• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence on lacustrine source rock by hydrothermal fluid:a case study of the Chang 7 oil shale,southern Ordos Basin

    2018-06-27 10:07:50DeluLiRongxiLiZengwuZhuXiaoliWuFutianLiuBangshengZhaoBaopingWang
    Acta Geochimica 2018年2期

    Delu Li?Rongxi Li?Zengwu Zhu?Xiaoli Wu?Futian Liu?Bangsheng Zhao?Baoping Wang

    1 Introduction

    The study of hydrothermal fluid activity started in the 1960s and has been a research hotspot of fluid metallogeny(Bischoff 1969;Zeng et al.2015).Previous research has suggested that hydrothermal fluid activity could transport massive thermal energy,chemical energy,and metallogenic materials,making it one of the most important mineral-forming geologic processes(Zhang et al.2010).Research of hydrothermal fluid activity has focused mainly on metallic ore in the marine environment(Qi et al.2015;Zeng et al.2015)and studies of hydrocarbon resources in the context of hydrothermal activity are primarily focused on marine siliceous shale,carbonaceous shale,and dolomite of the Cambrian and Silurian Niutitang and Longmaxi Formations in southern China(Sun et al.2003,2004;Chen et al.2004;Chen and Sun 2004;Jia et al.2016).Post-Permian source rocks with a lacustrine sedimentary environment affected by hydrothermal activity are in northern China(Liu et al.2010;Zhang et al.2010).The formation of these source rocks is closely associated with hydrothermal fluid activity(Xie et al.2015;Chu et al.2016;He et al.2016,2017;Jia et al.2016).Nutrients and elements transported in hydrothermal fluids affect organic matter,but the impact is disputed.Some scholars argue hydrothermal activity increases organic matter concentration(Zhang et al.2010;He et al.2016),while others suggest it can render the environment inhospitable for the formation of organic matter(Xie et al.2015;Chu et al.2016).

    The Triassic Yanchang Formation in the Ordos Basin went through four periods of hydrothermal fluid activity,of which Chang 7 represents the peak in scale and intensity.The oil shale from Chang 7 is the superior Triassic source rock.The formation of the oil shale is considered to have occurred in a deep lake environment.But some evidence,such as micro-and nano-fossils(Zhang et al.2011),tuff(Qiu et al.2009,2011),and high-gamma sandstone(Liu et al.2013),suggest the presence of hydrothermal activity during oil shale sedimentation.Due to its high total organic carbon(TOC),the viewpoint that hydrothermal fluid activity has a positive effect on the formation of oil shale is widely accepted(Lai et al.2010;Zhang et al.2010;Wang et al.2014a,b).However,relevant evidence remains in the qualitative stage,there being insufficient quantitative data.

    In this study,considering the high organic matter in oil shale relative to other source rocks,along with advantages of research regulations,we selected oil shale samples in the southern Ordos Basin.TOC of oil shale samples was calculated based on the relationship of TOC with oil yield.Then,elemental characteristics of oil shale samples were studied to ascertain hydrothermal fluid activity.Following correlation analyses of element ratios,calculated values,and TOC,the influence of hydrothermal fluid activity on organic matter is discussed.

    2 Geologic setting

    Located in a structurally bound site of central China,the Ordos Basin is one of the country’s main hydrocarbon basins.It consists of six first-order tectonic units:the Weibei Uplift,Yishan Slope,Yimeng Uplift,Jinxi Flexure Zone,Tianhuan Depression,and Western Thrusted Zone(Fig.1a)and is the end product of a tectonic orogeny involving the Pacific Plate and Tethyan oceanic crust following Indosinian movement over Paleoproterozoic crystalline basement(Wang 2011;Li et al.2016).By the Early Triassic,sedimentary facies were primarily fluvial and swamp facies(He 2003;He et al.2016).Subsequently,the basin gradually developed lacustrine facies in the Yanchang Formation of the Upper Triassic(Wang 2011).Toward the end of the Triassic,the lake gradually dried out(He 2003).According to sedimentary cycles,the Yanchang Formation has been divided into ten oil layers(Chang 10 to Chang 1 from bottom to top)as seen in the Changqing Oil field(Yang et al.1992),which shows a transgressive–regressive lacustrine cycle(Fig.1b)(Qiu et al.2014).During the deposition of Chang 7,the lake reached its largest size(Wu et al.2004),forming a superior oil shale known as the ‘Zhangjiatan Shale,’under a climate that was mainly warm and humid(Zhang et al.2011).The bottom of the Chang 7 oil layer is composed of oil shale,mudstone,siltstone,and tuff.

    Fig.1 a The geological map of Ordos Basin and locations of studied boreholes and b stratigraphic column of Upper Triassic Yanchang Formation(modified after Qiu et al.2014).Ch=Chang,the same hereinafter

    3 Samples and analytical methods

    Twenty-one samples collected from four boreholes in the oil shale section were analyzed for oil yield,major elements,rare earth elements(REEs),and total sulfur(TS).Samples were 70 mm in diameter and 30 cm long and were stored separately in plastic bags until tested to minimize contamination and oxidation.Sampling locations and rock assemblages are shown in Fig.2.

    For oil yield analysis,samples were ground to particle size<3 mm,then 50 g was enclosed in aluminum retort and heated to 520°C under air-free conditions.The analytical method was low temperature carbonization and the procedures followed the Chinese standard method SH/T 0508-1992(1992).The analytical uncertainty was within 5%.

    For major elements analysis,samples were crushed and ground to less than 200 mesh for X-ray fluorescence spectrometry(XRF)with AA-6800 atomic absorption spectroscopy and UV-2600 ultraviolet–visible spectrophotometer.The analytical procedures followed Chinese National Standard GB/T14506.1~14-2010(2010).The analytical uncertainty was usually within 5%.

    REE and trace element concentrations were determined with a Perkin Elmer SciexElan 6000 inductively-coupled plasma–mass spectrometer(ICP-MS),by the method of Chinese National Standard GB/T14506.30-2010(2010).The analytical precision was generally within 5%.

    The samples for TS test were ground to <100 μm,and then heated in a pipe furnace to 1250± 20°C with fluxing agent of cupric oxide powder. The analysis method followed Chinese National Standard GB/T 6730.17-2014(2014).

