• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic properties of San Carlos olivine at high temperature and high pressure

    2018-06-27 10:07:38ChangSuYonggangLiuWeiSongDaweiFanZhigangWangHongfengTang
    Acta Geochimica 2018年2期

    Chang Su?Yonggang Liu?Wei Song?Dawei Fan?Zhigang Wang?Hongfeng Tang

    1 Introduction

    To get a better understanding of the composition and dynamics of the mantle,it is important to determine the thermodynamic properties as a function of the depth of the common minerals in the Earth’s interior(Akaogi et al.2007;Chen et al.1996;Li et al.2017).Thermodynamic parameters such as heat capacity and thermal expansion of mantle minerals are related to both geodynamics and mineral physics,and their values at high pressure are major factors that controlling the Earth’s internal evolution(Yoneda et al.2009).

    Thermal expansion of mantle minerals largely depends on temperature and pressure,which can be deduced from experimental measurements on volume(Anderson 1967).Additionally,heat capacity at ambient pressure can be obtained using calorimetric experiments(Ashida et al.1987;Barin et al.1973;Watanabe 1982)or theoretical calculations(Akaogi et al.1984;Jacobs et al.2017;Price et al.1987).By using transient hot-wire method,the specific heat can be directly measured,but only in a lowpressure range(Andersson and Ross 1994;Nesbitt et al.2017).Osako et al.(2004)presented a new method to obtain the high pressure heat capacity in terms of simultaneous thermal conductivity and thermal diffusivity measurement(Osako et al.2004).Heat capacity of the solids is considered to be virtually independent of pressure(Navrotsky 1995),and its pressure derivation is sometimes ignored.However,considering its importance in calorimetric study,it is still worth determining the heat capacity for common mantle minerals at high pressure and its pressure dependence.

    Davis and Gordon introduced a numerical procedure which can be used to derive the equation of state(EoS)(Davis and Gordon 1967).This equation set is based on a series of classical thermodynamic relationships,allowing accurate determination of the volume of a liquid as a function of pressure and temperature from experimental adiabatic sound velocity.This method has been applied on other melts or solutions(Ayrinhac et al.2015;Chorazewski et al.2013;de Koker 2012;Su et al.2017),thus proving its reliability.The accurate results show that this method is independent of any knowledge about compression in solid phases,and the sound velocity as a function of density follows a scaling law valid across the entire metallic state regime.But as far as we know,this numerical procedure is rarely used in single cell or polycrystalline minerals.

    In order to test the feasibility of this method on minerals,we chose San Carlos olivine as our research material.San Carlos olivine is the ultramafic inclusion that is located in San Carlos,Arizona with a Mg:Fe ratio of 9:1[(Mg0.9-Fe0.1)2SiO4](Frey and Prinz 1978),which is the approximate composition of the peridotites in the mantle(Kojitani et al.2016).Olivine is a major component of the upper mantle(Liu et al.2005),and the determination of its thermodynamic properties is one of the most important themes in mineral science(Jianping et al.1995).The phase transition of olivine into its high pressure polymorph wadsleyite at~ 13–14 GPa is considered to be the most likely cause of the discontinuity at 410 km depth,from which the temperature of the 410 km discontinuity can be deduced from the thermodynamic changes.Because of this,numerous amount of studies have been carried out that provide the elastic properties of San Carlos olivine in a wide pressure and temperature range(Abramson et al.1997;Darling et al.2004;Isaak 1992;Liu et al.2005;Mao et al.2015;Zhang and Bass 2016).

    In this study,using our original research and data from previous studies,we report the molar volume,thermal expansion,adiabatic bulk modulus and shear modulus of San Carlos olivine at high temperature and high pressure extracted with the numerical calculation.Then,we compare our findings with previous scholarship.Specifically,we present the thermal expansion and heat capacity of San Carlos olivine to 14 GPa and provide an equation that relates to both temperature and pressure.Finally,using the thermal expansion and heat capacity data of San Carlos olivine,we propose the temperature gradient of the upper mantle.

    2 Calculation procedure

    2.1 Thermodynamic calculation

    We used data provided in Davis and Gordon(1967)to determine the calculation procedure and obtain the EoS of San Carlos olivine and its thermodynamic parameters as a function of temperature and pressure.This method uses classical thermodynamic relations to extract the density variation as a function of pressure and temperature from the adiabatic sound velocities.The fundamental equations are described below.

    First,the thermal expansion(α)is defined as:

    Then,according to the definition of heat capacity(CP),its variation with pressure can be evaluated as Eq.(2),which is based on the Maxwell relation:

    Furthermore,the partial differential equation about the density at high pressure can be derived from the relationship between the isothermal and adiabatic bulk modulus:

    where v stands for the sound velocity,and in the past only P-wave velocity was used in the previous works on liquids(Ayrinhac et al.2014,2015;Su et al.2017).To test whether this method could be applied to solids or not,we made a change on Eq.(3)to use the bulk velocity(vB)instead:

    To start the calculation, first we calculated ρ as a function of temperature at zero pressure ρ( P0,T)and α at ambient pressure with Eq.(1).It is also necessary to determine the values of the heat capacity with increasing temperature CP(P0,T)in order to derive the approximate ρ at an arbitrary reference pressure using Eq.(2).The resulting ρ is used to update the value of αPand CPat the same pressure with Eqs.(1)and(2).Iteration of this loop leads to converged values of ρ,αPand CPat high pressure conditions.Furthermore,with the deduced results,the adiabatic bulk modulus(KS)and shear modulus(G)can also be obtained:

    2.2 Thermodynamic data

    2.2.1 Sound velocity at high temperature and high pressure

    The sound velocities of San Carlos olivine have been investigated using different experimental methods(Abramson et al.1997;Darling et al.2004;Isaak 1992;Liu et al.2005;Mao et al.2015;Zhang and Bass 2016).Isaak first reported the high temperature elastic moduli for Febearing olivine,which provided various parameters as a function of temperature at ambient pressure(Isaak 1992).Then Abramson et al.(1997)measured the sound velocities up to 17 GPa at room temperature in a diamond anvil cell,and the results were consistent with those given by Darling et al.,which were obtained with a Kawaii type multi-anvil apparatus(Darling et al.2004).The highest temperature and pressure range data available to date was determined by Zhang and Bass,who used the Brillouin spectroscopy with CO2laser-heating and calculated the sound velocities of San Carlos olivine to 16.5 GPa at room temperature and 12.8 GPa at 1300 K(Zhang and Bass 2016).

