• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics,chemistry,and Hirshfeld surface analyses of gamma-irradiated thalidomide to evaluate behavior under sterilization doses

    2018-06-20 05:50:54VlnerMusselMxFerreirMriMrquesMriYoshidMrinAlmeidBernrdoRodriguesWgnerMussel
    Journal of Pharmaceutical Analysis 2018年3期

    Vlner A.F.S.N.Mussel,Mx P.Ferreir,Mri B.F.Mrques,Mri I.Yoshid,Mrin R.Almeid,Bernrdo L.Rodrigues,Wgner N.Mussel,*

    aDepartamento de Química,ICEx,Universidade Federal de Minas Gerais-UFMG,Av.Ant?nio Carlos 6627,31270-901 Belo Horizonte,MG,Brazil

    bCNEN-CDTN,Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear,Av.Ant?nio Carlos,6627 Belo Horizonte,MG,Brazil

    1.Introduction

    To ensure adequate conditions of use,sterility is a crucial attribute to any pharmaceutical material,main component,excipient,or formulation.In general,sterilized materials should have microbial survivor probability of<10-6.This criterion is the basis of the sterility assurance level.

    There are several sterilization procedures,and each has advantages and disadvantages[1,2].There is no suitable procedure for general use.Physical removal of microorganisms by membrane filtration does not require heat.Dry heat or even moist heat promotes microbiological reduction at high temperature,but results in considerable degradation of temperature-sensitive materials or devices.Sterilization using ethylene oxide is highly effective but can leave a toxic residue in porous materials such as implants.Electron-beam radiation can be used to prevent temperature effects and toxic residues in the final material,but is limited by poor penetration in bulky materials.

    Gamma irradiation has advantages over other conventional sterilization methods in solids∶high penetration,uniform efficacy,low isothermal stability,and absence of toxic residues.The main advantage is that irradiation can be used as the final sterilization procedure in starting materials and final products.In this way,the usual 25kGy dose can ensure sterilized pharmaceutical materials[2,3].Due to the potential sensitivity of pharmaceuticals,validation procedures with lower doses are usually accepted as long as reliable and adequate reduction of the biologic burden can be ensured.In this way,the risk of undesired effects over pharmaceuticals,formulations,or devices submitted to the sterilization process is minimized[4].

    Thalidomide ((RS)-2-(2,6-dioxopiperidin-3-il)-1H-isoindol-1,3(2H)-dione)was synthesized by Chemie Grünenthal in West Germany in 1954.It was introduced to the West German market in 1956 as an antiemetic for pregnant women.In the 1960s,the teratogenic effects of this drug were recognized.Fetal malformation due to the S-isomer of thalidomide resulted in restricted use of thalidomide and increased surveillance by regulatory agencies[5].

    Since then,thalidomide has been recognized as having antiangiogenic and anti-inflammatory properties.It has been used to treat leprosy and multiple myeloma.Hence,stability studies of thalidomide under radioactive stress aimed at sterilization of the drug are warranted[5].

    2.Materials and methods

    A sample of thalidomide from a validated production batch was obtained during the shelf-life of this pharmaceutical.All analyses were conducted within the validity period of the batch.

    2.1.Powder X-ray diffraction(PXRD)

    PXRD data were collected in an XRD-7000 diffractometer(Shimadzu,Kyoto,Japan)at room temperature under 40 kV,30 mA,using CuKα (λ =1.54056 ?)equipped with polycapillary focusing optics under parallel geometry coupled with a graphite monochromator.The sample was spun at 60 rpm,and scanned over an angular range of 4–60°(2θ)with a step size of 0.01°(2θ)and a time constant of 2s/step.All fitting procedures were obtained using FullProf Suite[6,7].Crystalexplorer v 17 was used to calculate the Hirshfeld surface[8].

    2.2.Single-crystal X-ray diffraction(SCXRD)

    SCXRD data were collected in a Gemini A Ultra X-ray Diffraction system(Agilent Technologies,Santa Clara,CA,USA)at room temperature using a MoKα (λ =0.71073 ?)tube as the X-ray source,equipped with a graphite monochromator and a charge-coupled device plate detector.Data collection and re finement details are given in Table 1.

    2.3.Thermogravimetric analysis(TGA)and differential thermal analysis(DTA)

    TGA and DTA experiments were carried out on a DTG60H system(Shimadzu)in a dynamic N2atmosphere(50 mL/min)using alumina pans containing≈2.0 mg of sample.Experiments were conducted at a heating rate of 10 °C/min from 25 °C to 400 °C.

    2.4.Differential scanning calorimetry(DSC)

    DSC experiments were undertaken on a DSC60 system(Shimadzu).The equipment cell was calibrated with indium(melting point,156.6 °C;heat of fusion,ΔHfus=28.54 J/g)and lead(melting point,327.5°C).Aluminum pans containing ≈1 mg of samplewere used under a dynamic N2atmosphere(50 mL/min)and a heating rate of 10 °C/min from 25 °C to 300 °C.Thalidomide can exist as two polymorphs,α and β,and the latter shows different thermal behavior.Therefore,an isothermal experiment was carried out at 270°C to obtain a pure material for comparison,as needed.

    Table 1 Single crystal re finement data for polymorph α,space group,Hall symbol,lattice parameters a,b and c(?),? angle(θ),volume,number of formulae unit per unit cell,X-ray density,wavelength,experimental angular range(θ),crystal absorption coefficient,crystal shape and dimensions,number of reflections considered for cell parameters calculation,and independent reflections used for single crystal fitting.