    Oil yield analysis was conducted at Shaanxi Coal Geological Laboratory Co.,Ltd.Major element,trace element,and REE concentrations and TSwere analyzed at Analytical Center,No.203,Research Institute of Nuclear Industry.

    4 Results

    4.1 Oil yield,total organic carbon,and total sulfur

    Fig.2 Oil shale sections from the bottom of Chang 7 formation,showing sampling locations

    Table 1 Oil yield,total organic carbon(TOC),total sulfur(TS),major element concentrations,Al/Si and Si/(Si+Al+Fe)of oil shale samples(oil yield,TOC,TS,and major elements in wt%)

    Fig.3 a–c Correlation diagrams of TOC with TS,SiO2 and Al2O3concentration of oil shale samples(d)lithology calssification of oil shale samples and the base map is from He et al.(2016)

    ?

    Fig.4 a REEs distribution pattern and b spider diagram of trace elements of oil shale samples

    Oil shale samples had high oil yield(1.40 wt%–9.10 wt%,averaging 5.01 wt%),indicating relatively high quality(Table 1).Sun et al.(2011)discovered that oil yield of oil shales in the southern Ordos Basin is related to TOC(r=0.894)by:T=2.7 × ω +0.907 whereTand ω represent TOC(wt%)and oilyield(wt%),respectively.TOCof oil shale samples was thus calculated to range from 4.69 wt%to 25.48 wt%,with an average of 14.45 wt%(Table 1).TS includes organic and inorganic sulfur and its content was relatively high with a range of 0.10 wt%–7.48 wt% (Table 1).Positive correlation (r=0.792)between TOC and TS content shows that sulfur in oil shale samples is mainly organic sulfur,strongly influenced by organic matter(Fig.3a).

    4.2 Element characteristics

    4.2.1 Major element characteristics

    SiO2,Al2O3,and TFe2O3(total iron)were the most abundant three elements in oil shale samples(36.42%–64.70%,10.69%–20.15%,and 3.61%–11.27%,respectively)(Table 1).Other major elements were detected at concentrations of no more than 5%.The Al/Si ratio can be used to determine minerals in oil shale;the ratio gradually declines as the content of quartz increases(Fu et al.2010a,b).The Al/Si ratios of oil shale samples were very low(0.33–0.57)(Table 1),implying domination by quartz,which is in accordance with previous X-ray diffraction analysis(Qiu et al.2015).Si/(Si+Al+Fe)can provide information on distance from terrigenous provenance,decreasing with increasing distance(Chen and Sun 2004).The Si/(Si+Al+Fe)ratio of oil shale samples ranged from 0.48 to 0.69,suggesting that the oil shale was deposited not far away from a terrigenous provenance.Terrigenous matter input can dilute organic matter,leading to negative correlation between TOC and Al2O3concentration (Fig.3b).SiO2concentration also negatively correlated with TOC(Fig.3c),suggesting that Si was mainly from terrigenous clastic material and the content of authigenic diatom was very low.A discrimination diagram of log(SiO2/Al2O3)-log(TFe2O3/K2O)can provide accurate classification of rocks.From Fig.3d,oil shale samples mainly plotted in shale and Fe-shale ranges.

    4.2.2 Rare earth element characteristics

    Total REEs(ΣREE)of oil shale samples were relatively low(138.51–228.66 ppm,Table 2)with a high ratio(7.05–11.71)of light REEs(LREEs)to heavy REEs(HREEs)(L/H).High L/H ratio indicates a relative enrichment of LREEs and deficit of HREEs.After normalization to North American Shale Composite(NASC)(167.41 μg/g;Haskin et al.1968),the REE distribution pattern showed a flat LREE trend and horizontal or slightly left-leaning HREE trend with inconspicuous negative Ce anomaly(δCe=0.89–1.02,averaging0.94)and positive Eu anomaly(δEu=0.70–1.41,averaging 1.11)(Fig.4a;Table 2).In addition, HREEs showed a slightly rich trend, influenced by the absorption of organic matter(Fig.4a)(Tu and Xu 2016).

    4.2.3 Trace element characteristics

    Selected trace elements are shown in Table 3.The characteristics of trace elements in oil shale samples can be quantitatively depicted by enrichment factor(EF),defined as the ratio of the concentration to the corresponding value of upper continental crust(UCC)(Taylor and McLennan 1985).The EFs of these elements varied and were classified into three types:(1)Enrichment type(average EF>1.1):Ba,Cu,Zn,Pb,Th,and U;(2)Equal type(average EF=1±0.1):Co;and(3)Deficit type(average EF<0.9):Sr and Ni(Fig.4b;Table 3).A discrepancy in enrichment level of trace elements is associated with a paleo-sedimentation environment.

    ?

    Fig.5 a Ternary diagram discrimination of oil shale samples and the base map is from Qi et al.(2004)and He et al.(2016),b genesis discrimination diagram of oil shale samples and the base map is from Li et al.(2014)and He et al.(2016)

    5 Discussion

    5.1 Evidence of hydrothermal fluid activity

    REEs in hydrothermal sedimentation have been widely studied(Rona et al.1983;Zhang et al.2003;Jia et al.2016)and can be used to identify hydrothermal fluid activity.Generally,after being normalized to NASC(Taylor and McLennan 1985),a positive Eu anomaly is a signature of hydrothermal fluid(Zhang et al.2003;Jia et al.2016).As discussed above,δEu of oil shale samples showed positive anomalies(with the exception of ZK702H6),implying hydrothermal fluid activity during oil shale sedimentation.A negative anomaly of Ce can also indicate hydrothermal fluid in sediments(Jia et al.2016).The δCe of most oil shale samples showed negative anomaly(with the exception of ZK2709H12),suggesting the influence of hydrothermal fluid.In distribution pattern of REEs(Fig.4a),a slightly enriched trend of HREEs is generally associated with hydrothermal fluid activity(Jia et al.2016).In addition,some discrimination diagrams of trace elements and major elements can also indicate hydrothermal activity.The diagrams of Fe versus Mn versus(Cu+Co+Ni)×10 and SiO2/(K2O+Na2O)versus MnO/TiO2clearly manifest hydrothermal fluid activity(Fig.5a,b).Fe/Ti and(Fe+Mn)/Ti can indicate the intensity of hydrothermal input(Chu et al.2016).Values of more than 20 and 15,respectively,are regarded as indicative of hydrothermal input and the intensity gradually increases with increasing values.The corresponding average values of oil shale samples were 20.25 and 20.60,respectively,suggesting the Chang 7 oil shale in the southern Ordos Basin was affected by hydrothermal fluid activity.

