semi deep–deep lake and the depth from 10 to 20 m is set as a shallow lake,so the oil shale samples from Chang 7 oil layer deposit in semi deep–deep lake(Table 5),which is in accordance with sedimentary facies.

    5.2 Paleo-environment controlling factors on oil yield

    Paleo-environment can influence oil yield of oil shale.However,there are so many factors to consider when referring to the sedimentary environment and the factors are interrelated.So,in order to discuss their controlling degree on oil yield of oil shale,here we separate the above six factors factitiously and suppose they are independent.Meanwhile,we assume all parameters can represent their corresponding sedimentary factors accurately.Then we focus on the individual factors to be discussed.

    Different degree of correlation between oil yield and palaeoenvironment parameters can be seen from Fig.4.Five parameters(V/Cr,V/(V+Ni),U/Th,δU and AU)can all indicate that paleo-redox condition has an obvious influence on oil yield and high oil yield is closely related to the reducing condition(Fig.6a–e).For paleosalinity,the parameter Sp is more sensitive to oil yield than Sr/Ba andfresh water,compared with brackish water,is good for high oil yield(Fig.6f–g).Two parameters concerning paleoclimate all explain that warm and humid climate is of great benefit to oil yield(Fig.6h–i)and in Sr/Cu–Taddiagram(Fig.6i)it seems that the more humid the climate becomes,the bigger oil yield turns.For the judgment of hydrothermal deposition,the hydrothermal fluid has a positive influence on oil yield(Fig.6j–k).Paleo-hydrodynamics parameter shows a negligible relationship with oil yield,indicating the effect of paleo-hydrodynamics may be inconspicuous(Fig.6l).In addition,paleo-water-depth has certain control effect on oil yield of oil shale obviously(Fig.6m).

    Table 6 Results of correlation analysis between oil yield and parameters of oil shale from Chang 7 oil layer

    Table 7 Results of homogeneity test of variance model between oil yield and parameters of oil shale from Chang 7 oil layer

    To further determine to influence degree of six factors on oil yield,Student’s t test here is used to make sure which factors do affect oil yield and which factors doesn’t.Then Homogeneity test of the variance in statistics is applied to decide which factors impact more and which factors impact less(Feng et al.2006).Statistically speaking,thePvalue is a declining indicator of confidence level,representing error probability of whole samples.If thePvalue is equal to 0.05,it means that 5%of samples is caused by contingency.So,samples are considered relevant whenPis below 0.05.Otherwise,samples are not relevant.Meanwhile,thatPvalue approaches to 0 indicates correlation is favorable(Feng et al.2006).

    In 5,parameters of the paleo-redox condition,Pvalues of the parameters are all below 0.05,indicating that the parameters can well reflect changes of oil yield(Table 6)and the paleo-redox condition has a positive correlation with oil yield.Two parameters of paleosalinity all show low correlations(R2=0.00004;0.2001)with oil yield andPvalue are all below 0.05(P=0.978;0.42),which illustrates that effect of paleosalinity on oil yield can be ignored.Maybe due to different methods,CIA of paleoclimate shows low correlation and high P value with oil yield,whilePvalue of Sr/Cu is below 0.05.Therefore,it is for sure that there are impacts of paleoclimate on oil yield.Pvalues of two parameters in hydrothermal depositional condition are below 0.05,implying obvious influence on oil yield.Parameters of paleo-hydrodynamics conduct highPvalue(P=0.935)on oil yield.So,it is considered not to affect oil yield.ThePvalue of paleo-water-depth is 0.018,indicating that oil yield of oil shale is influenced by paleowater-depth.In summary,paleo-redox condition,paleoclimate, paleo-water-depth,and hydrothermal depositional condition affect oil yield of oil shale obviously,while the influences of paleosalinity and paleo-hydrodynamics are inconspicuous.

    After analyzing single factors,relevant multi-factors are discussed to identify different effective proportion on oil yield by Homogeneity test of variance.In 4 factors,parameters having the highest R2are chosen to represent corresponding factors.For example,δU is selected to stand for the paleo-redox condition due to its highest R2value(0.691).Then,δU,Sr/Cu,(Fe+Mn)/Ti,and H are calculated to build correlation model with oil yield.ThePvalue of linear regression model is 0.000,illustrating that the model can well express oil yield.Pvalues of individual factors are shown in Table 7.As explained above,the smallerPvalue is,the bigger contribution degree is.Therefore,the paleo-redox condition represented by δU effect oil yield of oil shale most.Paleoclimate represented by Sr/Cu ranks second.The third and the fourth factors are a hydrothermal depositional condition,represented by(Fe+Mn)/Ti,and paleo-water-depth represented by H.

