• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    對等差數(shù)列的充要條件的探討

    2018-06-25 01:49:42湖北省華中師范大學(xué)第一附屬中學(xué)王麒寧
    中學(xué)數(shù)學(xué)雜志 2018年11期
    關(guān)鍵詞:充分性正整數(shù)等價(jià)

    ☉湖北省華中師范大學(xué)第一附屬中學(xué) 王麒寧

    從數(shù)列的定義本身、對稱性質(zhì)、數(shù)列通式,以及與前n項(xiàng)和的關(guān)系出發(fā),我們可以得到{an}為等差數(shù)列的一系列等價(jià)條件:

    ①an+1-an=d(d為常數(shù));

    ②2an+1=an+an+2(n∈N*);

    ③an=pn+q(p,q為常數(shù));

    ④Sn=An2+Bn(A,B為常數(shù));

    ⑤}為等差數(shù)列(.注:其中S為其前n項(xiàng)和)

    探尋某一等差數(shù)列的等價(jià)條件,特別是兩個(gè)甚至多個(gè)等差數(shù)列間的等價(jià)轉(zhuǎn)化關(guān)系,我們從中能感受特殊數(shù)列的性質(zhì)之美、轉(zhuǎn)化之巧,對于體會(huì)并掌握數(shù)列復(fù)習(xí)中的基本量思想方法、遞推思想、整體思想、函數(shù)思想、函數(shù)與方程思想也是大有裨益.本文呈現(xiàn)幾個(gè)等差數(shù)列的充要條件的典例來加以說明.

    例1 記數(shù)列{an}的前n項(xiàng)和為Sn.證明{an}為等差數(shù)列的充分必要條件是數(shù)列{an}滿足

    證明:先證必要性,顯然成立.再證充分性.

    當(dāng)n≥2時(shí),作差得2an=a1+nan-(n-1)an-1,再遞推得2an+1=a1+(n+1)an+1-nan.

    對上述兩式再作差得2an=an-1+an+1(n≥2).

    由等差數(shù)列的定義知{an}為等差數(shù)列.

    綜上,{an}為等差數(shù)列的充要條件是數(shù)列{an}滿足Sn=

    點(diǎn)評:本題證明中的必要性是我們熟知的等差數(shù)列的性質(zhì),那充分性又當(dāng)如何呢?對于某些核心的概念、重要的公式定理我們要嘗試從正向和逆向去思考,這是對問題的基本變式意識(shí).

    例2 (2010年安徽卷)設(shè)數(shù)列a1,a2,…,an,…中的每一項(xiàng)都不為0.證明{an}為等差數(shù)列的充分必要條件是:對任何n∈N*,都有

    證明:先證必要性.

    設(shè)數(shù)列{an}的公差為d,若d=0,則所述等式顯然成立.

    若d≠0,則:

    再證充分性.

    依題意有:

    在上式兩端同乘a1an+1an+2,得a1=(n+1)an+1-nan+1. ③

    同理可得a1=nan-(n-1)an+1. ④

    ③-④得2nan+1=n(an+2+an),即an+2-an+1=an+1-an,所以{an}是等差數(shù)列.

    綜上,{an}為等差數(shù)列的充要條件是對任何n∈N*,都有

    點(diǎn)評:本題考查了等差數(shù)列與充要條件等有關(guān)知識(shí),考查推理論證、運(yùn)算求解能力.通過對必要性的證明過程的觀察,我們發(fā)現(xiàn)等差數(shù)列是裂項(xiàng)相消法化簡、求和的一大利器.

    例3 已知數(shù)列{an}、{bn}滿足試證明{an}是等差數(shù)列是{bn}是等差數(shù)列的充要條件.

    證明:先證若{an}是等差數(shù)列,則{bn}是等差數(shù)列.

    令Sn=a1+2a2+3a3+…+nan

    =(a1+a2+…+an)+(a2+a3+…+an)+…+(an-1+an)+an

    =“n個(gè)an的前n項(xiàng)和的一半”+“1個(gè)an的前n項(xiàng)和的一半”

    則bn=a1+an=2a1+(n-1)d,顯然{bn}也為等差數(shù)列.

    再證若{bn}是等差數(shù)列,則{an}也是等差數(shù)列.

    由于n(n+1)bn=2(a1+2a2+3a3+…nan),

    而(n+1)(n+2)bn+1=2(a1+2a2+3a3+…+nan+(n+1)an+1),

    兩式相減,得(n+1)[(n+2)bn+1-nbn]=2(n+1)an+1,即[(n+2)bn+1-nbn]=2an+1.

    由{bn}是等差數(shù)列得2an+1=(n+2)bn+1-nbn=n(bn+1-bn)+2bn+1=nd′+2b1+2nd′,即

    易判斷{an}為等差數(shù)列,其中d和d′分別是數(shù)列{an}、{bn}的公差.

    例4 (2006年江蘇卷)設(shè)數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n∈N*),證明{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1.

    證明:先證必要性.

    設(shè){an}是公差為d1的等差數(shù)列,則:

    bn+1-bn=(an+1-an+3)-(an-an+2)=(an+1-an)-(an+3-an+2)=d1-d1=0.

    所以bn≤bn+1成立.

    又 cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2)=d1+2d1+3d1=6d1(常數(shù)),故數(shù)列{cn}為等差數(shù)列.