    Though this research provides useful data on the elastic properties of the olivine in a wide range of P–T conditions,what is needed is more detailed sound velocity data on a smaller interval of temperature and pressure.The data published by Liu et al.(2005)and Mao et al.(2015)provide sound velocities at both high temperature and high pressure conditions.With a DIA type large volume apparatus,Liu et al.(2005)measured the P-wave and S-wave sound velocities of the polycrystalline San Carlos olivine to 8 GPa and 1073 K,while Mao et al.(2015)analyzed natural single crystals using the high P–T Brillouin measurements,which provided a smaller difference between the experimental data and the isothermal fitting results.Therefore,in this paper,we used Mao’s sound velocities of San Carlos olivine.

    Using thevpandvsdata from Isaak(1992),we determinedvpandvsto analyze the high P–T data to ambient pressure,thus permitting us to obtain the P–T–v relationship as Eq.(7),whose form is based on the work by Ayrinhac et al.(2015):

    The fitting coefficients are shown in Table 1,with a reduced χ2as 2.35 forvpand 3.85 forvs,respectively.

    2.2.2 Density at ambient pressure

    The densities of San Carlos olivine at room temperature and ambient pressure are given as 3353 kg m-3in Isaak(1992),which were measured using the Archimedes immersion technique.Then Abramson et al.(1997)reported the density as 3355 kg m-3using the buoyancy method,and this resultisclose to the value of 3360 kg m-3based on the lattice constants.Zha et al.(1998)measured the density with X-ray diffraction and found a value of 3343 kg m-3,which is in agreement with the latest data 3341 kg m-3using the same method(Zhang and Bass 2016).For the α,here we chose α =3.304 ×10-5+0.742×10-8T-0.538T-2K-1by Fei(1995)based on the experimental data of Suzuki(1975).Therefore,a reliable extrapolation of ρ to high temperature can be constrained by previous studies:

    2.2.3 Heat capacity at ambient pressure

    The heat capacity of San Carlos olivine at ambient pressure was also provided by Isaak(1992),which was determined from the end-member heat capacity data from Barin et al.(1973).Richet presented a way to obtain the heat capacity of the silicate glass with increasing temperature(Richet 1987),and he found that the value depended on the composition of the silicate glass.In Richet’s(1987) fitting equation,the temperature limit was lower than 800 K.In our calculation,we determined the values of heat capacity to be greater than 800 K,so in this work,we used Isaak’s ambient pressure heat capacity data.Berman and Brown gave a revised formula that represented and extrapolated the heat capacity with increasing temperature(1985),which was based on the lattice vibration theory,hence the fitting equation is:

    withCPin J kg-1K-1and T in K.

    With the data listed above,we derived the density,thermal expansion,heat capacity,adiabatic bulk modulus and shear modulus of San Carlos olivine under different temperature and pressure conditions.

    3 Results and discussion

    3.1 EoS and elastic properties comparisons

    For the EoS of San Carlos olivine,the room temperature volume was measured using impulsively stimulated laser scattering to 17 GPa by Abramson et al.(1997)and later,using Brillouin spectroscopy to~30 GPa by Zha et al.(1998).The high temperature volume data was determined to 1073 K and 8 GPa using in situ synchrotron X-ray diffraction measurements(Liu and Li 2006).Figure 1 illustrates the molar volume of San Carlos olivine with increasing temperature and pressure,as well as the former results as comparisons.

    Table 1 aijcoefficients for Eq.(7)with v in m s-1,T in K and P in GPa

    From Fig.1,we can see that the calculated results generally agree with the previous experimental data(Abramson et al.1997;Liu and Li 2006;Zha et al.1998).At room temperature,our results show a similar trend with Abramson’s results,with a difference of~ 0.4%.The largest separation between our result and the other two works is 0.3%at 2.8 GPa.At high temperatures,our theoretical data is consistent with the experimental data,with a reduced χ2=7.63.As we mentioned above,the ambient pressure density data we used were obtained from theoretical calculations,so its difference from the experimental data was predicted to be large.However,with the increasing pressure,we can see that the separations became smaller,especially over~4 GPa.Hence,though different measurements would likely give data with different uncertainties,because of the self-consistency of the thermodynamic parameters,the calculated results could be fixed when using this theoretical method,which would finally provide reliable results.

    Fig.1 Molar volume of San Carlos olivine as a function of pressure at different temperatures[curves:theoretical results from this work;solid circles:experimental results from Liu et al.(2005);insert:room temperature data with previous work]

    The other quantities derived from our calculation are adiabatic bulk modulus and shear modulus.Based on Hashin–Shtrikman bounds,the aggregate KSand G of San Carlos olivine have been determined to 3 GPa(Webb 1989),17 GPa(Abramson et al.1997)and 32.5 GPa(Zha et al.1998)at room temperature using various techniques.For high temperature data,Liu et al.(2005)provide the values not only of KS0,G0and their pressure derivation,but also their temperature derivation to 8 GPa and 1073 K(Liu et al.2005).Mao et al.(2015),whose sound velocities we utilized in our calculation,calculated the elastic moduli of San Carlos olivine to~18 GPa and 900 K.With the density data of San Carlos olivine as a function of both temperature and pressure,the values of KSand G can be obtained with Eqs.(5)-(6),thus our calculated results are shown in Fig.2 along with the previous works.