    Through statistical analysis can provide a theoretical foundation,theory results still need to accord with geological regularity.Obvious relations have been seen from scatter diagram and correlation analysis,indicating that main controlling factors of oil yield in oil shale from Chang7 oil layer in Ordos Basin are a paleo-redox condition,paleoclimate,hydrothermal depositional condition,and paleo-water-depth.

    However,the paleosalinity and paleo-hydrodynamics showing no obvious correlations with oil yield in numerically doesn’t mean they have no impact on oil yield.Actually,lacustrine oil shale usually deposits in fresh water and weak hydrodynamic condition(Fan et al.2012;Zhang et al.2004)so that oil shale can form favorably.Hence,more concentrative ranges in parameters of paleosalinity and paleo-hydrodynamics may be the primary reasons of low correlations.In future,cognition of main influencing factors must be gradually increasing along with the augment of analytical factors.

    6 Conclusions

    1. The palaosedimentary environments of oil shale from Chang 7 oil layer are mainly reducing condition,fresh water and brackish water,warm and humid weather,hydrothermal fluid condition,weak hydrodynamic force,and semi deep–deep lake.

    2. The paleo-redox condition,together with paleoclimate, paleo-water-depth and hydrothermal depositional condition,affect oil yield of oil shale obviously,while the influences of paleosalinity and paleo-hydrodynamics are not the main controlling factors.

    3. The paleo-redox condition affects oil yield of oil shale most and the conditions of paleoclimate,hydrothermal depositional,and paleo-water-depth are followed in order.

    AcknowledgementsThis work was supported with funding from the National Natural Science Foundation of China(No.41173055)and the Fundamental Research Funds for the Central Universities(No.310827172101).

    Adams TD,Haynes JR,Walker CT(1965)Boron in holocene illites of the dovey estuary,wales,and its relationship to palaeosalinity in cyclothems.Sedimentology 4(3):189–195

    Bai Y,Liu Z,Sun P,Liu R,Hu X,Zhao H,Xu Y(2015)Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin,Northeast China.J Asian Earth Sci 97(97):89–101

    Bostr?m K(1983)Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits.Hydrothermal Processes at Sea floor Spreading Centers,Springer,Berlin,pp 473–489

    Brumsack HJ(1988)Rezente,Corg-reiche Sedimente als Schlüssel zum Verst?ndnis fossiler Schwarzschiefer.Habilitation Thesis,University of G?ttingen,Germany

    Chang Y,Liu RH,Bai WH,Sun SS(2012)Geologic characteristic and regular pattern of Triassic oil shale in the south of Ordos Basin.China Pet Explor 17(2):74–78(in Chinese)

    Chermak JA,Schreiber ME(2014)Mineralogy and trace element geochemistry of gas shales in the United States:environmental implications.Int J Coal Geol 126(3):32–44

    Chu CL,Chen QL,Zhang B,Shi Z,Jiang HJ,Yang X(2016)Influence on formation of Yuertusi Source Rock by hydrothermal activities at Dongergou section,Tarim Basin.Acta Sedimentol Sin 34(4):803–810(in Chinese with English abstract)

    Cox R,Lowe DR,Cullers RL(1995)The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochim Cosmochim Acta 59(14):2919–2940

    Dean WE,Arthur MA(1989)Iron–sulfur–carbon relationships in organic-carbon-rich sequences I:cretaceous Western Interior Seaway.Am J Sci 289:708–743

    Degens ET,Williams EG,Keith ML(1958)Environmental studies of carboniferous sediments:part II.Application of geochemical criteria.Bull J Immunol 42:981–997

    Deng HW,Qian K(1993)Sedimentary geochemistry and environmental analysis.Gansu Science And Technology Press,Gansu(in Chinese)

    Ernst TW(1970)Geochemical facies analysis.Elsevier,Amsterdam

    Fahmi R,Bridgwater T,Donnison I,Jones JM(2008)The effect of lignin and inorganic species in biomass on pyrolysis oil yields,quality and stability.Fuel 87(7):1230–1240

    Fan YH,Qu HJ,Wang H,Yang XC,Feng YW(2012)The application of trace elements analysis to identifying sedimentary media environment:a case study of Late Triassic strata in the middle part of western Ordos Basin.Geol China 39(2):382–389

    Feng JH,Che GM,Nie YF(2006)Numerical analysis principle.Science Press,Beijing(in Chinese)

    Fu XG,Wang J,Zeng Y,Tan F,Chen W,Feng X(2010a)Geochemistry of rare earth elements in marine oil shale-a case study from the Bilong Co area,Northern Tibet,China.Oil Shal 27(3):194–208