    5.2 Influence of hydrothermal fluid activity on paleo-environment

    In discussing the impact on hydrothermal intensity on redox conditions, two parameters—δU [δU=2U/(U+Th/3)]and U/Th—are quoted to represent redox degree(Ernst et al.1970;Deng and Qian 1993;Jones and Manning 1994;Teng et al.2004,2005;Tribovillard et al.2006;Zhao et al.2016).Generally,δU and U/Th indicate an oxidizing environment when they are<1 and 0.75,respectively,and reducing conditions when they are more than 1 and 1.25,respectively.With an increasingly reducing environment,these two parameters increase.The average values of δU and U/Th of oil shale samples were 1.50 and 2.24,respectively,indicating that the environment during oil shale sedimentation was dominated by reducing conditions.

    Hydrothermal fluid not only provides thermal energy but also plenty of reducing gas(H2,CH4,CO,and H2S)(Chen and Sun 2004;Zhang et al.2010).The reducing gas can consume lots of oxygen and change physiochemistry,leading to reducing conditions.This can be demonstrated with diagrams of Fe/Ti and(Fe+Mn)/Ti versus δU and U/Th.In oil shale samples,Fe/Ti and(Fe+Mn)/Ti showed high positive correlation of δU and U/Th(correlation coefficients ranging from 0.855 to 0.884)(Fig.6a–d),which means that reducing conditions increased with growing intensity of hydrothermal fluid activity.TS concentration is associated with redox conditions and a high content of TS usually indicates reducing conditions,while a low TS content points to an oxidizing environment(Hakimi et al.2016).The extreme high positive correlations between TS concentration and Fe/Ti(r=0.936)and(Fe+Mn)/Ti (r=0.938) further indicates that hydrothermal fluid activity made an important contribution to reducing conditions in this case(Fig.6e–f).

    Fig.6 Correlation diagrams of Fe/Ti and(Fe+Mn)/Ti with δU,U/Th and TS concentration in oil shale samples

    Fig.7 Correlation diagrams of Sr/Ba with Fe/Ti and(Fe+Mn)/Ti in oil shale samples

    Fig.8 Correlation diagrams of TOC with δU,U/Th,(Fe+Mn)/Ti,Fe/Ti and Cu+Pb+Zn concentration

    Due to the huge difference between Sr and Ba in supergene environments,Ba is more easily deposited in salt water than is Sr.Thus,Sr/Ba can be a sensitive indicator of paleosalinity(Wang et al.1979,2014a,b;Wang and Wu 1983;Li and Chen 2003;Li et al.2015).Sr/Ba ratios of<0.6,0.6–1,and>1 denote fresh,brackish,and salt water environments,respectively.The Sr/Ba of oil shale samples ranged from 0.23 to 0.69,averaging 0.38,suggesting mainly fresh water sedimentation.Sr/Ba of samples showed low correlation coefficients with Fe/Ti(r=0.196)and(Fe+Mn)/Ti(r=0.199),indicating that hydrothermal fluid activity had a negligible impact on paleosalinity(Fig.7a,b).

    5.3 Influence on organic matter from hydrothermal fluid activity

    Hydrothermal fluid activity can facilitate convection and circulation,thus exchanging nutritional ingredients.Some abundant life nutrition elements(P,N,Cu,Fe,Mo,and V)associated with hydrothermal fluid can improve productivity(Zhang et al.2010;He et al.2016),encouraging production of organic matter.Reducing conditions induced by hydrothermal fluid activity directly determine the preservation condition of organic matter.δU and U/Th both showed a positive relationship with TOC concentration(Fig.8a,b),suggesting that,on one hand,reducing conditions contribute to organic preservation,while on the other hand,hydrothermal fluid activity affects not only the enrichment of organic matter,but also its preservation.

    In oil samples,TOC concentration showed positive correlations with Fe/Ti and(Fe+Mn)/Ti,suggesting that hydrothermal fluid has a positive influence on organic matter(Fig.8c,d).Meanwhile,hydrothermal fluid can change salinity.Low-salinity water can also support organic matter preservation.

    Previous studies have demonstrated that Cu,Pb,and Zn are the typical sulfophilic elements(Chen et al.2004).The enrichment of these three elements is controlled by hydrothermal fluid activity and terrestrial input.In general,the degree of enrichment is positively associated with the intensity of hydrothermal fluid activity(Chen et al.2004).The positive correlation (r=0.768) between Cu+Pb+Zn and TOC concentration further supports this(Fig.8e).

    Therefore,the strengthening intensity of hydrothermal fluid activity would be conducive to formation and preservation of organic matter in the lacustrine environment.K2O)discrimination diagram revealed that the oil shale was dominated by shale and Fe-shale.Si/(Si+Al+Fe)demonstrated that the depositional environment was not far from a terrigenous provenance.

    6 Conclusions

    There is a clear positive correlation between hydrothermal fluid activity and the formation and preservation of lacustrine superior source rocks based on elemental geochemistry.We conclude:

    (1) Oil yield,TOC,and TS of oil shale of Chang 7 oil layer from the southern Ordos Basin ranged from 1.4 wt%to 9.1 wt%,4.69 wt%–25.48 wt%,and 0.10 wt%–7.48 wt%,respectively.Sulfur in oil shale was mainly organic sulfur,influenced by organic matter.

    (2) Major elements in oil shale consisted mainly of SiO2,Al2O3,and TFe2O3;based on the Al/Si ratio,the main mineral was quartz.A log(SiO2/Al2O3)-log(TFe2O3/

    (3) The distribution pattern of REEs,combined with δEu, δCe,and diagrams of Fe versus Mn versus(Cu+Co+Ni)×10 and SiO2/(K2O+Na2O)versus MnO/TiO2suggest that hydrothermal fluids were present during oil shale sedimentation.The intensity indicators of hydrothermal fluid activity,Fe/Ti and (Fe+Mn)/Ti, also support this conclusion.