    Figure 2a,b illustrate the KSand G with increasing pressure at room temperature and high temperature,respectively.Generally,for KS,its values follow a nearly linear increase with pressure under same temperature,whereas G exhibits a downward trend towards higher pressure.In Fig.2a,our results agree with the former ones and are close to Mao’s results,which gives a largest separation as 0.4%at~14 GPa for both KSand G.This likely occurs due to our use of Mao’s sound velocity data during our calculation.For KS,all of the works consistently agree with each other except for Liu et al.(2005)’s data,whose slope is steeper than the others.For G,the separations get larger above~5 GPa,and our slope gets smoother comparing to the others.In Fig.2b,the differences seem to be quite large from different methods,especially under~6 GPa,butthen the consistency between our results and Mao et al.’s(2015)results improves with increasing pressure.

    Fig.2 Comparison of adiabatic bulk modulus and shear modulus.a Room temperature condition.b High temperature condition.Blue:500 K;red:750 K;green:900 K; filled areas:Liu et al.(2005);dash lines:Mao et al.(2015);solid lines:this work

    3.2 Thermal expansion and heat capacity at high temperature and high pressure

    For the thermodynamic parameters deduced from Eqs.(1)–(4),here we present the thermal expansion and heat capacity of San Carlos olivine under different temperatures with increasing pressure in Figs.3 and 4,respectively.

    The thermal expansions of minerals at high pressure are usually related to their volumes by the Anderson-Grüneisen parameter(δT),which describes the degree of decrease in α by compression(Anderson 1966).The expression is:

    where α0is the thermal expansion at ambient pressure andV0,VPare volumes at ambient pressure and high pressure,respectively.In this work,the value of δTis calculated as 7.15±0.6,which is similar as forsterite(7.2±0.3,Katsura et al.,2010).Furthermore,the product of thermal expansion and isothermal bulk modulus(αKT),which can be considered volume-independent within the investigated pressure and temperature range,is 4.02±0.35×10-3,and this result is close to the value given by Liu and Li(4.08±0.10×10-3,2006).

    Fig.3 Thermal expansion of San Carlos olivine as a function of pressure at different temperatures

    Fig.4 Heat capacity of San Carlos olivine as a function of pressure at different temperatures

    Most of the data about the heat capacity of olivine or other minerals are obtained at ambient pressure using calorimeters(Akaogi et al.2007;Robie et al.1982;Watanabe 1982),and the sources at high pressure are still rare.Though the heat capacities have been measured in the piston cylinder(Andersson and Ross 1994;Hashimoto et al.2006),the pressure range was limited to 2 GPa.Actually,the experimental method to measure the heat capacity directly continues to be a problem because of the difficulty of obtaining calorimetric measurements in high temperature and high pressure(Yoneda et al.2009).In mineralogy,heat capacity is usually related to thermal conductivity(λ)and thermal diffusivity(κ),hence in 2004,a method to obtain the heat capacity was developed by Osako et al.(2004),which simultaneously measured λ and κ at high temperature and high pressure,thus permitting for the heat capacity to be calculated.Osako et al.(2004)measured the λ and κ of San Carlos olivine,which provided the pressure derivation of its heat capacity(dC/dP)and the values of the CP/dP changed for different crystal axis.Also,the value of dCP/dP deduced from the ambient pressure data was also presented(Suzuki 1975;Watanabe 1982).

    In Fig.5,we illustrate the heat capacities with increasing pressure at room temperature,which are calculated using Eq.(12)and the values from Watanabe(1982)and Osako et al.(2004).At ambient pressure,ourCP|P=0is 814 J kg-1K-1,which is close to the values from Watanabe’s result.Also in combining data of Watanabe(1982)and Suzuki(1975),in Fig.5,we can see that the variations among the slopes from different axis are large,except for the[1 0 0]one,whose slope is-1.5,thus making it quite similar to Watanabe’s(1982)results.Meanwhile,our result is consistent with that of Watanabe,and the slope is dCP/dP=3.67×10-2P-1.43,where P is in GPa.Since the error of the heat capacities from Osako et al.(2004)is 6%,our results still coincide with theirs(Osako et al.2004,Watanabe,1982).

    Fig.5 Heat capacity vs pressure at room temperature with previous work

    3.3 Temperature gradient to 410 km

    One of the most important applications of thermal expansion and heat capacity at high pressure is used to estimate the temperature gradient in the Earth’s interior.Since conductive and radiative heat transfer can be ignored because of the small thermal conductivity of mantle minerals,the temperature gradient is considered to be nearly adiabatic.Therefore,the adiabatic temperature gradient can be expressed as:

    where z is the depth,g is the gravitational acceleration(Katsura et al.2010).

    To calculate the temperature gradient in the upper mantle,we extrapolate the thermal expansion and heat capacity to the pressure and temperature range at the 410 km discontinuity in the mantle.Considering the temperature range in this study,it should be an adequate approximation to treat thermal expansion as linear in temperature at ambient pressure(Katsura et al.2010).For heat capacity,its variation with increasing temperature at ambient pressure can be fitted using the model from Berman and Brown(1985).As seen in Figs.3 and 4,both thermal expansion and heat capacity at high pressure can clearly be presented by a polynomial fitting equation,thus with the data derived from Eqs.(1)–(4),the thermal expansion and heat capacity of San Carlos olivine as a function of both temperature and pressure can be expressed as Eqs.(12)and(13).

    The fitting coefficients for Eqs.(12)and(13)are listed in Tables 2 and 3,respectively.The misfit for Eq.(12)is less than 2 and 1.6%for Eq.(13).

    We adopted the pressure gradient as 0.034 GPa km-1from previous work(Matsui et al.2000)and the gravitational acceleration from PREM model;therefore,the temperature gradient can be calculated from Eq.(11).