    Fu XG,Wang J,Zeng Y,Tan F,Feng X(2010b)REE geochemistry of marine oil shale from the Changshe Mountain area,northern Tibet,China.Int J Coal Geol 81(3):191–199

    GB/T14506.1~14-2010(2010)Methods for chemical analysis of silicate rocks(in Chinese with English abstract)

    GB/T14506.30-2010(2010)Methods for chemical analysis of silicate rocks-part 30:determination of 44 elements(in Chinese with English abstract)

    Han X,Kulaots I,Jiang X,Suuberg EM(2014)Review of oil shale semicoke and its combustion utilization.Fuel 126(12):143–161

    He ZX(2003)Evolution and oil–gas of the Ordos Basin.Petroleum Industry Press,Beijing(in Chinese)

    Jiang CF,Wang XZ,Zhang LX,Wan YP,Lei YH,Sun JB,Guo C(2013)Geological characteristics of shale and exploration potential of continental shale gas in 7th member of Yanchang Formation,southeast Ordos Basin.Geol China 40(6):1880–1888(in Chinese with English abstract)

    Jones B,Manning DAC(1994)Comparison of geochemical indices used for the interpretation of depositional environments in ancient mudstones.Chem Geol 111(1–4):112–129

    Keith ML,Bystrom AM(1959)Comparative analyses of marine and fresh-water shales.Pa State Univ Min Ind Exp Stn Bull

    Lendergren S,Carvajal MC(1969)Geochemistry of boron.III.The relationship between boron concentration in marine clay sediments and the salinity of the depositional environments expressed as an adsorption isotherm.Arkiv Mineral Geol 5:13–22

    Li X,Chen Q,Liu H,Wan YR,Wei LH,Liao JB,Long LW(2011)Features of sandy debris flows of the Yanchang formation in the Ordos Basin and its oil and gas exploration significance.Acta Geol Sin 85(5):1187–1202

    Li R,Liu H,Zhu R,Deng X,Li Y,Guo Z(2013)Anomalous pressure driving oil migration:evidence from multiphase boiling hydrocarbon fluid inclusions in Yanchang Reservoir,Ordos Basin.Sci Geol Sin 48(4):1219–1233(in Chinese with English abstract)

    Li YH,Jiang T,Wu FL,Zhang HY,Yao ZG,Wang BW(2014)Evaluation methods and results of oil shale resources in southeastern Ordos Basin.Geol Bull China 33(9):1417–1424

    Liang WJ,Xiao CT,Xiao K,Lin W(2015)The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet.Geol China 42(4):1079–1091(in Chinese with English abstract)

    Liu ZJ,Yang LH,Dong QS,Zhu JW,Guo W,Ye SQ,Liu R,Meng QT,Zhang HL,Gan SC(2009)Oil shale in China.Petroleum Industry Press,Beijing(in Chinese with English abstract)

    Liu R,Liu ZJ,Guo W,Chen HJ(2015)Characteristics and comprehensive utilization potential of oil shale of the Yin’e Basin,Inner Mongolia,China.Oil Shale 32(4):293–312

    Ma ZH,Chen QS,Shi ZW,Wang C,Du WG,Zhao CY(2016)Geochemistry of oil shale from Chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance.Geol Bull China 35(9):1550–1558(in Chinese with English abstract)

    Mapoma HWT,Xie X,Zhang L(2014)Redox control on trace element geochemistry and provenance of groundwater in fractured basement of Blantyre,Malawi.J AfrEarth Sci 100:335–345

    Mukhopadhyay PK,Goodarzi F,Crandlemire AL,Gillis KS,Macneil DJ,Smith WD(1998)Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basins,Nova Scotia,Eastern Canada.Int J Coal Geol 37(1–2):113–141

    Nesbitt HW,Young GM(1982)Early proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature 299(5885):715–717

    Patterson JH,Ramsden AR,Dale LS,Fardy JJ(1986)Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek,Queensland,Australia.Chem Geol 55:1–16

    Qin JZ(2005)The hydrocarbon source rock in China.Science Press,Beijing(in Chinese)

    Qiu X,Liu C,Mao G,Deng Y,Wang F,Wang J(2014)Late Triassic tuff intervals in the Ordos basin,Central China:their depositional,petrographic,geochemical characteristics and regional implications.J Asian Earth Sci 80:148–160

    Qiu XW,Liu CY,Wang FF,Deng Y,Mao GZ(2015)Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin,Central China.Geol J 50(4):399–413

    Rudnick RL,Gao S(2003)Composition of the continental crust.Treatise Geochem 3:1–64