    (4) δU and U/Th of oil shale samples indicate reducing conditions during oil shale sedimentation.Sr/Ba ratios indicated that oil shale was deposited in fresh water.The high correlation coefficients of Fe/Ti and(Fe+Mn)/Ti with δU,U/Th,and TS clearly manifested the positive contribution by hydrothermal fluid activity on reducing conditions.Sr/Ba showed low correlation with Fe/Ti and (Fe+Mn)/Ti,implying that hydrothermal fluid activity had little impact on paleosalinity.

    (5) Fe/Ti, (Fe+Mn)/Ti, δU, U/Th, and Cu+Pb+Zn were highly positively correlated with TOC in oil shale samples,suggesting that the strengthening intensity of hydrothermal fluid activity is beneficial to the formation and preservation of organic matter.

    AcknowledgementsThis work was supported with funding from the National Natural Science Foundation of China(No.41173055)and the Fundamental Research Funds for the Central Universities(No.310827172101).

    Bischoff JL (1969)Red Sea geothermal brine deposits:their mineralogy,chemistry,and genesis.Hot Brines and Recent Heavy Metal Deposits in the Red Sea.Springer,Berlin

    Chen JF,Sun XL(2004)Preliminary study of geochemical characteristics and formation of organic matter rich stratigraphy of Xiamaling-Formation of later proterozoic in North China.Nat Gas Geosci 15(2):110–114(in Chinese with English Abstract)

    Chen JF,Sun XL,Liu WH,Zheng JJ(2004)Geochemical characteristics of organic matter-rich strata of lower Cambrian in Tarim Basin and its origin.Sci China Ser D Earth Sci 34(S1):107–113(in Chinese with English Abstract)

    Chu CL,Chen QL,Zhang B,Shi Z,Jiang HJ,Yang X(2016)Influence on formation of Yuertusi source rock by hydrothermal activities at Dongergou section,Tarim Basin.Acta Sedimentol Sin 34(4):803–810(in Chinese with English Abstract)

    Deng HW,Qian K(1993)Sedimentary geochemistry and environmental analysis.Gansu Science and Technology Press,Lanzhou(in Chinese)

    Ernst TW(1970)Geochemical facies analysis.Elsevier,Amsterdam

    Fu X,Wang J,Zeng Y,Tan F,Chen W,Feng X(2010a)Geochemistry of rare earth elements in marine oil shale-a case study from the Bilong Co area,Northern Tibet,China.Oil Shale 27(3):194–208

    Fu X,Wang J,Zeng Y,Tan F,Feng X(2010b)REE geochemistry of marine oil shale from the Changshe Mountain area,Northern Tibet,China.Int J Coal Geol 81(3):191–199

    GB/T 14506.1~14-2010.Methods for chemical analysis of silicate rocks(in Chinese with English abstract)

    GB/T 14506.30-2010 Methods for chemical analysis of silicate rockspart 30:determination of 44 elements(in Chinese with English abstract)

    GB/T 6730.17-2014 Iron ores-determination of sulfur content-combustion iodometric method(in Chinese with English abstract)

    Hakimi MH,Wan HA,Alqudah M,Makeen YM,Mustapha KA(2016)Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area,Central Jordan:origin of organic matter input and preservation conditions.Fuel 181:34–45

    Haskin LA,Haskin MA,Frey FA,Wildeman TR(1968)Relative and absolute terrestrial abundances of the rare earths.Orig Distrib Elem 72:889–912

    He ZX(2003)Evolution history and petroleum of the Ordos Basin.Petroleum Industry Press,Beijing(in Chinese)

    He C,Ji L,Wu Y,Su A,Zhang M(2016)Characteristics of hydrothermal sedimentation process in the Yanchang formation,South Ordos Basin,China:evidence from element geochemistry.Sed Geol 345:33–41

    He C,Ji LM,Su A,Liu Y,Li JF,Wu YD,Zhang MZ(2017)Relationship between hydrothermal sedimentation process and source rock development in the Yanchang Formation,southern Ordos Basin.Earth Sci Front.doi:10.13745/j.esf.yx.2016-11-29

    Jia ZB,Hou DJ,Sun DQ,Huang YX (2016)Hydrothermal sedimentary discrimination criteria and its coupling relationship with the source rocks.Nat Gas Geosci 27(6):1025–1034(in Chinese with English Abstract)

    Jones B,Manning DAC(1994)Comparison of geochemical indices used for the interpretation of depositional environments in ancient mudstones.Chem Geol 111(1–4):112–129

    Lai XD,Yang XY,Gao P,Wu BL,Liu CY,Sun WD(2010)Geochemical study on U-rich tuffs in Yanchang Group in the southern Ordos Basin:implications to their forming mechanism.Chin J Geol 45(3):757–776(in Chinese with English Abstract)

    Li JL,Chen DJ(2003)Summary of quantified research method on paleosalinity.Petrol Geol Recover Effic 10(5):1–3(in Chinese with English abstract)

    Li HZ,Zhai MG,Zhang LC,Gao L,Yang ZJ,Zhou YZ,He JG,Liang J,Zhou LY,Voudouris PC(2014)Distribution,microfabric,and geochemical characteristics of siliceous rocks in central orogenic belt,China:implications for a hydrothermal sedimentation model.Sci World J 4:1–25

    Li ZC,Li WH,Lai SC,Li YX,Li YH,Shang T(2015)The Palaeosalinity Analysis of Paleogene Lutite in Weihe Basin.Acta Sedimentol Sin 33(3):480–485(in Chinese with English abstract)

    Li DL,Li RX,Wang BP,Liu Z,Wu XL,Liu FT,Zhao BS,Cheng JH,Kang WB(2016)Study on oil–source correlation by analyzing organic geochemistry characteristics:a case study of the Upper Triassic Yanchang Formation in the south of Ordos Basin,China.Acta Geochim 35(4):408–420

    Liu XW,Wang XF,Shi BG,Wang ZD,Yang X,Zheng JJ,Liu CY(2010)Influence of abnormal geothermal on hydrocarbongeneration:case study on the diabase intrusion of the Santanghu Basin.Acta Sediment Sin 29(4):809–814(in Chinese with English Abstract)