    The estimated temperature gradient is shown in Fig.6 along with the former results(Katsura et al.2010;Stacey and Davis 2008).Figure 7 illustrates the thermal expansion variation in the mantle.The gradient is~0.64 K km-1at the top of the asthenosphere, then decreases to~0.37 K km-1at the 410 km discontinuity.In Fig.7,the trend in our results generally agrees with that of Katsura et al.(2010)in concluding that the values decrease with increasing depth.The thermal expansion given by Stacey and Davis(2008)and Katsura et al.(2010),respectively,was for forsterite,which is Fe-free olivine,and the thermal expansion for San Carlos olivine is approximately 10%higher than that of forsterite,which might be caused by the content of Fe.

    4 Conclusion

    In this work,we used a numerical method,which was applied to liquids only,to calculate various parameters of San Carlos olivine.Matching the previous data of heat capacity and density at ambient pressure with sound velocities at high pressure,we derived the molar volume,adiabatic bulk modulus,and shear modulus as a function of temperature and pressure,and then we extrapolated the pressure range to about 14 GPa,which is the approximate pressure of the 410 km discontinuity.The calculated results agreed with the former experimental data and proved the feasibility of our theoretical method.Most importantly,our theoretical method can be used to determine the thermal expansion and heat capacity of minerals at high pressure,which are hard to measure through experimentation.We not only deduced a fitting equation of thermal expansion and heat capacity of San Carlos olivine as a function for both temperature and pressure,but alsoproposed the variations of heat capacity with increasing pressure?CP/?P=3.67×10-2P-1.43,which are useful for making decisions in a thermodynamic analysis.Finally,we presented the temperature gradient to the 410 km discontinuity using the thermodynamic parameters that we derived,which provided the variations of the thermodynamic properties in the mantle.

    Table 2 Fitting coefficients for Eq.(12),P in GPa,T in K and α in K-1

    Table 3 Fitting coefficients for Eq.(13),P in GPa,T in K and CPis in J kg-1K-1

    Fig.6 Temperature gradient with increasing depth

    Fig.7 Thermal expansion variation of San Carlos olivine with increasing depth

    AcknowledgementsThis work was supported by the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB 18010401)and Light of the West Foundation of Chinese Academy of Sciences(Y5CR025000).

    Abramson EH,Brown JM,Slutsky LJ,Zaug JM(1997)The elastic constants of San Carlos olivine to 17 GPa.J Geophys Res Solid Earth 102:12253–12263.https://doi.org/10.1029/97jb00682

    Akaogi M,Ross NL,Mcmillan P,Navrotsky A(1984)The Mg2SiO4polymorphs(olivine,modified spinel and spinel):thermodynamic properties from oxide melt solution calorimetry,phase relations,and models of lattice vibrations.Am Miner 69:499–512

    Akaogi M,Takayama H,Kojitani H,Kawaji H,Atake T(2007)Lowtemperature heat capacities,entropies and enthalpies of Mg2SiO4polymorphs,and alpha-beta-gamma and post-spinel phase relations at high pressure.Phys Chem Miner 34:169–183.https://doi.org/10.1007/s00269-006-0137-3

    Anderson OL(1966)Derivation of wachtman’s equation for temperature dependence of elastic moduli of oxide compounds.Phys Rev 144:553.https://doi.org/10.1103/PhysRev.144.553

    Anderson OL(1967)Equation for thermal expansivity in planetary interiors.J Geophys Res72:3661.https://doi.org/10.1029/JZ072i014p03661

    Andersson SP,Ross RG(1994)Thermal conductivity and heatcapacity per unit volume of poly(methyl methacrylate)under high pressure.Int J Thermophys 15:949–962.https://doi.org/10.1007/Bf01447105

    Ashida T,Kume S,Ito E(1987)Thermodynamic aspects of phase boundary among α-, β-,and γ-Mg2SiO4.In:Manghnani MH,Syono Y(eds)High pressure research in mineral physics.Terra Scientific Publishing,Tokyo/American Geophysical Union,Washington

    Ayrinhac S et al(2014)Equation of state of liquid mercury to 520 K and 7 GPa from acoustic velocity measurements.J Chem Phys 140:244201.https://doi.org/10.1063/1.4882695

    Ayrinhac S,Gauthier M,Le Marchand G,Morand M,Bergame F,Decremps F(2015)Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements.J Phys:Condens Matter 27:275103.https://doi.org/10.1088/0953-8984/27/27/275103

    Barin I,Knacke O,Kubaschewski O (1973)Thermochemical properties of inorganic substances.Springer,Berlin

    Berman RG,Brown TH(1985)Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2:representation,estimation,and high temperature extrapolation.Contrib Mineral Petrol 89:168–183.https://doi.org/10.1007/Bf00379451

    Chen G,Li B,Liebermann RC(1996)Selected elastic moduli of single-crystal olivines from ultrasonic experiments to mantle pressures.Science 272:979–980.https://doi.org/10.1126/science.272.5264.979

    Chorazewski M,Dzida M,Zorebski E,Zorebski M(2013)Density,speed of sound,heat capacity,and related properties of 1-hexanol and 2-ethyl-1-butanol as function of temperature and pressure.J Chem Thermodyn 58:389–397.https://doi.org/10.1016/j.jct.2012.09.027

    Darling KL,Gwanmesia GD,Kung J,Li BS,Liebermann RC(2004)Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi-anvil,high-pressure apparatus.Phys Earth Planet Inter 143:19–31.https://doi.org/10.1016/j.pepi.2003.07.018

    Davis LA,Gordon RB(1967)Compression of mercury at high pressure.J Chem Phys46:2650.https://doi.org/10.1063/1.1841095

    de Koker N(2012)Melting of cubic boron nitride at extreme pressures.J Phys:Condens Matter 24:055401.https://doi.org/10.1088/0953-8984/24/5/055401

    Fei YW(1995)Mineral physics and crystallography:a handbook of physical constants.American Geophysical Union,Washington