    2.5.Ultraviolet spectroscopy

    Ultraviolet spectroscopy was undertaken at 200–400 nm for thalidomide at 10μg/mL in ethanol on a spectrophotometer(1800;Shimadzu).Origin v9.1 was used to adjust data.

    2.6.Raman spectroscopy

    Raman spectroscopy of solid thalidomide was done on a confocal micro-Raman spectrometer(Senterra;Bruker,Billerica,MA,USA)with an excitation laser set at 785 nm.The measurement conditions were as follows∶integration time of 5 s;spectral resolution of 3–5cm-1;and spectral range of 2000–100cm-1.The laser was focused with a 4×dry objective lens,with the laser power set to 25 mW.Origin v9.1 was used to adjust data.

    2.7.Gamma irradiation

    Experiments involving gamma irradiation were done at Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear(Belo Horizonte,MG,Brasil).The radiation system(IR-214;MDS Nordion,Ottawa,Canada)was equipped with a dry cobalt-60 source.The source had a maximum activity of 2200 TBq(60,000 Ci).The specific irradiation times were calculated,and then all samples were exposed to doses of 2,5,10,15,25,30 or 100 kGy.

    2.8.Attenuated total reflection Fourier transformed infrared spectroscopy(ATR-FTIR)

    FTIR analysis was performed at room temperature on a Spectrum 1000 spectrophotometer(PerkinElmer,United States)equipped with an attenuated total reflectance(ATR)accessory.The sample was pressed into a zinc selenide crystal,and 32 scans were averaged.For single FTIR without ATR,the samples were measured in KBr pressed pellets in the wavenumber range between 400 and 3400cm-1at room temperature,with a resolution of 4cm-1.

    2.9.Statistical analyses

    Data are the mean±standard deviation.All fitting procedures took into account three independent measurements with statistical analyses conducted using Origin v9.1.

    Fig.1.Thalidomide molecule showing the labile bond between phthalimide and glutarimide rings.

    Fig.2.The crystal structure of the polymorphs α (A)(a=8.233(1)?,b=10.070(2)?,c=14.865(2)?,α = γ =90.0°and β =102.53(2)°,monoclinic,P 21/n,Z=4)and β (B)(a=20.679(5)?,b=8.042(2)?,c=14.162(5)?,α = γ =90.0°and β =102.86(3)°,monoclinic,C 2/c,Z=8),and(C)keto-enol tautomerization.

    3.Results and discussion

    The thalidomide molecule has a labile bond that can be turned around from phthalimide and glutarimide rings(Fig.1).

    Fig.3.Powder X-ray diffraction experiments for irradiated thalidomide samples for 0,2,5,10,15,20,30 and 100 kGy.All samples were irradiated under the same conditions,only different times.

    Fig.4.Crystal projection of the asymmetric unit.Carbon(grey),oxygen(red)and nitrogen(blue)atoms.ORTEP plotted ellipsoids with 50%probability.

    In the thalidomide chemical structure,the chiral center has a neighboring ketone that may undergo to the enol form,then reforming it when switching back to the keto form.Even with uptaking of the correct R-thalidomide,a keto-enol tautomerization happened inside the human body,it would racemase into a mixture of R,S-thalidomide and the corresponding enol forms.The S-thalidomide causes the birth defects(Fig.2).

    The intensity of a diffracted peak of a certain reflection(hkl)plane for a given chemical structure is a direct contribution of the structural factor,which in turn corresponds to the number of electrons diffracting the X-ray beam on that plane.If any plane in the structure reduces its number of electrons,a direct effect of that condition will be a decrease in the intensity of that specific plane,and the resulting system will be a plane with lower electron density.In the solid state,the atoms in a structure are much less labile than in solubilized material because of numerous mutual interactions(e.g.,Van der Waals forces and/or hydrogen bonding).The fitting procedure was designed to allow the torsion angle between phthalimide and glutarimide rings to vary freely within the extraction and adjustment of the intensities in the diffraction.

    The thalidomide structure C13H10N2O4space groupP21/nhas a torsion angle of 57.28°(2θ).This structure was taken as a reference,with all procedures starting from the same template molecule, by varying the fitting sequence as follows∶(i)parameterization of the background with five polynomial terms;(ii)U,V and W(FWHM)of the pseudo-Voight function;(iii)pro file parameters NA and NB of the pseudo-Voight function;(iv)asymmetry factors P1,P2,P3 and P4 of the Berar–Baldinozzi asymmetric correction;(v)a and b beyond the beta angle of the crystal lattice;(vi)torsion angles N1-C11-C13-C2 with the initial value set to 57.28°(2θ);(vii)isotropic thermal parameter functions for all atoms.Fig.3 shows the experimental XRD pattern for all doses.

    Fig.5.Hirshfeld surface analysis and corresponding overall fingerprints for polymorphs α and β (A and B,respectively),the torsion angles(C),the fingerprint O-O interactions(π-πrespectively)(D).The 2 kGy irradiated αpolymorph with respectively torsion angle and overall fingerprint(E).

    Fig.6.Hirshfeld surface analysis and overall contributions for all atoms pairs in polymorphs α and β.

    Fig.7.Raman experimental spectra of polymorphs α and β evidencing the spectra differences.