    Liu XJ,Liu YQ,Zhou DW,Li H,Cheng XH,Nan Y(2013)Deep fluid tracer in Ordos Basin:characteristics and origin of high natural gamma sandstone in Triassic Yanchang formation.Earth Sci Front 20(5):149–165(in Chinese with English Abstract)

    Qi HW,Hu RZ,Su WC,Qi L,Feng JY(2004)Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium(Ge)deposit hosted in coal:a study from the Lincang Ge deposit,Yunnan,China.Sci China Ser D Earth Sci 47:973–984

    Qi FC,Li ZX,Zhang ZL,Wang WQ,Yang ZQ,Zhang Y(2015)Hydrothermal decarburization and uranium-polymetallic oremineralization in marine phosphorite,northwestern.Earth Sci Front Hum 22(4):188–199(in Chinese with English Abstract)

    Qiu XW,Liu CY,Li YH,Mao GZ,Wang JQ(2009)Distribution characteristics and geological significances of Tuff interlayers in Yanchang formation of Ordos Basin.Acta Sedimentol Sin 27(6):1138–1146(in Chinese with English abstract)

    Qiu XW,Liu CY,Mao GZ,Wu BS(2011)Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin.Earth Science-Journal of China University of Geosciences 36(1):139–150(in Chinese with English Abstract)

    Qiu X,Liu C,Mao G,Deng Y,Wang F,Wang J(2014)Late Triassic tuff intervals in the Ordos basin,Central China:their depositional,petrographic,geochemical characteristics and regional implications.J Asian Earth Sci 80:148–160

    Qiu X,Liu C,Mao G,Deng Y,Wang F,Wang J(2015)Major,trace and platinum-group element geochemistry of the upper triassic nonmarine hot shales in the Ordos Basin,central China.Appl Geochem 53:42–52

    Rona PA,Bostrom K,Laubier L,Smith KL(1983)Hydrothermal Processes at Sea floor Spreading Centers.Springer,US,New York

    SH/T 0508-1992 The test method for oil yield from oil shale-The method of low temperature carbonization(in Chinese with English abstract)

    Sun XL,Chen JF,Liu WH,Zhang SC,Wang DR(2003)Hydrothermal venting on the sea floor and formation of organic-rich sediments–evidence from the Neoproterozoic Xiamaling formation,North China.Geological Rev 49(6):588–595(in Chinese with English Abstract)

    Sun XL,Chen JF,Liu WH,Wang DR(2004)Geochemical characteristics of cherts of Lower Cambrian in the Tarim Basin and its implication for environment.Petroleum Exploration and Development 31(3):45–48(in Chinese with English Abstract)

    Sun SS,Liu RH,Bai WH(2011)Effect Factor Analysis of Oil Content of Upper Triassic Oil Shale in Tongchuan Area.Ordos Basin.China Petroleum Exploration 16(2):79–83(in Chinese with English Abstract)

    Taylor SR,McLennan SM(1985)The continental crust:its composition and evolution,an examination of the geochemical record preserved in sedimentary rocks.Blackwell,Palo Alto,p 312

    Teng GE,Liu WH,Xu Y,Chen JF(2004)Identification of effective source rocks of Ordovician marine sediments in Ordos Basin.Prog Nat Sci 14(11):1249–1252(in Chinese)

    Teng GE,Hui LW,Xu YC,Chen JF(2005)Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment.Adv Earth Sci 20(2):193–200(in Chinese with English Abstract)

    Tribovillard N,Algeo TJ,Lyons T,Riboulleau A(2006)Trace metals as paleoredox and paleoproductivity proxies-An update.Chem Geol 232(1–2):12–32

    Tu QJ,Xu SQ(2016)The REE geochemistry of the Lucaogou formation in the Southern Junggar Basin and analysis of parent rock and tectonic setting in sediment-source region.Xin Jiang Geol 34(3):345–349(in Chinese with English Abstract)

    Wang SM(2011)Ordos basin tectonic evolution and structural control of coal.Geological Bull China 30(4):544–552(in Chinese with English Abstract)

    Wang YY,Wu P(1983)Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang Provinces.J Tongji Univ Nat Sci 4:82–90(in Chinese with English abstract)

    Wang YY,Guo WY,Zhang GD(1979)Application of some geochemical indicators in determing of sedimentary environment of the funing group(Paleogene),Jin-Hu depression,Kiangsu Provience.J Tongji Univ 7(2):51–60(in Chinese with English abstract)

    Wang CY,Zheng RC,Liu Z,Liang XW,Li TY,Zhang JW,Li YN(2014a)Paleosalinity of chang 9 reservoir in longdong area,Ordos Basin and its geological significance.Acta Sedimentol Sin 32(1):159–165(in Chinese with English abstract)

    Wang DY,Xin BS,Yang H,Fu JH,Yao JL,Zhang Y(2014b)Ziron SHRIMP U-Pb age and geological implications of tuff at the bottom of Chang-7 member of Yanchang Formation in the Ordos Basin.Sci Chin Earth Sci 44(10):2160–2171(in Chinese with English Abstract)

    Wu FL,Li W,Li Y(2004)Delta sediments and evolution of the Yanchang formation of upper triassic in Ordos Basin.J Palaeogeogr 6:307–315(in Chinese with English abstract)

    Xie XM,Teng GE,Qin JZ,Zhang QZ,Bian LZ,Yi LM(2015)Depositional environment,organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation,Kaili,Guizhou.Acta Geologica Sin 89(2):425–439(in Chinese with English Abstract)

    Yang JJ,Li KQ,Zhang DS(1992)Petroleum geology of China.Petroleum Industry Press,Beijing(in Chinese with English Abstract)

    Zeng ZG,Zhang W,Rong KB,Wang XY,Chen S,Cui LK,Jiang SL,Qi HY(2015)Sea floor hydrothermal activity and polymetallic sulfide resources potential in the East Pacific Rise.Bull Mineral Petrol Geochem 34(5):938–946(in Chinese with English Abstract)

    Zhang WH,Jiang LJ,Gao H,Yang RD(2003)Study on sedimentary environment and origin of black siliceous rocks of the lower Cambrian in Giuzhou Province.Bull Mineral Petrol Geochem 22(2):174–178(in Chinese with English Abstract)

    Zhang WZ,Yang H,Xie LQ,Yang YH(2010)Lake-bottom hydrothermal activities and their influences on the high-quality source rock development:a case from Chang 7 source rocks in Ordos Basin.Pet Explor Dev 37(4):424–429(in Chinese with English Abstract)