    Frey FA,Prinz M(1978)Ultramafic inclusions from San Carlos,Arizona:petrologic and geochemical data bearing on their petrogenesis.Earth Planet Sci Lett 38:129–176.https://doi.org/10.1016/0012-821x(78)90130-9

    Hashimoto M,Tomioka F,Umehara I,Fujiwara T,Hedo M,Uwatoko Y(2006)Heat capacity measurement of CePd2Si2under high pressure.Phys B 378–80:815–816.https://doi.org/10.1016/j.physb.2006.01.298

    Isaak DG(1992)High-temperature elasticity of iron-bearing olivines.J Geophys Res Solid Earth 97:1871–1885.https://doi.org/10.1029/91jb02675

    Jacobs MHG,Schmid-Fetzer R,van den Berg AP(2017)Phase diagrams,thermodynamic properties and sound velocities derived from a multiple Einstein method using vibrational densities of states:an application to MgO–SiO2.Phys Chem Miner 44:43–62.https://doi.org/10.1007/s00269-016-0835-4

    Jianping L,Kornprobst J,Vielzeuf D,Fabriès J(1995)An improved experimental calibration of the olivine-spinel geothermometer Chinese. J Geochem 14:68–77. https://doi.org/10.1007/bf02840385

    Katsura T,Yoneda A,Yamazaki D,Yoshino T,Ito E(2010)Adiabatic temperature profile in the mantle.Phys Earth Planet Inter 183:212–218.https://doi.org/10.1016/j.pepi.2010.07.001

    Kojitani H,Inoue T,Akaogi M(2016)Precise measurements of enthalpy of postspinel transition in Mg2SiO4and application to the phase boundary calculation.J Geophys Res Solid Earth 121:729–742.https://doi.org/10.1002/2015jb012211

    Li B,Ge J,Zhang B(2017)Diffusion in garnet:a review.Acta Geochim.https://doi.org/10.1007/s11631-017-0187-x

    Liu W,Li BS(2006)Thermal equation of state of(Mg0.9Fe0.1)2SiO4olivine.Phys Earth Planet Inter 157:188–195.https://doi.org/10.1016/j.pepi.2006.04.003

    Liu W,Kung J,Li BS(2005)Elasticity of San Carlos olivine to 8 GPa and 1073 K.Geophys Res Lett 32:4.https://doi.org/10.1029/2005gl023453

    Mao Z,Fan DW,Lin JF,Yang J,Tkachev SN,Zhuravlev K,Prakapenka VB(2015)Elasticity of single-crystal olivine at high pressures and temperatures.Earth Planet Sci Lett 426:204–215.https://doi.org/10.1016/j.epsl.2015.06.045

    Matsui M,Parker SC,Leslie M(2000)The MD simulation of the equation of state of MgO:application as a pressure calibration standard at high temperature and high pressure.Am Miner 85:312–316.https://doi.org/10.2138/am-2000-2-308

    Navrotsky A(1995)Thermodynamic properties of minerals.In:Mineral physics&crystallography:a handbook of physical constants.American Geophysical Union,pp 18–28.https://doi.org/10.1029/rf002p0018

    Nesbitt HW,Bancroft GM,Henderson GS,Richet P,O’Shaughnessy C(2017)Melting,crystallization,and the glass transition:toward a unified description for silicate phase transitions.Am Miner 102:412–420.https://doi.org/10.2138/am-2017-5852

    Osako M,Ito E,Yoneda A(2004)Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys Earth Planet Inter 143:311–320.https://doi.org/10.1016/j.pepi.2003.10.010

    Price GD,Parker SC,Leslie M(1987)The lattice dynamics and thermodynamics of the Mg2SiO4polymorphs.Phys Chem Miner 15:181–190.https://doi.org/10.1007/Bf00308782

    Richet P(1987)Heat capacity of silicate glasses.Chem Geol 62:111–124.https://doi.org/10.1016/0009-2541(87)90062-3

    Robie RA,Hemingway BS,Takei H(1982)Heat capacities and entropies of Mg2SiO4,Mn2SiO4,and Co2SiO4between 5 K and 380 K.Am Miner 67:470–482

    Stacey F,Davis P(2008)Physics of the earth.Cambridge University Press,Cambridge

    Su C,Liu YG,Wang ZG,Song W,Asimow PD,Tang HF,Xie HS(2017)Equation of state of liquid bismuth and its melting curve from ultrasonic investigation athigh pressure.Phys B 524:154–162.https://doi.org/10.1016/j.physb.2017.08.049

    Suzuki I(1975)Thermal expansion of periclase and olivine,and their anharmonic properties.In:Elastic properties and equations of state.American Geophysical Union,pp 361–375.https://doi.org/10.1029/sp026p0361

    Watanabe H(1982)Thermochemical properties of synthetic highpressure compounds relevant to the earth’s mantle.High pressure research in geophysics.Center for Academic Publications Japan,Tokyo

    Webb SL(1989)The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa.Phys Chem Miner 16:684–692

    Yoneda A,Osako M,Ito E(2009)Heat capacity measurement under high pressure:a finite element method assessment.Phys Earth Planet Inter 174:309–314.https://doi.org/10.1016/j.pepi.2008.10.004

    Zha CS,Duffy TS,Downs RT,Mao HK,Hemley RJ(1998)Brillouin scattering and X-ray diffraction of San Carlos olivine:direct pressure determination to 32 GPa.Earth Planet Sci Lett 159:25–33.https://doi.org/10.1016/S0012-821x(98)00063-6

    Zhang JS,Bass JD(2016)Sound velocities of olivine at high pressures and temperatures and the composition of Earth’s upper mantle.Geophys Res Lett 43:9611–9618.https://doi.org/10.1002/2016gl069949