    SCXRD was carried out on a recrystallized sample from an original polymorphαsample by solvent evaporation.To 20 mL of a methanol∶water(5∶3)solution was added 25 mg of polymorph α,which resulted in a supersaturated solution.Non-solubilized crystals were filtered out,and the solution was allowed to stand to recrystallize over 23 days.The crystal data,collection,and details of structure re finement of polymorphαare summarized in Table 1.Refinement was carried out in the absence of anomalous scattering.Changes in illuminated volume were kept to a minimum,and were taken into account[9–14]using multi-scan inter-frame scaling.Hydrogen atoms were geometrically fixed to their bonded atoms,with their thermal isotropic term,Uiso(H)in the range 1.2–1.5 times Ueqof the parent atom,after which the positions were re fined with adequate constraints.Fig.4 shows the asymmetric unit as an Ortep plot for the determination of crystal structure,as well as the unit cell ellipsoids with 50%probability.

    Hirschfeld surface analyses can provide a deep understanding of certain characteristics based on electron distribution,πinteractions,and the contributions of pairs of atoms.Polymorphsαand βshowed substantial differences for each fingerprint(Figs.5A and B).Polymorphβshowed a relatively largeπinteraction on the phthalimide ring.This was a direct evaluation of close contact and the internal distribution of theβcell lattice(Fig.5B).A largedistance of approximately 1.1 ? from the inside surface(di)interaction on polymorphβwas related to the appearance of hydrogenatom interaction from the phthalimide–glutarimide transversional ring arrangement within the unit cell(Figs.5B and C).The two interactions at about 1.0 and 1.3 ?(Fig.5B)from the inside surface(di)were due to the glutarimide–glutarimide nitrogen-hydrogen and carbonyl group of two close molecules within the unit cell.The overall O-H interactions showed shorter distances from the inside surface(di)of about 1.0 and 1.3 ? forα and β,respectively,and showed a more compact unit cell for polymorphβ(Fig.5D).For polymorphαirradiated at 2 kGy,the two adjacent glutarimide rings within the unit cell were responsible for the mutual O-H interactions leading to hydrogen-bond formation and/or the possibility of a tautomeric pair structure(Fig.5E).Fig.6 shows the individual contribution from each atom pair to the overall probability of interaction over the thalidomide molecule[15–17].

    Table 2 Torsion angle(degrees θ),lattice parameters(?),β (degrees θ)and Rp goodness of fitting parameter(%).

    Table 3 Experimentaland calculated Raman'sobserved peak,fully assigned forα polymorph.

    Fig.8.UV experimental spectra for α and β polymorphs.

    Raman spectroscopy was undertaken for both polymorphic forms of thalidomide.Theoretical calculations were carried out to increase understanding of the observed vibrational modes.Theoretical calculations were done using the structures of each polymorph published by the Cambridge Crystallographic Data Center(Cambridge,UK)using Spartan v14.Fig.7 shows the experimental Raman spectra for polymorphsα andβ.

    Table 2 shows the experimental and theoretical bands(as assigned)for each mode of polymorphα.For symmetric stretching of the carbonyl group,centered at 1785 and 1769 cm–1,no equivalent vibrational modes,when compared with polymorphβ,were identified.

    Asymmetric stretching of the carbonyl group was identified at 1754 cm–1.Vibrational modes appeared at two carbonyl groups for polymorphαwhereas,in polymorphβ,such modes were related primarily only to one carbonyl group.The stretching region of the CH2-CH bond in the glutarimide ring showed peaks at 1166 and 1176 cm-1,and showed a substantial difference for the ratio and axial offset for the two polymorphs.Peaks on the spectrum for polymorphαat 701 and 693 cm-1were assigned to the vibrational modes corresponding to ring deformations outside the plane.Peaks at 604 and 595 cm-1were assigned to the ring deformation and stretching of the CH group and CH bonds.For deformation out of the plane,peaks at 404,391,236 and 225 cm-1were observed.For crystalline structures in different polymorphs,the vibrational modes in the low vibrational frequency region(<200 cm-1)are attributed to vibrations of the crystal lattice,and that region can be regarded as a “second fingerprint”of the Raman spectrum for each substance(Table 3)[18,19].Comparison of these data suggested that differences in the spectra of polymorphsαand βwere due to compression of their molecules and the way they were interacting in their crystal lattices;these effects influenced their vibrational modes directly.Transformation between thalidomide polymorphs was achieved by providing adequate energy for the crystalline lattice with the aim of reorganization.This procedure was accompanied by TGA,DTA and DSC.

    Fig.9.(A)TGA/DTA simultaneous curve of α polymorph form;(B)DSC curve of α polymorph form,with inset zoom of the endothermic peak.

    In simultaneous TGA/DTA,mass loss was observed only once at an onset temperature of 264°C,suggesting that the material was anhydrous and pure.The DTA curve revealed two endothermic peaks corresponding to fusion of polymorphsα andβ,respectively.The DSC curve showed two endothermic events at onset temperatures of 245 °C and 274 °C.Fig.8 shows the UV spectra for polymorphsαandβ.We observed five bands for polymorphα(A1,A2,A3,A4 and A5)and four bands for polymorphβ(B1,B2,B3 and B4).The A1 band at 207nm is related to the n→π*transitions in aromatic compounds.The A2 and B1 bands at 221nm and 222 nm,respectively,are related toπ*conjugated systems,showing aromatic compounds to have chromophore substitution.The A3 and B2 bands at 232 nm and 233nm,respectively,are related to tautomers generated by the working pH of the solution.The A4 and B3 bands at 240nm and 241 nm,respectively,are the characteristic bands of thalidomide.The A5 and B4 bands both at 300 nm are related to groups with a low-energy configuration state,just like the carbonyl groups in thalidomide.For better visualization of the first endothermic peak,enlargement of this region in the curve is shown(Fig.9).This event was identified as a crystalline transition between the two polymorphs of thalidomide.