    Zhang WZ,Yang H,Xie LQ,Xie GW(2011)Discovery of micro and nannofossils in high grade hydrocarbon source rocks of the Triassic Yanchang Formation Chang 7 member in Ordos Basin and its scientific significance.Acta Palaeontol Sin 1:109–117(in Chinese with English Abstract)

    Zhao J,Jin Z,Jin Z,Geng Y,Wen X,Yan C(2016)Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin,China.Int J Coal Geol 163:52–71

    黄网站色视频无遮挡免费观看| 热99re8久久精品国产| 满18在线观看网站| 亚洲男人天堂网一区| 国产视频一区二区在线看| 怎么达到女性高潮| 免费在线观看亚洲国产| 又大又爽又粗| or卡值多少钱| 一a级毛片在线观看| 999久久久精品免费观看国产| 男女那种视频在线观看| 美女 人体艺术 gogo| 欧美黑人巨大hd| 久久香蕉国产精品| 美女大奶头视频| 精品国产超薄肉色丝袜足j| 我的亚洲天堂| 国产极品粉嫩免费观看在线| or卡值多少钱| 国产私拍福利视频在线观看| 国产av在哪里看| 在线观看www视频免费| 看黄色毛片网站| 99热这里只有精品一区 | 亚洲国产欧美一区二区综合| 成人免费观看视频高清| 男女做爰动态图高潮gif福利片| 黄色 视频免费看| 欧美国产精品va在线观看不卡| 亚洲av电影不卡..在线观看| www.www免费av| 国产亚洲精品久久久久5区| 久久久水蜜桃国产精品网| 黄色女人牲交| 久久狼人影院| 久久国产精品影院| 国产亚洲精品一区二区www| 国内精品久久久久精免费| 国产区一区二久久| 99在线视频只有这里精品首页| 国产三级黄色录像| 精品乱码久久久久久99久播| 美女大奶头视频| 久久精品人妻少妇| 国产精品亚洲一级av第二区| 老熟妇乱子伦视频在线观看| 久久 成人 亚洲| 制服人妻中文乱码| 午夜激情福利司机影院| 日韩高清综合在线| 欧美性猛交╳xxx乱大交人| 免费av毛片视频| av在线播放免费不卡| 亚洲午夜精品一区,二区,三区| 日日摸夜夜添夜夜添小说| 女人被狂操c到高潮| 免费在线观看黄色视频的| 久久久久九九精品影院| 黄频高清免费视频| 1024香蕉在线观看| 亚洲国产精品sss在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品野战在线观看| 少妇的丰满在线观看| 亚洲国产精品成人综合色| 满18在线观看网站| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 亚洲中文av在线| 日韩欧美一区二区三区在线观看| 日韩免费av在线播放| 91在线观看av| 1024手机看黄色片| 久久精品成人免费网站| 亚洲无线在线观看| www日本黄色视频网| 国产亚洲精品久久久久久毛片| 观看免费一级毛片| 久久久国产成人精品二区| 国产熟女午夜一区二区三区| 午夜免费激情av| 一级片免费观看大全| 岛国视频午夜一区免费看| 他把我摸到了高潮在线观看| 色综合亚洲欧美另类图片| 亚洲国产看品久久| 精品电影一区二区在线| 亚洲av成人不卡在线观看播放网| 日韩免费av在线播放| 亚洲一区二区三区色噜噜| 国产亚洲精品久久久久久毛片| 看黄色毛片网站| 日日爽夜夜爽网站| 欧美日韩亚洲国产一区二区在线观看| tocl精华| 国产精品精品国产色婷婷| 99在线人妻在线中文字幕| 国产精品,欧美在线| 国产主播在线观看一区二区| 一级a爱片免费观看的视频| 999久久久精品免费观看国产| 欧美乱码精品一区二区三区| 亚洲av片天天在线观看| 欧美色欧美亚洲另类二区| 久9热在线精品视频| 黄片大片在线免费观看| 色精品久久人妻99蜜桃| 久久精品成人免费网站| 俺也久久电影网| 色播亚洲综合网| 亚洲av第一区精品v没综合| 亚洲七黄色美女视频| 老汉色av国产亚洲站长工具| 国产一区在线观看成人免费| 精品国产亚洲在线| 欧美精品亚洲一区二区| 香蕉久久夜色| 欧美最黄视频在线播放免费| 日日摸夜夜添夜夜添小说| 久久久久久亚洲精品国产蜜桃av| 两性夫妻黄色片| 国产亚洲欧美在线一区二区| 日韩欧美一区视频在线观看| 日韩精品青青久久久久久| 精品一区二区三区视频在线观看免费| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黑人欧美精品刺激| 欧美在线黄色| 国产午夜福利久久久久久| 国产一级毛片七仙女欲春2 | 国产一区二区在线av高清观看| 黄色女人牲交| 一区福利在线观看| 色综合亚洲欧美另类图片| 欧美在线黄色| 亚洲国产毛片av蜜桃av| 久久久久久九九精品二区国产 | 看黄色毛片网站| 精品卡一卡二卡四卡免费| 亚洲中文日韩欧美视频| 看片在线看免费视频| 国产亚洲欧美精品永久| 亚洲人成网站高清观看| 久久热在线av| 最新在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 日韩一卡2卡3卡4卡2021年| 国产精华一区二区三区| 给我免费播放毛片高清在线观看| av视频在线观看入口| 久久性视频一级片| 国产成人精品无人区| 亚洲男人天堂网一区| 1024香蕉在线观看| 亚洲av电影在线进入| 国产成年人精品一区二区| 哪里可以看免费的av片| 91成年电影在线观看| 亚洲九九香蕉| cao死你这个sao货| 欧美成狂野欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲全国av大片| 精品电影一区二区在线| 亚洲精品在线观看二区| 免费看a级黄色片| 99国产极品粉嫩在线观看| 人人妻,人人澡人人爽秒播| 精品电影一区二区在线| 日韩欧美国产一区二区入口| 99国产极品粉嫩在线观看| 日韩成人在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 精品国产美女av久久久久小说| 亚洲精品久久成人aⅴ小说| 国产精品久久久人人做人人爽| 黄色女人牲交| 亚洲av成人av| 极品教师在线免费播放| 夜夜爽天天搞| a级毛片在线看网站| 亚洲精品久久国产高清桃花| 一本一本综合久久| 99热这里只有精品一区 | 观看免费一级毛片| 成人国产综合亚洲| 男女做爰动态图高潮gif福利片| 岛国视频午夜一区免费看| 一级片免费观看大全| 国产av又大| 免费看日本二区| 成人欧美大片| 日韩国内少妇激情av| 国产亚洲av高清不卡| 