    再證充分性.

    設(shè)數(shù)列{cn}是公差為d2的等差數(shù)列,且bn≤bn+1.

    因?yàn)閏n=an+2an+1+3an+2, ①

    所以cn+2=an+2+2an+3+3an+4. ②

    ①-②得cn-cn+2=(an-an+2)+2(an+1-an+3)+3(an+2-an+4)=bn+2bn+1+3bn+2.

    又因?yàn)閏n-cn+2=(cn-cn+1)+(cn+1-cn+2)=-2d2.

    所以bn+2bn+1+3bn+2=-2d2. ③

    從而有bn+1+2bn+2+3bn+3=-2d2. ④

    ④-③得:

    (bn+1-bn)+2(bn+2-bn+1)+3(bn+3-bn+2)=0. ⑤

    其中已知bn+1≥bn,bn+2≥bn+1,bn+3≥bn+2,

    故只能bn+1=bn.

    由此不妨設(shè)bn=m(m為常數(shù)),則an-an+2=m.

    由此cn=an+2an+1+3an+2=4an+2an+1-3m.

    從而cn+1=an+1+2an+2+3an+3=4an+1+2an-5m.

    兩式相減得cn+1-cn=2(an+1-an)-2m.

    所以數(shù)列{an}是等差數(shù)列.

    點(diǎn)評:通過對例3、例4的條件與結(jié)論的觀察,不難發(fā)現(xiàn),兩個(gè)甚至多個(gè)數(shù)列滿足的遞推關(guān)系式是溝通特殊數(shù)列(在這里是等差數(shù)列)間關(guān)系的切入口,也為我們找尋等差數(shù)列的充要條件打開了思路.

    以這一思想為導(dǎo)向的高考題也不少,如:

    例5(2017年北京卷)設(shè){an}和{bn}是兩個(gè)等差數(shù)列,記cn=max{b1-a1n,b1-a1n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個(gè)數(shù)中最大的數(shù).

    (1)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;

    (2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時(shí)>M;或者存在正整數(shù)m,使得c,c,c,…是等差mm+1m+2數(shù)列.

    例6(2017年江蘇卷)對于給定的正整數(shù)k,若數(shù)列{an}滿足an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan對任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.

    (1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;

    (2)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

    注:為節(jié)約篇幅,其解答過程省略.

    要認(rèn)識(shí)到一點(diǎn),探尋等差數(shù)列的充要條件并不會(huì)增加我們的學(xué)習(xí)負(fù)擔(dān),反倒類似于這樣的微專題的問題探討與整理,給大家?guī)淼氖嵌恳恍碌母杏X,對深層次理解等差數(shù)列的涵義也有幫助.而且從整體數(shù)學(xué)學(xué)習(xí)觀視角看等差數(shù)列間性質(zhì)的轉(zhuǎn)化,它又能訓(xùn)練并提高我們的代數(shù)變形技巧.

    尋找等價(jià)條件還有一層涵義,那便是以形式上的“等價(jià)”去揭示等價(jià)轉(zhuǎn)換這一方法,以喚醒“等價(jià)轉(zhuǎn)化”這一基礎(chǔ)而重要的數(shù)學(xué)思想.數(shù)學(xué)的本質(zhì)是化簡,利用等價(jià)轉(zhuǎn)換對問題進(jìn)行轉(zhuǎn)化、簡化,從而切實(shí)提高分析問題、解決問題的能力.在嘗試“等價(jià)轉(zhuǎn)化”這一過程中,我們要充分考慮轉(zhuǎn)化的可能性、等價(jià)性,還有簡捷性.轉(zhuǎn)化才能成為一種數(shù)學(xué)自覺,思考數(shù)學(xué)問題的有序性、嚴(yán)密性和視域感才能得到有效的鍛煉和提升.F

    猜你喜歡
    充分性正整數(shù)等價(jià)
    2023 年高考充要條件問題聚焦
    解析簇上非孤立奇點(diǎn)的C0-Rv-V(f)-充分性
    被k(2≤k≤16)整除的正整數(shù)的特征
    維持性血液透析患者透析充分性相關(guān)因素分析
    周期數(shù)列中的常見結(jié)論及應(yīng)用*
    方程xy=yx+1的全部正整數(shù)解
    n次自然數(shù)冪和的一個(gè)等價(jià)無窮大
    中文信息(2017年12期)2018-01-27 08:22:58
    一類一次不定方程的正整數(shù)解的新解法
    收斂的非線性迭代數(shù)列xn+1=g(xn)的等價(jià)數(shù)列
    環(huán)Fpm+uFpm+…+uk-1Fpm上常循環(huán)碼的等價(jià)性
    霍林郭勒市| 五莲县| 台湾省| 永修县| 周宁县| 永泰县| 长武县| 绥化市| 两当县| 遵义县| 黎城县| 黄梅县| 七台河市| 鹤岗市| 桦甸市| 蒙自县| 灵石县| 甘泉县| 大安市| 濮阳市| 石狮市| 健康| 祁阳县| 股票| 行唐县| 白山市| 呼和浩特市| 墨玉县| 安溪县| 房山区| 建宁县| 铁力市| 华池县| 田东县| 陈巴尔虎旗| 遂平县| 秦皇岛市| 藁城市| 武安市| 武宣县| 雷州市|