    The second endothermic event corresponded to decomposition of the formed material,with this being only theβform in the case of total conversion and a mixture ofαandβin the case of partial conversion[19].To confirm these occurrences,an isotherm at 270°C using the material for further powder XRD was undertaken(Fig.10).Comparison of the diffractograms and interplanar distances enabled us to confirm and identify the material as polymorphβ.

    We wished to visualize possible changes in thermal behavior of the material after irradiation.Hence,DSC was done with samples receiving doses of 2,5,30 or 100 kGy.In the DSC curve of the samples irradiated with 2 and 5kGy,a single endothermic peak with an onset temperature of 275°C was noted for both samples.This finding suggested total conversion of theαform into theβ form during heating,so this peak was designated as the fusion follow by decomposition of polymorphβ(Fig.11).The DSC curves of samples irradiated with 30 and 100 kGy revealed two endothermic peaks with onset temperatures of 272 °C and 275 °C for samples irradiated with 30 kGy and at 272 °C and 274 °C for samples irradiated with 100 kGy(Fig.12).

    Fig.10.Comparative diffractogram between α and β polymorphs.

    We designated the first peak as the fusion of polymorphαand the second peak as the fusion of polymorphβfor both curves.Different from the report by Reepmeyer and colleagues[14],the DSC curve in our study was carried out at a heating rate of 10°C/min,but we observed values very close to those reported by Reepmeyer and colleagues.We propose that after irradiation with doses of 30 and 100 kGy,polymorphαacquired higher thermal stability in relation to polymorphic transformation.Therefore,the fusion and decomposition temperature ofαform was visualized in DSC curves instead of its crystalline transformation,as shown in the physicochemical characterization of the material.The irradiated sample had a more compact unit cell,so there was an increase in hydrogen-atom interactions within the unit cell,resulting in an increase in thermal stability of polymorphα.

    4.Conclusion

    Fig.11.DSC curves of α polymorph form after(A)2 kGy dose and(B)5 kGy dose.

    Fig.12.DSC curves of α polymorph form after(A)30 kGy dose and(B)100 kGy dose.

    The observed turning around phthalimide and glutarimide rings already occurs at low radiation values(e.g.,2kGy).Eventually,the absorbed energy will overcome the repulsive force due to the proximity of the carboxyl group and produce a full turn.With a continuous supply of energy,the system rotates completely at higher doses of 15,20,30 and 100kGy.With higher doses,the full turning effect is reached,allowing the network to relax its tension.The thalidomide molecule has a center of symmetry.Therefore,one full turn of phthalimide and glutarimide rings between each other,starting from 57.3°,will lead to the same molecule,with stabilization of the final angle based on the total amount of absorbed energy.After a full turn,the process starts again.Irradiated samples at 30 and 100kGy had more compact unit cells and a lower volume,so there was an increase in the intermolecular interaction between hydrogen atoms within the unit cell,which resulted in higher thermal stability for polymorphα.At 30 and 100kGy,each melting point could be seen separately,which was a different situation compared with that of the non-irradiated sample.A fourfold increase in the usual dose used in pharmaceuticals is employed for gamma-ray sterilization.Thalidomide molecules can release excess energy by turning the bond between phthalimide and glutarimide rings.Hence,gamma-ray sterilization of pure thalidomide before use in fixed-dose pharmaceutical formulations is possible.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors would like to thank the CNEN-CDTN(Comiss?o Nacional de Energia Nuclear–Centro de Desenvolvimento da Tecnologia Nuclear)LIG(Laboratório de Irradia??o Gama)facility for the assistance,and Funda??o de Amparo à Pesquisa do Estado de Minas Gerais(FAPEMIG)(APQ-02087-14),Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(245914/2012),Coordena??o de Aperfei?oamento de Pessoal de Nível Superior(CAPES)(PNPD-N-1648694-scholarship No2016752283)and Pró-Reitoria de Pesquisa/UFMG for financial support.

    [1]Health Products and Food Branch Inspectorate∶Process Validation∶Terminal Sterilization Processes for Pharmaceutical Products,Supersedes∶GUI-0007,GUI-0009 and GUI-0010,(GUIDE-0074),OTTAWA,Ontario,Canada,2006.

    [2]EN ISO 13408-1∶2008(en),Aseptic processing of health care products—Part 1∶General requirements,compilation prepared by Online Browsing Platform(OBP),2008,〈https∶//www.iso.org/obp/ui/#iso∶std∶iso∶13408∶-1∶ed-2∶v1∶en〉.

    [3]AAMI/ISO 11137-2∶2013,Sterilization of health care products-Radiation-Part 2∶Establishing the sterilization dose(revision of 11137-2∶2012),ISBN(s)∶1570205027,2013.

    [4]J.Agalloco,USP Microbiology&Sterility Assurance,Expert Committee USP∶Activities Impacting Sterilization&Sterility Assurance,USP 35 1211,revision 2008.

    [5]F.Hasanain,K.Guenther,W.M.Mullett,et al.,Gamma sterilization of pharmaceuticals-a review of the irradiation of excipients,active pharmaceutical ingredients and final drug product formulations,J.Pharm.Sci.Technol.68(2014)113–137.