    SH/T 0508-1992(1992)The test method for oil yield from oil shale—the method of low temperature carbonization(in Chinese with English abstract)

    Sun ZC,Yang P,Zhang ZH(1997)Seolmentirry enuironments and hydrocarbon generation of Cenoaoic Salified Lakes in China.Petroleum Industry Press,Beijing(in Chinese)

    Sun SS,Yao YB,Lin W(2015)Elemental geochemical characteristics of the oil shale and the Paleo-Lake environment of the Tongchuan Area,Southern Ordos Basin.Bul Mineral Petrol Geochem 34(3):642–645(in Chinese with English abstract)

    Teng GE(2004)The Distribution of elements,carbon and oxygen isotopes on Marine Strata and environmental correlation between they and hydrocarbon source rocks formation—an example from Ordovician Basin,China.Graduate School of Chinese Academy of Sciences(Lanzhou Institute of Geology),Lanzhou

    Teng GE,Liu WH,Xu YC,Chen JF(2004)Identification of effective source rocks of Ordovician marine sediments in Ordos Basin.Prog Nat Sci 14(11):1249–1252(in Chinese)

    Teng GE,Hui LW,Xu YC,Chen JF(2005)Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment.Adv Earth Sci 20(2):193–200

    Tribovillard N,Algeo TJ,Lyons T,Riboulleau A(2006)Trace metals as paleoredox and paleoproductivity proxies—an update.Chem Geol 232(1–2):12–32

    Walker CT(1963)Departure curves for computing paleosalinity from boron in illities and shales.AAPG Bull 47(5):833–841

    Wan YS,Xie HQ,Yang H,Wang AJ,Liu DY,Kr?ner A,Wilde SA,Geng YS,Sun LY,Ma MZ,Liu SJ,Dong CY,Du LL(2013)Is the Ordos block Archean or Paleoproterozoic in age?Implications for the Precambrian evolution of the North China craton.Am J Sci 313:683–711

    Wang YY,Wu P(1983)Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang Provinces.J Tongji Univ(Nat Sci)4:82–90(in Chinese with English abstract)

    Wang JQ,Liu CY,Yan JP,Zhao HG,Gao F,Liu C(2010)Development time and evolution characteristics of Weibei uplift in the south of Ordos Basin.J Lanzhou Univ(Nat Sci)46(4):22–29(in Chinese with English abstract)

    Wu ZP,Zhou YQ(2000)Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate.Acta Sedimentol Sin 18(3):395–399 (in Chinese with English abstract)

    Xiao RG,Takao O,Cai K,Yoshikazu K(1999)Application of boron and boron isotopic geochemistry in the study of geological process.Earth Sci Front(China University of Geosciences,Beijing)6(2):361–368(in Chinese with English abstract)

    Yang H,Niu XB,Xu LM,Feng SB,You Y,Liang XW,Wang F,Zhang DD(2016)Exploration potential of shale oil in Chang 7 member,upper triassic Yanchang formation,Ordos Basin,NW China.Pet Explor Dev 43(4):511–520

    Yuan XJ,Lin SH,Liu Q,Yao JL,Wang L,Guo H,Deng XQ,Cheng DW(2015)Lacustrine fine-grained sedimentary features and organic rich shale distribution pattern:a case study of Chang 7 member of triassic Yanchang formation in Ordos Basin,NW China.Pet Explor Dev 42(1):37–47(in Chinese with English abstract)

    Zhang XH,Zhao ZY(2002)Definition of Milankovitch cycles for Yangchang formation of the upper triassic in Ordos Basin.Oil Gas Geol 23(4):372–375(in Chinese with English abstract)

    Zhang JF,Fan YF,Zhang JJ,Wang GC(2004)Microelement and geologic significance of Yanchang formation in Fuxian area,Ordos Basin.Xinjiang Pet Geol 25(5):483–485(in Chinese with English abstract)

    Zhang CL,Gao AL,Liu Z,Huang J,Yang YJ,Zhang Y(2011)Study of character on sedimentary water and Palaeoclimate for Chang 7 oil layer in Ordos Basin.Nat Gas Geosci 22(4):582–587(in Chinese with English abstract)

    Zhao LY,Chen JN,Wang TS(1991)Grade dividing and composition of oil shale in China.Geoscience 5(4):423–429(in Chinese with English abstract)

    Zhao BS,Li RX,Wang XZ,Wu XY,Wang N,Qin XL,Cheng JH,Li JJ(2016)Sedimentary environment and preservation conditions of organic matter analysis of Shanxi formation mud shale in Yanchang exporation area,Ordos Basin.Geol Sci Technol Inf 35(6):103–111(in Chinese with English abstract)