    成年人午夜在线观看视频| 国产av国产精品国产| 国产精品久久久久成人av| 午夜福利影视在线免费观看| 久久精品国产a三级三级三级| 他把我摸到了高潮在线观看 | 亚洲国产av新网站| 国产免费视频播放在线视频| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 国产国语露脸激情在线看| 我的亚洲天堂| 亚洲国产成人一精品久久久| 性高湖久久久久久久久免费观看| 国产精品秋霞免费鲁丝片| 成人三级做爰电影| 久久ye,这里只有精品| 看免费av毛片| 亚洲三区欧美一区| 亚洲欧洲日产国产| 欧美精品av麻豆av| 国产成人av激情在线播放| 久久ye,这里只有精品| 国产成人av激情在线播放| 青青草视频在线视频观看| 亚洲色图综合在线观看| 在线观看免费高清a一片| 热re99久久国产66热| 国产免费一区二区三区四区乱码| 午夜福利视频在线观看免费| 纵有疾风起免费观看全集完整版| 大码成人一级视频| av免费在线观看网站| 欧美在线黄色| 日本a在线网址| 亚洲精品乱久久久久久| 老熟妇乱子伦视频在线观看 | 男女免费视频国产| 欧美另类一区| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 亚洲熟女精品中文字幕| 午夜日韩欧美国产| 国产日韩欧美在线精品| 天天操日日干夜夜撸| av又黄又爽大尺度在线免费看| 一本久久精品| 久久狼人影院| 嫁个100分男人电影在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 亚洲国产看品久久| 久久久久久久久久久久大奶| 多毛熟女@视频| 免费日韩欧美在线观看| 日韩欧美一区二区三区在线观看 | 国产一区有黄有色的免费视频| 国产精品av久久久久免费| 少妇人妻久久综合中文| 精品卡一卡二卡四卡免费| 国产深夜福利视频在线观看| 精品免费久久久久久久清纯 | 国产一区二区在线观看av| 亚洲成人手机| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| 精品久久久久久电影网| 国产在视频线精品| 国产主播在线观看一区二区| 欧美精品一区二区免费开放| 9191精品国产免费久久| av天堂在线播放| 久久国产精品大桥未久av| 一区二区av电影网| 欧美国产精品va在线观看不卡| 欧美精品高潮呻吟av久久| 51午夜福利影视在线观看| 欧美一级毛片孕妇| 亚洲欧美激情在线| 亚洲精品国产精品久久久不卡| 99热国产这里只有精品6| 黄色毛片三级朝国网站| 91成人精品电影| 久久人妻福利社区极品人妻图片| 黑人猛操日本美女一级片| 久久人人爽人人片av| 久久中文看片网| 久久性视频一级片| 黑人操中国人逼视频| 91成人精品电影| 最近最新中文字幕大全免费视频| 成人影院久久| 嫩草影视91久久| 亚洲九九香蕉| 久久久精品94久久精品| 三上悠亚av全集在线观看| 女性生殖器流出的白浆| av片东京热男人的天堂| 一边摸一边抽搐一进一出视频| 久久亚洲精品不卡| 69精品国产乱码久久久| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| av网站免费在线观看视频| 一级毛片电影观看| 国产高清视频在线播放一区 | 黄色视频在线播放观看不卡| 1024香蕉在线观看| 性少妇av在线| 亚洲欧美精品综合一区二区三区| 女性生殖器流出的白浆| 狂野欧美激情性xxxx| 男人爽女人下面视频在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲一码二码三码区别大吗| 久久久久久久久免费视频了| 无遮挡黄片免费观看| 欧美在线一区亚洲| 亚洲色图综合在线观看| 亚洲国产看品久久| 国产欧美日韩一区二区精品| 91精品伊人久久大香线蕉| 国产亚洲精品第一综合不卡| 麻豆av在线久日| 高潮久久久久久久久久久不卡| 久久久久久久国产电影| 国产福利在线免费观看视频| 日本av手机在线免费观看| 欧美+亚洲+日韩+国产| 狠狠婷婷综合久久久久久88av| 一级片'在线观看视频| 夜夜夜夜夜久久久久| 又黄又粗又硬又大视频| 国产一卡二卡三卡精品| 国产极品粉嫩免费观看在线| 五月天丁香电影| 久久天堂一区二区三区四区| 一区二区av电影网| av免费在线观看网站| 热99久久久久精品小说推荐| 欧美成狂野欧美在线观看| 2018国产大陆天天弄谢| 高潮久久久久久久久久久不卡| 精品国内亚洲2022精品成人 | 男女床上黄色一级片免费看| 国内毛片毛片毛片毛片毛片| 久久精品亚洲av国产电影网| 日本wwww免费看| av天堂久久9| av不卡在线播放| 午夜精品国产一区二区电影| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 免费高清在线观看视频在线观看| 99九九在线精品视频| 啦啦啦免费观看视频1| 18在线观看网站| 亚洲精品av麻豆狂野| 波多野结衣av一区二区av| 电影成人av| 国产99久久九九免费精品| 99久久人妻综合| 高清黄色对白视频在线免费看| 欧美大码av| 亚洲全国av大片| 天堂中文最新版在线下载| 国产片内射在线| 老司机靠b影院| 最近中文字幕2019免费版| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| 亚洲精品中文字幕一二三四区 | 性色av一级| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲男人天堂网一区| 99香蕉大伊视频| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看 | 性高湖久久久久久久久免费观看| 午夜激情久久久久久久| 成年av动漫网址| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 日本欧美视频一区| 操出白浆在线播放| 久久久久国产精品人妻一区二区| 视频区欧美日本亚洲| 午夜激情久久久久久久| 国产精品影院久久| 国产精品偷伦视频观看了| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av香蕉五月 | 久久性视频一级片| 成年人午夜在线观看视频| 黄片小视频在线播放| 日韩一卡2卡3卡4卡2021年| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| 日韩大片免费观看网站| 成人av一区二区三区在线看 | 999久久久精品免费观看国产| 日韩视频一区二区在线观看| 