    [6]T.Roisnel,J.Rodriguez-Carvajal,WinPLOTR∶a Windows tool for powder diffraction patterns analysis Materials Science Forum,Proceedings of the Seventh European Powder Diffraction Conference,EPDIC 7,2000∶118–123.

    [7]J.Rodriguez-Carvajal,T.Roisnel,FullProf.98 and WinPLOTR∶new windows 95/NT applications for diffraction.Commission for powder,Int.Union Crystallogr.Newsl.20(1998)35.

    [8]M.J.Turner,J.J.McKinnon,S.K.Wolff,et al.,CrystalExplorer17,University of Western,Australia,2017 〈http∶//crystalexplorer.scb.uwa.edu.au〉.

    [9]C.H.G?rbitz,What is the best crystal size for collection of X-ray data?Reif nement of the structure of glycyl-L-serine based on data from a very large crystal,Acta Cryst.B55(1999)1090–1098.

    [10]R.I.Cooper,A.L.Thompson,D.J.Watkin,CRYSTALS enhancements∶dealing with hydrogen atoms in re finement,J.Appl.Cryst.43(2010)1100–1107.

    [11]G.M.Sheldrick,A short history of SHELX,Acta Cryst.A64(2008)112–122.

    [12]P.W.Betteridge,J.R.Carruthers,R.I.Cooper,et al.,CRYSTALS Version 12∶software for guided crystal structure analysis,J.Appl.Cryst.36(2003)1487.

    [13]D.J.Watkin,C.K.Prout,J.R.Carruthers,et al.,Crystals Issue 10,Chemical CrystallographyLaboratory,Oxford,UK,1996.

    [14]J.C.Reepmeyer,M.O.Rhodes,D.C.Cox,et al.,Characterization and crystal structure of two polymorphic forms of racemic thalidomide,J.Chem.Soc.Perkin Trans.2(9)(1994)2063–2067.

    [15]M.A.Spackman,D.Jayatilaka,Hirshfeld surface analysis,CrystEngComm 11(2009)19–32.

    [16]M.A.Spackman,J.J.McKinnon,Fingerprinting intermolecular interactions in molecular crystals,CrystEngComm 4(2002)378–392.

    [17]M.J.Turner,J.J.McKinnon,D.Jayatilaka,et al.,Visualisation and characterisation of voids in crystalline materials,CrystEngComm 13(2011)1804–1813.

    [18]P.J.Larking,M.Dabros,B.Sars field,et al.,Polymorph characterization of active pharmaceutical ingredients(APIs)using low-frequency Raman spectroscopy,Appl.Spectrosc.68(7)(2014)758–776.

    [19]E.P.J.Parrot,B.M.Fischer,L.F.Fladden,et al.,Terahertz spectroscopy of crystalline and non-crystalline solids,Terahertz spectroscopy and imaging Springer Series in Optical Sciences book series(SSOS),171,2012∶191–227.