    Zheng Q,Liu Q,Shi S(2016)Mineralogy and geochemistry of ammonian illite in intra-seam partings in Permo-Carboniferous coal of the Qinshui coal field,North China.Int J Coal Geol 153:1–11

    Zhong DK,Jiang ZK,Guo Q,Sun HT(2015)A review about research history,situation and prospects of hydrothermal sedimentation.J Palaeogeogr17(3):285–296 (in Chinesewith English abstract)

    99久久精品一区二区三区| 晚上一个人看的免费电影| 啦啦啦啦在线视频资源| 麻豆精品久久久久久蜜桃| 日本黄色片子视频| 亚洲欧美中文字幕日韩二区| 亚洲人与动物交配视频| 亚洲精品成人av观看孕妇| 韩国高清视频一区二区三区| 免费看av在线观看网站| 婷婷色av中文字幕| 国产在线一区二区三区精| 久久国产精品男人的天堂亚洲 | 久久久久久伊人网av| 搡女人真爽免费视频火全软件| 全区人妻精品视频| 亚洲成人手机| 十分钟在线观看高清视频www | 亚洲国产最新在线播放| 观看美女的网站| 毛片一级片免费看久久久久| 精品少妇内射三级| av国产久精品久网站免费入址| 国产在视频线精品| 丁香六月天网| 亚洲欧美一区二区三区黑人 | 赤兔流量卡办理| 大话2 男鬼变身卡| 九色成人免费人妻av| 99久久精品国产国产毛片| 国产乱人偷精品视频| 伦理电影大哥的女人| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站 | 在线观看三级黄色| 曰老女人黄片| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 国产亚洲91精品色在线| 精品一区二区三区视频在线| 少妇的逼水好多| 高清黄色对白视频在线免费看 | 男人添女人高潮全过程视频| 久久精品国产亚洲av天美| 在线免费观看不下载黄p国产| 亚洲欧美中文字幕日韩二区| 免费在线观看成人毛片| 亚洲av综合色区一区| 国产精品久久久久久久久免| 久热久热在线精品观看| 秋霞在线观看毛片| 极品教师在线视频| 亚洲av在线观看美女高潮| 老女人水多毛片| 黄色欧美视频在线观看| 日韩欧美一区视频在线观看 | 久久久久人妻精品一区果冻| 精品少妇久久久久久888优播| a级毛片免费高清观看在线播放| 精品国产一区二区久久| 大码成人一级视频| 久久人人爽av亚洲精品天堂| 成人无遮挡网站| 欧美精品亚洲一区二区| 18禁动态无遮挡网站| 国产日韩欧美亚洲二区| 人妻 亚洲 视频| 欧美激情极品国产一区二区三区 | 国产精品蜜桃在线观看| av在线app专区| 97超碰精品成人国产| 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 亚洲精品亚洲一区二区| 又大又黄又爽视频免费| 久久人人爽人人爽人人片va| 视频中文字幕在线观看| 免费观看的影片在线观看| 少妇熟女欧美另类| 久久久久久久久久久丰满| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 九九在线视频观看精品| 日日啪夜夜撸| 国产成人91sexporn| 国国产精品蜜臀av免费| 久久人妻熟女aⅴ| 波野结衣二区三区在线| 久久久亚洲精品成人影院| 最新中文字幕久久久久| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 高清欧美精品videossex| 美女福利国产在线| 午夜激情福利司机影院| 亚洲av不卡在线观看| 熟妇人妻不卡中文字幕| 80岁老熟妇乱子伦牲交| 成人免费观看视频高清| 永久免费av网站大全| 少妇被粗大猛烈的视频| 国产精品三级大全| 六月丁香七月| 久久人人爽人人片av| 99久久人妻综合| 日韩在线高清观看一区二区三区| 久久久久久久久久人人人人人人| 亚洲精品自拍成人| 亚洲综合色惰| 亚洲精品久久午夜乱码| 高清欧美精品videossex| 久热久热在线精品观看| 久热这里只有精品99| 免费av不卡在线播放| 日本午夜av视频| 免费久久久久久久精品成人欧美视频 | 18禁裸乳无遮挡动漫免费视频| 国产男女内射视频| 毛片一级片免费看久久久久| 免费在线观看成人毛片| 黄色欧美视频在线观看| 大香蕉久久网| 亚洲精品亚洲一区二区| 久久久久视频综合| 日日爽夜夜爽网站| 水蜜桃什么品种好| 国产乱人偷精品视频| 精品少妇黑人巨大在线播放| 日韩欧美 国产精品| 日韩中文字幕视频在线看片| 久久97久久精品| 97精品久久久久久久久久精品| 国产亚洲av片在线观看秒播厂| 国产在线免费精品| 国产精品成人在线| 国产极品粉嫩免费观看在线 | 亚洲国产av新网站| 