人人妻人人添人人爽欧美一区卜| 午夜福利乱码中文字幕| e午夜精品久久久久久久| 日韩一区二区三区影片| 黑丝袜美女国产一区| 欧美少妇被猛烈插入视频| 亚洲 国产 在线| 亚洲黑人精品在线| 一本久久精品| 国产一区二区激情短视频 | 十八禁网站免费在线| 在线av久久热| 18禁观看日本| 大香蕉久久成人网| a级毛片黄视频| 国产一区二区激情短视频 | 国产精品九九99| 国产激情久久老熟女| 午夜视频精品福利| 日韩大码丰满熟妇| av不卡在线播放| 亚洲国产日韩一区二区| 久久久久精品国产欧美久久久 | 免费观看a级毛片全部| 欧美精品啪啪一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 国产精品影院久久| 99香蕉大伊视频| 老熟妇乱子伦视频在线观看 | 天堂8中文在线网| 国产一区有黄有色的免费视频| 波多野结衣一区麻豆| 亚洲精品国产av成人精品| 久久av网站| 亚洲国产欧美在线一区| 国产一级毛片在线| 免费看十八禁软件| 老司机亚洲免费影院| 大香蕉久久网| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 亚洲成国产人片在线观看| 欧美日韩黄片免| 天天操日日干夜夜撸| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 成人三级做爰电影| tube8黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩一区二区三区影片| 亚洲av欧美aⅴ国产| 黑人操中国人逼视频| 免费在线观看完整版高清| 亚洲国产欧美在线一区| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 国产精品一二三区在线看| 日本a在线网址| 免费一级毛片在线播放高清视频 | 1024视频免费在线观看| 欧美日韩av久久| 亚洲av日韩精品久久久久久密| 久久久久精品国产欧美久久久 | 亚洲欧美成人综合另类久久久| 欧美日韩av久久| 99国产综合亚洲精品| 我的亚洲天堂| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 日本欧美视频一区| 各种免费的搞黄视频| 12—13女人毛片做爰片一| 日韩人妻精品一区2区三区| 欧美乱码精品一区二区三区| 捣出白浆h1v1| 午夜免费鲁丝| 亚洲男人天堂网一区| 人妻久久中文字幕网| av线在线观看网站| 日本一区二区免费在线视频| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| www.精华液| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 亚洲性夜色夜夜综合| 久久天堂一区二区三区四区| 老鸭窝网址在线观看| 夫妻午夜视频| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 免费黄频网站在线观看国产| 免费观看av网站的网址| 在线观看一区二区三区激情| 久久人妻福利社区极品人妻图片| 国产97色在线日韩免费| 蜜桃国产av成人99| 亚洲五月婷婷丁香| 国产亚洲一区二区精品| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 中国美女看黄片| 一边摸一边抽搐一进一出视频| 香蕉丝袜av| 午夜福利视频精品| 色94色欧美一区二区| 国产成人av激情在线播放| 91麻豆精品激情在线观看国产 | 欧美精品高潮呻吟av久久| 国产精品秋霞免费鲁丝片| 成人av一区二区三区在线看 | 精品人妻一区二区三区麻豆| 99久久精品国产亚洲精品| 老熟妇仑乱视频hdxx| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 69av精品久久久久久 | 国产真人三级小视频在线观看| e午夜精品久久久久久久| 好男人电影高清在线观看| 久久久国产成人免费| 亚洲精品在线美女| 亚洲美女黄色视频免费看| 亚洲五月色婷婷综合| 免费女性裸体啪啪无遮挡网站| 99九九在线精品视频| 国产精品一区二区在线观看99| 中文字幕av电影在线播放| 在线精品无人区一区二区三| 精品国内亚洲2022精品成人 | 天天躁夜夜躁狠狠躁躁| 一区二区av电影网| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区蜜桃| 精品一区二区三区四区五区乱码| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 老汉色∧v一级毛片| 超色免费av| 国产精品免费视频内射| 十八禁人妻一区二区| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一出视频| 国产免费福利视频在线观看| 男人爽女人下面视频在线观看| 在线看a的网站| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| 久久久久网色| 国产精品 国内视频| 国产精品一区二区精品视频观看| 亚洲精品自拍成人| 99热全是精品| 大香蕉久久成人网| 飞空精品影院首页| 国产麻豆69| 亚洲专区中文字幕在线| 极品人妻少妇av视频| 日本五十路高清| 桃花免费在线播放| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 99精品欧美一区二区三区四区| 丰满迷人的少妇在线观看| 午夜福利,免费看| 国产成人av激情在线播放| www.999成人在线观看| 91老司机精品| 在线天堂中文资源库| 亚洲色图综合在线观看| 国产一区二区三区在线臀色熟女 | 电影成人av| 97精品久久久久久久久久精品| a级毛片在线看网站| 侵犯人妻中文字幕一二三四区| 麻豆av在线久日| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 男人舔女人的私密视频| 国产成人免费观看mmmm| 啦啦啦免费观看视频1| 国产男人的电影天堂91| 久久毛片免费看一区二区三区| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 日日摸夜夜添夜夜添小说| 久久精品人人爽人人爽视色| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区| 在线 av 中文字幕| 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 