    成人影院久久| 久久久久网色| 婷婷色综合大香蕉| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| 国产亚洲精品久久久com| 亚洲欧美日韩卡通动漫| 久久 成人 亚洲| 久久久精品94久久精品| 蜜臀久久99精品久久宅男| 国产av码专区亚洲av| av视频免费观看在线观看| 国产精品久久久久久精品古装| 久热久热在线精品观看| 晚上一个人看的免费电影| 亚洲精品456在线播放app| 晚上一个人看的免费电影| 久久精品久久久久久久性| 熟女人妻精品中文字幕| 亚洲欧美日韩另类电影网站| 青春草国产在线视频| 建设人人有责人人尽责人人享有的| 国产69精品久久久久777片| 黄色毛片三级朝国网站 | 精品人妻一区二区三区麻豆| 在线观看www视频免费| 建设人人有责人人尽责人人享有的| 久久99热6这里只有精品| 超碰97精品在线观看| 欧美3d第一页| 国产精品伦人一区二区| 日韩一区二区三区影片| 欧美xxxx性猛交bbbb| 男人爽女人下面视频在线观看| 欧美日韩av久久| 国产视频内射| 五月天丁香电影| 亚洲av电影在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲人与动物交配视频| av国产久精品久网站免费入址| 好男人视频免费观看在线| 国精品久久久久久国模美| 少妇猛男粗大的猛烈进出视频| 搡老乐熟女国产| 色哟哟·www| 午夜激情久久久久久久| 亚洲欧美成人综合另类久久久| 亚洲欧洲国产日韩| 天天躁夜夜躁狠狠久久av| 亚洲精品久久久久久婷婷小说| 欧美精品一区二区免费开放| 免费高清在线观看视频在线观看| 天天操日日干夜夜撸| 欧美精品一区二区大全| 这个男人来自地球电影免费观看 | 51国产日韩欧美| 狂野欧美激情性xxxx在线观看| 中国国产av一级| 国产成人a∨麻豆精品| av在线播放精品| 在线观看免费高清a一片| 日韩欧美精品免费久久| 少妇的逼好多水| 精品午夜福利在线看| 欧美少妇被猛烈插入视频| 男女国产视频网站| 天天躁夜夜躁狠狠久久av| 免费看光身美女| 大陆偷拍与自拍| 久久人妻熟女aⅴ| 免费人妻精品一区二区三区视频| 日本色播在线视频| 国产一区二区在线观看av| 日韩av免费高清视频| 精品少妇久久久久久888优播| 久久午夜福利片| 91精品国产国语对白视频| 日本欧美国产在线视频| 男人狂女人下面高潮的视频| 欧美成人精品欧美一级黄| 一级av片app| 国产精品久久久久久久久免| 三上悠亚av全集在线观看 | a级毛片在线看网站| 夜夜看夜夜爽夜夜摸| 最新的欧美精品一区二区| 国产黄频视频在线观看| 日本色播在线视频| av免费观看日本| 九九久久精品国产亚洲av麻豆| 国产一区亚洲一区在线观看| 日韩大片免费观看网站| 亚洲国产精品一区三区| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 久久久久网色| a 毛片基地| 久久久久久久大尺度免费视频| 少妇人妻精品综合一区二区| 中文字幕亚洲精品专区| 国产日韩欧美亚洲二区| 国产爽快片一区二区三区| 观看免费一级毛片| 午夜免费男女啪啪视频观看| 久久久久国产网址| 高清午夜精品一区二区三区| 久久久亚洲精品成人影院| 日韩一本色道免费dvd| 欧美日韩在线观看h| 视频区图区小说| 一级片'在线观看视频| 我要看日韩黄色一级片| 国产综合精华液| 夜夜骑夜夜射夜夜干| 免费看av在线观看网站| 99热这里只有精品一区| 国产一区有黄有色的免费视频| 国产伦精品一区二区三区四那| 波野结衣二区三区在线| 美女大奶头黄色视频| 成人黄色视频免费在线看| 少妇人妻久久综合中文| 在线观看国产h片| 啦啦啦中文免费视频观看日本| 亚洲,一卡二卡三卡| 亚洲国产色片| 麻豆乱淫一区二区| 特大巨黑吊av在线直播| 国产成人精品一,二区| 午夜免费男女啪啪视频观看| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| 一本色道久久久久久精品综合| av又黄又爽大尺度在线免费看| 日本av手机在线免费观看| 中文字幕制服av| 丝袜在线中文字幕| 中文字幕久久专区| 伦精品一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲怡红院男人天堂| a级毛片免费高清观看在线播放| 免费观看无遮挡的男女| av女优亚洲男人天堂| 妹子高潮喷水视频| 国产一区有黄有色的免费视频| 精品少妇黑人巨大在线播放| 边亲边吃奶的免费视频| 久久99精品国语久久久| 日韩三级伦理在线观看| 久久精品久久精品一区二区三区| av不卡在线播放| 中文字幕制服av| 一级毛片aaaaaa免费看小| 人妻制服诱惑在线中文字幕| 美女大奶头黄色视频| 国产欧美日韩综合在线一区二区 | 亚洲精品日本国产第一区| 亚洲国产成人一精品久久久| 秋霞伦理黄片| av福利片在线观看| 亚洲精品日韩在线中文字幕| 国产精品成人在线| 搡女人真爽免费视频火全软件| 夫妻午夜视频| 18禁在线无遮挡免费观看视频| 丝袜脚勾引网站| 日本欧美国产在线视频| 亚洲电影在线观看av| 美女国产视频在线观看| 成年美女黄网站色视频大全免费 | 又爽又黄a免费视频| 国产熟女午夜一区二区三区 | kizo精华| a级毛片在线看网站| 五月玫瑰六月丁香| 大片免费播放器 马上看| 如何舔出高潮| 精品一品国产午夜福利视频| 国产av精品麻豆| 日韩伦理黄色片| 国产高清国产精品国产三级| 水蜜桃什么品种好| 久久精品熟女亚洲av麻豆精品| 免费观看av网站的网址| 欧美bdsm另类| 在线观看国产h片| 下体分泌物呈黄色| 久久久久久久久久久丰满| 人人妻人人爽人人添夜夜欢视频 | 欧美精品国产亚洲| 嫩草影院入口| 极品教师在线视频| 赤兔流量卡办理| 亚洲电影在线观看av| 亚洲怡红院男人天堂| 久久97久久精品| 亚洲精品456在线播放app| 中文资源天堂在线| 全区人妻精品视频| 亚洲国产av新网站| 国精品久久久久久国模美| 99热这里只有是精品在线观看| 成人综合一区亚洲| 制服丝袜香蕉在线| 一级毛片 在线播放| 91精品国产国语对白视频| 三上悠亚av全集在线观看 | 免费久久久久久久精品成人欧美视频 | 亚洲精品国产色婷婷电影| 大香蕉97超碰在线| 