精品少妇久久久久久888优播| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲 | 极品教师在线视频| 18+在线观看网站| 亚洲欧美一区二区三区黑人 | 亚洲欧美清纯卡通| 如何舔出高潮| 国产成人午夜福利电影在线观看| 亚洲成人av在线免费| 如日韩欧美国产精品一区二区三区 | 久久鲁丝午夜福利片| 自拍偷自拍亚洲精品老妇| 啦啦啦在线观看免费高清www| 在线观看免费高清a一片| 三级国产精品片| 涩涩av久久男人的天堂| 国产精品99久久久久久久久| 亚洲精品乱码久久久久久按摩| 日韩大片免费观看网站| 久久 成人 亚洲| 欧美成人精品欧美一级黄| 亚洲精品一二三| 日韩欧美 国产精品| 日韩三级伦理在线观看| 久久国产亚洲av麻豆专区| 99热全是精品| 久久狼人影院| 一级毛片黄色毛片免费观看视频| 日韩中字成人| 综合色丁香网| 国产视频内射| 亚洲人成网站在线观看播放| 亚洲欧美一区二区三区黑人 | 在线 av 中文字幕| 国产乱人偷精品视频| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线 | 一级片'在线观看视频| 少妇猛男粗大的猛烈进出视频| 中文字幕亚洲精品专区| 欧美一级a爱片免费观看看| 日韩熟女老妇一区二区性免费视频| av在线观看视频网站免费| 九色成人免费人妻av| 国产精品熟女久久久久浪| 特大巨黑吊av在线直播| 国产精品人妻久久久久久| 国产男女超爽视频在线观看| 男人舔奶头视频| 日韩制服骚丝袜av| 一级二级三级毛片免费看| 最后的刺客免费高清国语| 欧美日韩视频高清一区二区三区二| 伦理电影免费视频| 99久国产av精品国产电影| 黑人巨大精品欧美一区二区蜜桃 | 黄色视频在线播放观看不卡| 99热这里只有精品一区| 欧美激情国产日韩精品一区| 777米奇影视久久| 天堂俺去俺来也www色官网| 国产精品一区二区在线观看99| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 国产精品一区二区性色av| 色视频在线一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 国产精品不卡视频一区二区| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 欧美精品一区二区大全| 好男人视频免费观看在线| a级一级毛片免费在线观看| 亚洲av成人精品一二三区| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 亚洲国产精品一区三区| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 国产av一区二区精品久久| 一区二区av电影网| 美女视频免费永久观看网站| 男人舔奶头视频| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 久久久久久伊人网av| 国产69精品久久久久777片| 插逼视频在线观看| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 欧美另类一区| 在线观看一区二区三区激情| 一区二区av电影网| 晚上一个人看的免费电影| 男的添女的下面高潮视频| 大片免费播放器 马上看| 亚洲精品一二三| 亚州av有码| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av涩爱| 高清av免费在线| 久久久久久人妻| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 三级经典国产精品| 日韩成人av中文字幕在线观看| 一个人免费看片子| 亚洲欧美成人综合另类久久久| 在线免费观看不下载黄p国产| 精品国产露脸久久av麻豆| 99九九线精品视频在线观看视频| 成人午夜精彩视频在线观看| 国产国拍精品亚洲av在线观看| 欧美成人午夜免费资源| 国产一区二区在线观看日韩| 一级av片app| 日韩av不卡免费在线播放| 亚洲综合精品二区| 黄色配什么色好看| 亚洲情色 制服丝袜| 国产精品麻豆人妻色哟哟久久| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 久久99蜜桃精品久久| 精品一区二区三区视频在线| 精品熟女少妇av免费看| 嫩草影院入口| 久久久久国产网址| 偷拍熟女少妇极品色| 美女中出高潮动态图| 亚洲av成人精品一二三区| 丰满饥渴人妻一区二区三| 大话2 男鬼变身卡| 精品国产国语对白av| 不卡视频在线观看欧美| 国产精品欧美亚洲77777| av黄色大香蕉| 国内揄拍国产精品人妻在线| 国产无遮挡羞羞视频在线观看| 三级国产精品欧美在线观看| 日韩免费高清中文字幕av| 国产成人freesex在线| 国产亚洲午夜精品一区二区久久| 一级爰片在线观看| 桃花免费在线播放| 