久久精品久久久久久噜噜老黄| 日韩制服丝袜自拍偷拍| 可以免费在线观看a视频的电影网站| 国产真人三级小视频在线观看| 成人国产av品久久久| 人妻一区二区av| 看免费av毛片| 色94色欧美一区二区| 免费在线观看日本一区| 久久国产精品大桥未久av| 美国免费a级毛片| 日韩欧美免费精品| 午夜激情av网站| a在线观看视频网站| 美女视频免费永久观看网站| 日韩制服骚丝袜av| 精品一区二区三卡| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 99国产精品99久久久久| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一出视频| 久久精品成人免费网站| 亚洲国产欧美日韩在线播放| 操美女的视频在线观看| 国产精品香港三级国产av潘金莲| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀| 91精品伊人久久大香线蕉| 99国产综合亚洲精品| 久久久久网色| 丝袜脚勾引网站| a级片在线免费高清观看视频| 欧美一级毛片孕妇| 精品人妻一区二区三区麻豆| 国产一区有黄有色的免费视频| 亚洲精华国产精华精| 亚洲专区字幕在线| 日韩,欧美,国产一区二区三区| 99re6热这里在线精品视频| 老司机福利观看| 中文字幕制服av| 国产成人影院久久av| 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| 精品少妇内射三级| 黄色视频不卡| 淫妇啪啪啪对白视频 | 免费女性裸体啪啪无遮挡网站| 亚洲av片天天在线观看| 黄色视频不卡| 亚洲欧美日韩高清在线视频 | 欧美日韩中文字幕国产精品一区二区三区 | 狠狠精品人妻久久久久久综合| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| 下体分泌物呈黄色| 成人黄色视频免费在线看| 乱人伦中国视频| 自拍欧美九色日韩亚洲蝌蚪91| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| 国产视频一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产毛片av蜜桃av| 国产高清videossex| 日韩,欧美,国产一区二区三区| 美国免费a级毛片| 中亚洲国语对白在线视频| 国产成人欧美| 一本—道久久a久久精品蜜桃钙片| 久热这里只有精品99| 国产成人av激情在线播放| 国产男女超爽视频在线观看| 国产精品1区2区在线观看. | 亚洲av电影在线进入| 在线 av 中文字幕| 男人操女人黄网站| 亚洲少妇的诱惑av| 男女国产视频网站| 五月开心婷婷网| 不卡av一区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 久久久国产一区二区| 亚洲第一青青草原| 欧美日韩国产mv在线观看视频| 亚洲国产欧美一区二区综合| 亚洲精品国产av蜜桃| 色综合欧美亚洲国产小说| 欧美黑人欧美精品刺激| 又黄又粗又硬又大视频| 久久精品亚洲av国产电影网| 国产亚洲精品第一综合不卡| 正在播放国产对白刺激| 午夜福利在线免费观看网站| 久久久久国产精品人妻一区二区| 99久久国产精品久久久| 午夜福利一区二区在线看| 国精品久久久久久国模美| 亚洲精品中文字幕一二三四区 | 亚洲精品美女久久av网站| 亚洲自偷自拍图片 自拍| 亚洲五月婷婷丁香| videos熟女内射| 国产片内射在线| 午夜福利免费观看在线| 国产精品免费视频内射| 久久久精品国产亚洲av高清涩受| avwww免费| 久久久久久久精品精品| 男女免费视频国产| 成人av一区二区三区在线看 | 十八禁网站网址无遮挡| 欧美性长视频在线观看| 欧美成狂野欧美在线观看| 一个人免费看片子| 久久人人爽av亚洲精品天堂| 日韩欧美免费精品| 欧美日韩黄片免| 中文字幕色久视频| 99精品欧美一区二区三区四区| 天天躁日日躁夜夜躁夜夜| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| 丰满迷人的少妇在线观看| 久久中文字幕一级| 妹子高潮喷水视频| 久久久久国产一级毛片高清牌| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美性长视频在线观看| 麻豆国产av国片精品| tube8黄色片| 人人妻人人添人人爽欧美一区卜| 狠狠狠狠99中文字幕| 国产精品久久久久久精品古装| 老司机午夜福利在线观看视频 | 国产免费福利视频在线观看| 亚洲国产欧美日韩在线播放| 美女扒开内裤让男人捅视频| 日韩熟女老妇一区二区性免费视频| av免费在线观看网站| 久久这里只有精品19| 91麻豆精品激情在线观看国产 | 男女边摸边吃奶| www.自偷自拍.com| 一级毛片电影观看| 俄罗斯特黄特色一大片| 97精品久久久久久久久久精品| bbb黄色大片| 国产精品久久久人人做人人爽| 黑人操中国人逼视频| 大香蕉久久成人网| 搡老岳熟女国产| 国产成人av激情在线播放| 久久精品国产亚洲av高清一级| 成人av一区二区三区在线看 | 久久久久精品人妻al黑| 老司机在亚洲福利影院| 午夜老司机福利片| 国产不卡av网站在线观看| 精品国产国语对白av| 91国产中文字幕| 国产在线观看jvid| 精品第一国产精品| 亚洲av日韩在线播放| 亚洲全国av大片| 中文字幕最新亚洲高清| 成年美女黄网站色视频大全免费| 亚洲国产欧美日韩在线播放| 午夜成年电影在线免费观看| 精品国产一区二区三区久久久樱花| 亚洲精品在线美女| 亚洲精品国产一区二区精华液| 国产精品一区二区在线观看99| 日韩中文字幕欧美一区二区| 777米奇影视久久| 国产一区二区激情短视频 | 久久久精品国产亚洲av高清涩受| 亚洲成人国产一区在线观看| 老司机亚洲免费影院| 人人妻人人澡人人看| 久久中文看片网| 女性被躁到高潮视频| 国产国语露脸激情在线看| 欧美老熟妇乱子伦牲交| 不卡av一区二区三区| 国产极品粉嫩免费观看在线| 宅男免费午夜| 老司机亚洲免费影院| 热99re8久久精品国产| 午夜福利,免费看| 亚洲午夜精品一区,二区,三区| 极品人妻少妇av视频| 一二三四社区在线视频社区8| 老熟妇乱子伦视频在线观看 | 亚洲专区中文字幕在线| 久久影院123| 大型av网站在线播放| 午夜免费成人在线视频| 看免费av毛片| 这个男人来自地球电影免费观看| 国产精品久久久av美女十八| 91精品国产国语对白视频| 丝袜人妻中文字幕| 美女午夜性视频免费|