97在线人人人人妻| 久久久久久久久久人人人人人人| 亚洲欧美成人综合另类久久久| 99九九线精品视频在线观看视频| 久久久久国产精品人妻一区二区| 观看免费一级毛片| 精品国产露脸久久av麻豆| 少妇被粗大猛烈的视频| 一级二级三级毛片免费看| 亚洲av免费高清在线观看| 精品亚洲成a人片在线观看| 99精国产麻豆久久婷婷| 亚洲综合色惰| 一二三四中文在线观看免费高清| 妹子高潮喷水视频| 亚洲无线观看免费| 亚洲精品久久久久久婷婷小说| 亚洲欧洲精品一区二区精品久久久 | 又爽又黄a免费视频| 久久久国产精品麻豆| 蜜臀久久99精品久久宅男| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 国产欧美日韩精品一区二区| 国产女主播在线喷水免费视频网站| 国产成人精品婷婷| 人妻少妇偷人精品九色| 热re99久久精品国产66热6| 久热这里只有精品99| 边亲边吃奶的免费视频| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 黄色毛片三级朝国网站 | 国产成人freesex在线| 自拍偷自拍亚洲精品老妇| 国产日韩一区二区三区精品不卡 | 久久国产乱子免费精品| 高清av免费在线| 国产精品熟女久久久久浪| 精品一区二区三卡| 国产精品一区二区性色av| 日韩中文字幕视频在线看片| 亚洲综合精品二区| 久久久久久久久久久丰满| 五月开心婷婷网| 又大又黄又爽视频免费| 嫩草影院入口| 国产深夜福利视频在线观看| 精品人妻熟女毛片av久久网站| 久久99精品国语久久久| 亚洲精品国产成人久久av| 秋霞在线观看毛片| 欧美人与善性xxx| 精华霜和精华液先用哪个| 久久青草综合色| 久久精品国产亚洲av天美| 国产精品一区二区在线观看99| 九九久久精品国产亚洲av麻豆| 夜夜骑夜夜射夜夜干| 亚洲图色成人| 国产精品不卡视频一区二区| 男女边摸边吃奶| 精品一区在线观看国产| 亚洲欧美日韩另类电影网站| 免费少妇av软件| 国产成人精品久久久久久| 国产成人精品婷婷| 秋霞在线观看毛片| a级片在线免费高清观看视频| 亚洲精品视频女| 一级毛片电影观看| 亚洲欧美日韩另类电影网站| 熟女av电影| 看非洲黑人一级黄片| 啦啦啦中文免费视频观看日本| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久久电影| 国产男女内射视频| 麻豆乱淫一区二区| 97超碰精品成人国产| 国产精品国产三级专区第一集| 18禁在线播放成人免费| 韩国av在线不卡| 人妻制服诱惑在线中文字幕| 亚洲av男天堂| 色婷婷久久久亚洲欧美| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| 一二三四中文在线观看免费高清| 熟妇人妻不卡中文字幕| 色94色欧美一区二区| 国产精品人妻久久久影院| 2021少妇久久久久久久久久久| av专区在线播放| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 男人狂女人下面高潮的视频| 日韩熟女老妇一区二区性免费视频| 中国三级夫妇交换| 99久国产av精品国产电影| 日韩一区二区视频免费看| 自拍偷自拍亚洲精品老妇| 色视频在线一区二区三区| 久久久久久久久久久丰满| 亚洲欧美一区二区三区黑人 | 伦理电影免费视频| 日本黄色片子视频| 国产成人一区二区在线| 欧美精品一区二区免费开放| 美女内射精品一级片tv| 精品亚洲成国产av| 国产亚洲5aaaaa淫片| 久久青草综合色| 国产高清三级在线| 亚洲精品自拍成人| 青青草视频在线视频观看| 丝瓜视频免费看黄片| 国产女主播在线喷水免费视频网站| 成人影院久久| 免费黄色在线免费观看| 不卡视频在线观看欧美| 亚洲自偷自拍三级| 另类精品久久| 在线精品无人区一区二区三| 26uuu在线亚洲综合色| 毛片一级片免费看久久久久| 观看免费一级毛片| 汤姆久久久久久久影院中文字幕| 嫩草影院新地址| 99热这里只有是精品50| av在线观看视频网站免费| 精品国产国语对白av| h视频一区二区三区| 制服丝袜香蕉在线| 伦理电影免费视频| 99热这里只有精品一区| 日本黄大片高清| 成人18禁高潮啪啪吃奶动态图 | 最近手机中文字幕大全| 国产在线男女| 3wmmmm亚洲av在线观看| 热99国产精品久久久久久7| 亚洲无线观看免费| 99久久中文字幕三级久久日本| 熟女人妻精品中文字幕| 内射极品少妇av片p| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 丝袜在线中文字幕| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 国产白丝娇喘喷水9色精品| xxx大片免费视频| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 亚洲内射少妇av| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线| 国产男女内射视频| 亚洲av不卡在线观看| 夜夜看夜夜爽夜夜摸| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 如何舔出高潮| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久 | 91精品一卡2卡3卡4卡| 少妇人妻 视频| 高清不卡的av网站| 黄色欧美视频在线观看| 亚洲精品自拍成人| 在线观看免费高清a一片| 免费人成在线观看视频色| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 国产成人精品福利久久| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片| 国产永久视频网站| 日韩成人av中文字幕在线观看| 又爽又黄a免费视频| 国产精品偷伦视频观看了| 一级毛片我不卡| 国产精品人妻久久久久久| 日本vs欧美在线观看视频 | 久久免费观看电影| 在线观看免费高清a一片| 两个人免费观看高清视频 | 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 