新久久久久国产一级毛片| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 国产极品天堂在线| 欧美xxxx性猛交bbbb| 黄色一级大片看看| 日韩三级伦理在线观看| 精品久久久精品久久久| 午夜影院在线不卡| 久久免费观看电影| 日日爽夜夜爽网站| 中文字幕人妻熟人妻熟丝袜美| 在线观看av片永久免费下载| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 久久久精品94久久精品| 日本黄色片子视频| 九草在线视频观看| 久久久久视频综合| 妹子高潮喷水视频| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 国产乱来视频区| 国产精品一区二区三区四区免费观看| 亚洲综合色惰| 久久精品夜色国产| 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 丝袜脚勾引网站| 久久av网站| 日本wwww免费看| 女性被躁到高潮视频| 久久亚洲国产成人精品v| 日本wwww免费看| 国产成人aa在线观看| www.av在线官网国产| 久久久久视频综合| 丰满饥渴人妻一区二区三| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久| 特大巨黑吊av在线直播| 亚洲电影在线观看av| 99九九线精品视频在线观看视频| 久久精品国产a三级三级三级| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 亚洲精品日韩av片在线观看| 欧美 亚洲 国产 日韩一| 久久亚洲国产成人精品v| 少妇人妻久久综合中文| 国产成人aa在线观看| 麻豆成人午夜福利视频| 欧美变态另类bdsm刘玥| 国产精品无大码| 午夜免费鲁丝| 九九爱精品视频在线观看| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| 亚洲va在线va天堂va国产| 一级毛片aaaaaa免费看小| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 男人舔奶头视频| 亚洲精品久久午夜乱码| 一级爰片在线观看| 亚洲av国产av综合av卡| 久久影院123| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 国产免费一区二区三区四区乱码| 国产免费又黄又爽又色| 男人舔奶头视频| 大香蕉97超碰在线| 国产成人freesex在线| 男女边吃奶边做爰视频| 在线观看人妻少妇| 一级毛片aaaaaa免费看小| 国产日韩欧美亚洲二区| 69精品国产乱码久久久| 最近的中文字幕免费完整| 欧美激情极品国产一区二区三区 | 欧美+日韩+精品| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲网站| 91久久精品电影网| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 香蕉精品网在线| 久久99蜜桃精品久久| 亚洲四区av| 不卡视频在线观看欧美| 国产高清国产精品国产三级| 精品一区二区三卡| 极品人妻少妇av视频| 嘟嘟电影网在线观看| 在线观看av片永久免费下载| 成年人午夜在线观看视频| 在线天堂最新版资源| 嫩草影院新地址| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 亚洲真实伦在线观看| 下体分泌物呈黄色| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 黄色欧美视频在线观看| 少妇人妻久久综合中文| 香蕉精品网在线| 蜜臀久久99精品久久宅男| 国产精品久久久久久精品电影小说| 黄色日韩在线| 在线观看美女被高潮喷水网站| 日韩精品免费视频一区二区三区 | 高清毛片免费看| 午夜av观看不卡| 国产成人aa在线观看| 成年美女黄网站色视频大全免费 | 亚洲精品成人av观看孕妇| 在线看a的网站| 亚洲综合精品二区| 日韩熟女老妇一区二区性免费视频| 一级毛片久久久久久久久女| 精品视频人人做人人爽| 国产成人免费观看mmmm| 三上悠亚av全集在线观看 | 中文字幕精品免费在线观看视频 | 亚洲欧美中文字幕日韩二区| 我的老师免费观看完整版| 国产在视频线精品| av福利片在线观看| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片| 中文字幕亚洲精品专区| av在线观看视频网站免费| 国产中年淑女户外野战色| 99视频精品全部免费 在线| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 丰满人妻一区二区三区视频av| 亚洲精品中文字幕在线视频 | 2018国产大陆天天弄谢| 一级黄片播放器| 久久99一区二区三区| 国模一区二区三区四区视频| 亚洲国产日韩一区二区| 美女cb高潮喷水在线观看| 