97碰自拍视频| 国产精品,欧美在线| 黑丝袜美女国产一区| 久久久久久久精品吃奶| www.www免费av| 操出白浆在线播放| 色综合欧美亚洲国产小说| xxx96com| 亚洲av片天天在线观看| 欧美日本视频| 曰老女人黄片| 777久久人妻少妇嫩草av网站| 午夜激情av网站| 国产精品一区二区精品视频观看| 国语自产精品视频在线第100页| 国产精品99久久99久久久不卡| 亚洲av五月六月丁香网| 久久国产精品影院| 悠悠久久av| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 中文字幕人成人乱码亚洲影| 久久久久久久久久黄片| av在线天堂中文字幕| 日韩高清综合在线| 非洲黑人性xxxx精品又粗又长| 首页视频小说图片口味搜索| 国产av一区在线观看免费| 国产精品电影一区二区三区| 无限看片的www在线观看| 国语自产精品视频在线第100页| 亚洲 欧美 日韩 在线 免费| 成人国产一区最新在线观看| 亚洲国产看品久久| 少妇被粗大的猛进出69影院| 亚洲成人国产一区在线观看| 午夜福利免费观看在线| cao死你这个sao货| 中出人妻视频一区二区| 麻豆一二三区av精品| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 成在线人永久免费视频| 在线观看免费日韩欧美大片| 国产成人一区二区三区免费视频网站| 国产高清videossex| 两性午夜刺激爽爽歪歪视频在线观看 | 真人一进一出gif抽搐免费| 国产激情久久老熟女| 久久久久久久久中文| 999精品在线视频| av欧美777| 精品免费久久久久久久清纯| 亚洲人成伊人成综合网2020| 50天的宝宝边吃奶边哭怎么回事| 不卡av一区二区三区| 老熟妇仑乱视频hdxx| 长腿黑丝高跟| 国产精华一区二区三区| √禁漫天堂资源中文www| 国产精品一区二区免费欧美| 国产伦一二天堂av在线观看| 一区二区三区激情视频| 国产精品香港三级国产av潘金莲| a级毛片a级免费在线| 一级作爱视频免费观看| 黄片播放在线免费| 国产精品98久久久久久宅男小说| 免费看a级黄色片| 免费高清视频大片| 午夜福利在线观看吧| 欧美黄色淫秽网站| 免费一级毛片在线播放高清视频| 日韩国内少妇激情av| av中文乱码字幕在线| 精品国产乱码久久久久久男人| 啦啦啦 在线观看视频| 麻豆国产av国片精品| 夜夜躁狠狠躁天天躁| 熟女电影av网| 亚洲,欧美精品.| 1024视频免费在线观看| 亚洲avbb在线观看| 超碰成人久久| 丁香欧美五月| 日本免费a在线| 精品欧美国产一区二区三| 校园春色视频在线观看| 午夜日韩欧美国产| 亚洲电影在线观看av| 一二三四社区在线视频社区8| 这个男人来自地球电影免费观看| 精品午夜福利视频在线观看一区| 高潮久久久久久久久久久不卡| 免费无遮挡裸体视频| 国内揄拍国产精品人妻在线 | 19禁男女啪啪无遮挡网站| 视频在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 久久青草综合色| 午夜福利高清视频| 国产在线观看jvid| 国产精品爽爽va在线观看网站 | 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 久久久久久免费高清国产稀缺| 久久国产乱子伦精品免费另类| 亚洲熟妇熟女久久| 欧美色视频一区免费| 欧美久久黑人一区二区| 在线观看66精品国产| 中文字幕人成人乱码亚洲影| av视频在线观看入口| 桃色一区二区三区在线观看| 看片在线看免费视频| 亚洲三区欧美一区| 精品久久久久久,| 丝袜美腿诱惑在线| 香蕉国产在线看| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合 | 久久久久久大精品| 一级作爱视频免费观看| 久久人妻av系列| 欧美精品亚洲一区二区| 91成人精品电影| 久久久水蜜桃国产精品网| 一本久久中文字幕| 欧美国产日韩亚洲一区| 欧美日韩瑟瑟在线播放| 亚洲成人精品中文字幕电影| 午夜福利免费观看在线| 非洲黑人性xxxx精品又粗又长| 成人18禁高潮啪啪吃奶动态图| 亚洲最大成人中文| 精品久久久久久,| 日韩视频一区二区在线观看| 1024手机看黄色片| 午夜久久久久精精品| 岛国在线观看网站| 在线观看一区二区三区| cao死你这个sao货| 午夜久久久在线观看| 免费无遮挡裸体视频| 亚洲激情在线av| 欧美色视频一区免费| 成人欧美大片| av中文乱码字幕在线| 亚洲欧美一区二区三区黑人| 色av中文字幕| 精品福利观看| 91麻豆精品激情在线观看国产| 色精品久久人妻99蜜桃| 亚洲在线自拍视频| 一区二区三区高清视频在线| 国产精品爽爽va在线观看网站 | 最近最新中文字幕大全电影3 | 黄色女人牲交| 久久性视频一级片| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 国产黄a三级三级三级人| 国产真实乱freesex| 99国产精品99久久久久| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 非洲黑人性xxxx精品又粗又长| 久久 成人 亚洲| 婷婷精品国产亚洲av在线| 国产精品久久久久久人妻精品电影| 亚洲精品国产一区二区精华液| 国产成+人综合+亚洲专区| 波多野结衣高清无吗| 天天添夜夜摸| 老司机福利观看| 午夜激情av网站| 亚洲精品色激情综合| 操出白浆在线播放| 91九色精品人成在线观看| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| 午夜福利成人在线免费观看| 日本成人三级电影网站| 久热这里只有精品99| 中国美女看黄片| 91大片在线观看| 12—13女人毛片做爰片一| 女性生殖器流出的白浆| 欧美一级毛片孕妇| 午夜福利高清视频| 亚洲av熟女| √禁漫天堂资源中文www| 精品福利观看| 老汉色av国产亚洲站长工具| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 免费看a级黄色片| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆 | 欧美日韩福利视频一区二区| 欧美大码av| 国产精品一区二区精品视频观看| 国产一卡二卡三卡精品| 女警被强在线播放| 亚洲最大成人中文| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 天天一区二区日本电影三级| 91麻豆精品激情在线观看国产| 18禁裸乳无遮挡免费网站照片 | 久久久久久久久中文| 日韩欧美国产一区二区入口| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久成人av| 