午夜免费男女啪啪视频观看| 我的女老师完整版在线观看| 在线免费观看不下载黄p国产| 三级经典国产精品| √禁漫天堂资源中文www| 自线自在国产av| 深夜a级毛片| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜| 伦理电影免费视频| 丝袜喷水一区| 视频区图区小说| 欧美3d第一页| 我的老师免费观看完整版| 黄色毛片三级朝国网站 | 精品一区在线观看国产| 国产日韩欧美亚洲二区| 日韩中字成人| 午夜激情福利司机影院| 精品熟女少妇av免费看| 色视频在线一区二区三区| h视频一区二区三区| 国产成人免费观看mmmm| 嘟嘟电影网在线观看| 亚洲精品亚洲一区二区| 插阴视频在线观看视频| 岛国毛片在线播放| 精品一区在线观看国产| 久久国产精品男人的天堂亚洲 | 午夜福利网站1000一区二区三区| 在线观看美女被高潮喷水网站| 日韩精品免费视频一区二区三区 | 最近的中文字幕免费完整| 国产熟女欧美一区二区| 国产精品女同一区二区软件| 国产色婷婷99| 亚洲av成人精品一二三区| 国产美女午夜福利| 久久久久久久久久人人人人人人| 国产高清有码在线观看视频| 免费久久久久久久精品成人欧美视频 | 国产69精品久久久久777片| 日韩欧美 国产精品| 久久午夜福利片| 亚洲久久久国产精品| 国产精品免费大片| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 日韩av不卡免费在线播放| 大香蕉97超碰在线| 99精国产麻豆久久婷婷| 黄色毛片三级朝国网站 | 校园人妻丝袜中文字幕| 赤兔流量卡办理| 在线观看三级黄色| 日本91视频免费播放| 日韩制服骚丝袜av| 亚洲av在线观看美女高潮| 最黄视频免费看| 另类精品久久| 国内少妇人妻偷人精品xxx网站| 高清欧美精品videossex| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 亚洲精品国产av蜜桃| 日产精品乱码卡一卡2卡三| 国产美女午夜福利| 91久久精品电影网| 老司机亚洲免费影院| 久久久久久久久久人人人人人人| 我要看日韩黄色一级片| 久久久精品免费免费高清| 国产亚洲91精品色在线| 亚洲不卡免费看| 五月伊人婷婷丁香| 亚洲精品456在线播放app| 亚洲欧美精品专区久久| 狂野欧美白嫩少妇大欣赏| 两个人的视频大全免费| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区黑人 | 99久久人妻综合| 亚洲欧美成人综合另类久久久| 99国产精品免费福利视频| a级毛片免费高清观看在线播放| a级一级毛片免费在线观看| √禁漫天堂资源中文www| 欧美一级a爱片免费观看看| 久久久久视频综合| 国产欧美日韩一区二区三区在线 | 日日撸夜夜添| 成年av动漫网址| 久久精品久久久久久噜噜老黄| 极品教师在线视频| 日本av免费视频播放| 婷婷色av中文字幕| 如日韩欧美国产精品一区二区三区 | 免费观看a级毛片全部| 建设人人有责人人尽责人人享有的| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 高清黄色对白视频在线免费看 | 肉色欧美久久久久久久蜜桃| 一本大道久久a久久精品| 欧美日韩一区二区视频在线观看视频在线| 一级毛片我不卡| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| .国产精品久久| 成人无遮挡网站| 欧美区成人在线视频| videossex国产| 国产一区二区三区综合在线观看 | 日本黄大片高清| 亚洲国产精品成人久久小说| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 边亲边吃奶的免费视频| 黄色视频在线播放观看不卡| a级毛片在线看网站| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 国产视频内射| 中文欧美无线码| 日本黄色片子视频| 日本av免费视频播放| 亚洲av不卡在线观看| 人人妻人人澡人人看| 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| 久久国产精品男人的天堂亚洲 | 午夜免费观看性视频| 大码成人一级视频| 欧美97在线视频| 欧美少妇被猛烈插入视频| 人妻一区二区av| 男男h啪啪无遮挡| 日本免费在线观看一区| 国产精品久久久久成人av| 欧美xxⅹ黑人| 亚洲人与动物交配视频| 免费人妻精品一区二区三区视频| 一级黄片播放器| 69精品国产乱码久久久| 亚洲图色成人| 一本色道久久久久久精品综合| 成年女人在线观看亚洲视频| 国产高清国产精品国产三级| 一个人看视频在线观看www免费| 91精品伊人久久大香线蕉| 肉色欧美久久久久久久蜜桃| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 建设人人有责人人尽责人人享有的| 国产精品无大码| 亚洲美女搞黄在线观看| 国产精品国产三级国产av玫瑰| 日韩视频在线欧美| 精品一区在线观看国产| 国产探花极品一区二区| 美女内射精品一级片tv| 寂寞人妻少妇视频99o| 99热6这里只有精品| 五月伊人婷婷丁香| 国产在线一区二区三区精| 大码成人一级视频| av视频免费观看在线观看| 在线观看美女被高潮喷水网站| 国产毛片在线视频| 午夜福利视频精品| 国产有黄有色有爽视频| 麻豆成人午夜福利视频| 在线观看免费日韩欧美大片 | 蜜桃久久精品国产亚洲av| 极品人妻少妇av视频| 成人综合一区亚洲| 激情五月婷婷亚洲| 日韩,欧美,国产一区二区三区| 高清不卡的av网站| 欧美区成人在线视频| 国产 精品1| 观看av在线不卡| 精品人妻一区二区三区麻豆| 精品久久国产蜜桃| 色5月婷婷丁香| 黄色毛片三级朝国网站 | 一本大道久久a久久精品| 在线观看av片永久免费下载| 少妇 在线观看| 亚洲熟女精品中文字幕| 国产在线一区二区三区精| 久久人人爽人人爽人人片va| 97超碰精品成人国产| 久久精品久久精品一区二区三区| 精品国产露脸久久av麻豆| 国产 精品1| 日韩中字成人| 国产成人精品一,二区| 中国国产av一级| 亚洲成色77777|