看免费成人av毛片| videossex国产| 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 国产一区二区三区av在线| 老熟女久久久| 午夜久久久在线观看| a级片在线免费高清观看视频| 天美传媒精品一区二区| 九九在线视频观看精品| 少妇 在线观看| 一区在线观看完整版| av黄色大香蕉| 免费av中文字幕在线| 国产毛片在线视频| 欧美日韩国产mv在线观看视频| 两个人的视频大全免费| 另类精品久久| 色吧在线观看| kizo精华| 好男人视频免费观看在线| 两个人的视频大全免费| 免费看日本二区| 美女国产视频在线观看| 精品一品国产午夜福利视频| 人人澡人人妻人| av天堂中文字幕网| 亚洲欧美一区二区三区国产| 看非洲黑人一级黄片| 中文字幕人妻熟人妻熟丝袜美| 夫妻午夜视频| 国产在线视频一区二区| 日韩免费高清中文字幕av| 亚洲激情五月婷婷啪啪| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 亚洲无线观看免费| 一区二区三区乱码不卡18| 日韩一本色道免费dvd| 18禁动态无遮挡网站| 亚洲精品色激情综合| 欧美老熟妇乱子伦牲交| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久久久久| 在线免费观看不下载黄p国产| 精品国产乱码久久久久久小说| 99热这里只有是精品50| 一级毛片久久久久久久久女| 十八禁网站网址无遮挡 | 成人毛片a级毛片在线播放| 婷婷色av中文字幕| 亚洲精品色激情综合| a级片在线免费高清观看视频| 嫩草影院入口| 亚洲激情五月婷婷啪啪| 国产深夜福利视频在线观看| 国产精品三级大全| 国产精品.久久久| 亚洲国产色片| 日本色播在线视频| 久久国产精品男人的天堂亚洲 | a级毛片免费高清观看在线播放| 欧美激情极品国产一区二区三区 | 一级毛片我不卡| 国产黄色免费在线视频| 内地一区二区视频在线| 日韩av免费高清视频| 国产成人freesex在线| 99久久精品国产国产毛片| 国产精品偷伦视频观看了| videos熟女内射| 国产高清国产精品国产三级| 99精国产麻豆久久婷婷| 国产精品一二三区在线看| 观看av在线不卡| 黄色欧美视频在线观看| 久久精品久久精品一区二区三区| 国产免费一级a男人的天堂| 亚洲国产欧美日韩在线播放 | 久久久久久久久久成人| 午夜福利影视在线免费观看| 汤姆久久久久久久影院中文字幕| 高清毛片免费看| 黑人猛操日本美女一级片| 亚洲经典国产精华液单| 黄色视频在线播放观看不卡| 少妇人妻 视频| 亚洲丝袜综合中文字幕| 午夜福利视频精品| 亚洲av国产av综合av卡| 精品亚洲成a人片在线观看| 国产日韩一区二区三区精品不卡 | 国产精品国产三级专区第一集| 日日啪夜夜爽| 18禁在线播放成人免费| 制服丝袜香蕉在线| 18禁动态无遮挡网站| 2018国产大陆天天弄谢| 久久久久久久久久久免费av| 在线免费观看不下载黄p国产| 少妇人妻久久综合中文| 尾随美女入室| 在现免费观看毛片| 久久精品国产自在天天线| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| av网站免费在线观看视频| 丝瓜视频免费看黄片| √禁漫天堂资源中文www| 精品酒店卫生间| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人综合另类久久久| 国产午夜精品一二区理论片| 美女内射精品一级片tv| 一区二区三区精品91| 一个人免费看片子| av国产精品久久久久影院| 男的添女的下面高潮视频| 精品99又大又爽又粗少妇毛片| 久久久精品94久久精品| 99视频精品全部免费 在线| 另类精品久久| 日韩av免费高清视频| 亚洲av二区三区四区| 三级国产精品片| 国产一区亚洲一区在线观看| 国产在线免费精品| 秋霞在线观看毛片| 亚洲精品色激情综合| 国产在线免费精品| 亚洲精品成人av观看孕妇| 各种免费的搞黄视频| 国产精品不卡视频一区二区| 国产亚洲精品久久久com| 久久精品国产自在天天线| 少妇被粗大的猛进出69影院 | 中文精品一卡2卡3卡4更新| 少妇高潮的动态图| 狂野欧美激情性bbbbbb| 中国三级夫妇交换| 精品人妻熟女毛片av久久网站| 国产精品一区www在线观看| 美女国产视频在线观看| 十八禁网站网址无遮挡 | 国内揄拍国产精品人妻在线| 亚洲精华国产精华液的使用体验| 大香蕉97超碰在线| 国内揄拍国产精品人妻在线| a级片在线免费高清观看视频| 国产精品熟女久久久久浪| 亚洲欧洲国产日韩| 亚洲欧美成人精品一区二区| 春色校园在线视频观看| 少妇丰满av| 国产成人午夜福利电影在线观看| 欧美 亚洲 国产 日韩一| 又大又黄又爽视频免费| 亚洲国产精品999| 曰老女人黄片| 女人精品久久久久毛片| 黄色配什么色好看| 国产日韩欧美视频二区| 一级片'在线观看视频| 成人亚洲欧美一区二区av| 亚洲国产欧美日韩在线播放 | 免费av不卡在线播放| 免费看av在线观看网站|