亚洲五月色婷婷综合| 日韩三级视频一区二区三区| 中文字幕精品亚洲无线码一区 | 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 亚洲色图av天堂| 黄色视频不卡| 日韩欧美在线二视频| av中文乱码字幕在线| 18禁裸乳无遮挡免费网站照片 | 久久香蕉精品热| 俄罗斯特黄特色一大片| 中文在线观看免费www的网站 | 久久精品人妻少妇| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 女性生殖器流出的白浆| 特大巨黑吊av在线直播 | 精品国产乱码久久久久久男人| 色av中文字幕| 久久久久久九九精品二区国产 | 免费高清在线观看日韩| 一卡2卡三卡四卡精品乱码亚洲| 亚洲电影在线观看av| 日韩欧美免费精品| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| 午夜免费激情av| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 久久中文看片网| 黄色a级毛片大全视频| 老熟妇仑乱视频hdxx| 亚洲aⅴ乱码一区二区在线播放 | 日本在线视频免费播放| 亚洲全国av大片| 国产精品久久视频播放| 91在线观看av| www.999成人在线观看| 欧美丝袜亚洲另类 | 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 黄色a级毛片大全视频| 亚洲国产精品sss在线观看| 欧美日韩一级在线毛片| 欧美乱色亚洲激情| 宅男免费午夜| 99久久国产精品久久久| 欧美精品亚洲一区二区| 日韩视频一区二区在线观看| 精品第一国产精品| 国产三级在线视频| 国产欧美日韩一区二区精品| 手机成人av网站| 精品久久久久久久毛片微露脸| 熟女少妇亚洲综合色aaa.| 麻豆久久精品国产亚洲av| 欧美黑人巨大hd| 亚洲av片天天在线观看| 色综合亚洲欧美另类图片| e午夜精品久久久久久久| 久久香蕉精品热| 欧美日韩亚洲综合一区二区三区_| 一本精品99久久精品77| 亚洲真实伦在线观看| tocl精华| 一级a爱视频在线免费观看| 亚洲无线在线观看| 观看免费一级毛片| 一a级毛片在线观看| www国产在线视频色| 人人妻人人澡欧美一区二区| 国产精品美女特级片免费视频播放器 | 精品少妇一区二区三区视频日本电影| 91成年电影在线观看| 精品一区二区三区av网在线观看| 欧美在线黄色| 三级毛片av免费| 性欧美人与动物交配| av免费在线观看网站| 精品国产乱码久久久久久男人| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 美女 人体艺术 gogo| 中文亚洲av片在线观看爽| 亚洲七黄色美女视频| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 窝窝影院91人妻| 九色国产91popny在线| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 91在线观看av| 国产黄a三级三级三级人| 日本三级黄在线观看| av中文乱码字幕在线| 99在线视频只有这里精品首页| 日本熟妇午夜| 精品久久久久久久毛片微露脸| 欧美大码av| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 少妇粗大呻吟视频| 亚洲色图 男人天堂 中文字幕| 777久久人妻少妇嫩草av网站| 视频区欧美日本亚洲| 久久人妻av系列| 色综合亚洲欧美另类图片| 国产精品 欧美亚洲| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 制服丝袜大香蕉在线| 国产成人精品久久二区二区免费| 丰满的人妻完整版| 亚洲精品国产一区二区精华液| www.自偷自拍.com| 又大又爽又粗| 国产乱人伦免费视频| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 国产一卡二卡三卡精品| 国产久久久一区二区三区| 国内揄拍国产精品人妻在线 | 精品久久久久久久久久免费视频| 久久亚洲精品不卡| www国产在线视频色| 国产在线观看jvid| 首页视频小说图片口味搜索| 2021天堂中文幕一二区在线观 | 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 国产成人精品久久二区二区免费| 宅男免费午夜| 国产亚洲欧美精品永久| 国产又爽黄色视频| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器 | 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 亚洲 国产 在线| aaaaa片日本免费| 国产野战对白在线观看| 中文字幕人妻熟女乱码| 黄色成人免费大全| 免费搜索国产男女视频| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕一二三四区| 亚洲国产日韩欧美精品在线观看 | 深夜精品福利| 91大片在线观看| 亚洲国产欧洲综合997久久, | 午夜福利欧美成人| 色av中文字幕| 国产精品久久久久久精品电影 | 此物有八面人人有两片| 很黄的视频免费| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 国产v大片淫在线免费观看| 一a级毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 亚洲一区高清亚洲精品| 久久国产精品男人的天堂亚洲| 少妇的丰满在线观看| 2021天堂中文幕一二区在线观 | 欧美成人午夜精品| 日韩av在线大香蕉| 手机成人av网站| 免费人成视频x8x8入口观看| 曰老女人黄片| 日日干狠狠操夜夜爽| 老司机在亚洲福利影院| 高清毛片免费观看视频网站| 精品一区二区三区视频在线观看免费| 亚洲黑人精品在线| 久热爱精品视频在线9| 免费看十八禁软件| 亚洲三区欧美一区| 99久久无色码亚洲精品果冻| 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 欧美黑人欧美精品刺激| 人妻丰满熟妇av一区二区三区| 国产午夜精品久久久久久| 久久精品国产综合久久久| 深夜精品福利| 日本在线视频免费播放| 午夜福利一区二区在线看| 午夜成年电影在线免费观看| 国产蜜桃级精品一区二区三区| 可以免费在线观看a视频的电影网站| 波多野结衣高清无吗| av片东京热男人的天堂| 成人av一区二区三区在线看| 制服诱惑二区| 在线观看www视频免费|