• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics,chemistry,and Hirshfeld surface analyses of gamma-irradiated thalidomide to evaluate behavior under sterilization doses

    2018-06-20 05:50:54VlnerMusselMxFerreirMriMrquesMriYoshidMrinAlmeidBernrdoRodriguesWgnerMussel
    Journal of Pharmaceutical Analysis 2018年3期

    Vlner A.F.S.N.Mussel,Mx P.Ferreir,Mri B.F.Mrques,Mri I.Yoshid,Mrin R.Almeid,Bernrdo L.Rodrigues,Wgner N.Mussel,*

    aDepartamento de Química,ICEx,Universidade Federal de Minas Gerais-UFMG,Av.Ant?nio Carlos 6627,31270-901 Belo Horizonte,MG,Brazil

    bCNEN-CDTN,Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear,Av.Ant?nio Carlos,6627 Belo Horizonte,MG,Brazil

    1.Introduction

    To ensure adequate conditions of use,sterility is a crucial attribute to any pharmaceutical material,main component,excipient,or formulation.In general,sterilized materials should have microbial survivor probability of<10-6.This criterion is the basis of the sterility assurance level.

    There are several sterilization procedures,and each has advantages and disadvantages[1,2].There is no suitable procedure for general use.Physical removal of microorganisms by membrane filtration does not require heat.Dry heat or even moist heat promotes microbiological reduction at high temperature,but results in considerable degradation of temperature-sensitive materials or devices.Sterilization using ethylene oxide is highly effective but can leave a toxic residue in porous materials such as implants.Electron-beam radiation can be used to prevent temperature effects and toxic residues in the final material,but is limited by poor penetration in bulky materials.

    Gamma irradiation has advantages over other conventional sterilization methods in solids∶high penetration,uniform efficacy,low isothermal stability,and absence of toxic residues.The main advantage is that irradiation can be used as the final sterilization procedure in starting materials and final products.In this way,the usual 25kGy dose can ensure sterilized pharmaceutical materials[2,3].Due to the potential sensitivity of pharmaceuticals,validation procedures with lower doses are usually accepted as long as reliable and adequate reduction of the biologic burden can be ensured.In this way,the risk of undesired effects over pharmaceuticals,formulations,or devices submitted to the sterilization process is minimized[4].

    Thalidomide ((RS)-2-(2,6-dioxopiperidin-3-il)-1H-isoindol-1,3(2H)-dione)was synthesized by Chemie Grünenthal in West Germany in 1954.It was introduced to the West German market in 1956 as an antiemetic for pregnant women.In the 1960s,the teratogenic effects of this drug were recognized.Fetal malformation due to the S-isomer of thalidomide resulted in restricted use of thalidomide and increased surveillance by regulatory agencies[5].

    Since then,thalidomide has been recognized as having antiangiogenic and anti-inflammatory properties.It has been used to treat leprosy and multiple myeloma.Hence,stability studies of thalidomide under radioactive stress aimed at sterilization of the drug are warranted[5].

    2.Materials and methods

    A sample of thalidomide from a validated production batch was obtained during the shelf-life of this pharmaceutical.All analyses were conducted within the validity period of the batch.

    2.1.Powder X-ray diffraction(PXRD)

    PXRD data were collected in an XRD-7000 diffractometer(Shimadzu,Kyoto,Japan)at room temperature under 40 kV,30 mA,using CuKα (λ =1.54056 ?)equipped with polycapillary focusing optics under parallel geometry coupled with a graphite monochromator.The sample was spun at 60 rpm,and scanned over an angular range of 4–60°(2θ)with a step size of 0.01°(2θ)and a time constant of 2s/step.All fitting procedures were obtained using FullProf Suite[6,7].Crystalexplorer v 17 was used to calculate the Hirshfeld surface[8].

    2.2.Single-crystal X-ray diffraction(SCXRD)

    SCXRD data were collected in a Gemini A Ultra X-ray Diffraction system(Agilent Technologies,Santa Clara,CA,USA)at room temperature using a MoKα (λ =0.71073 ?)tube as the X-ray source,equipped with a graphite monochromator and a charge-coupled device plate detector.Data collection and re finement details are given in Table 1.

    2.3.Thermogravimetric analysis(TGA)and differential thermal analysis(DTA)

    TGA and DTA experiments were carried out on a DTG60H system(Shimadzu)in a dynamic N2atmosphere(50 mL/min)using alumina pans containing≈2.0 mg of sample.Experiments were conducted at a heating rate of 10 °C/min from 25 °C to 400 °C.

    2.4.Differential scanning calorimetry(DSC)

    DSC experiments were undertaken on a DSC60 system(Shimadzu).The equipment cell was calibrated with indium(melting point,156.6 °C;heat of fusion,ΔHfus=28.54 J/g)and lead(melting point,327.5°C).Aluminum pans containing ≈1 mg of samplewere used under a dynamic N2atmosphere(50 mL/min)and a heating rate of 10 °C/min from 25 °C to 300 °C.Thalidomide can exist as two polymorphs,α and β,and the latter shows different thermal behavior.Therefore,an isothermal experiment was carried out at 270°C to obtain a pure material for comparison,as needed.

    Table 1 Single crystal re finement data for polymorph α,space group,Hall symbol,lattice parameters a,b and c(?),? angle(θ),volume,number of formulae unit per unit cell,X-ray density,wavelength,experimental angular range(θ),crystal absorption coefficient,crystal shape and dimensions,number of reflections considered for cell parameters calculation,and independent reflections used for single crystal fitting.

    2.5.Ultraviolet spectroscopy

    Ultraviolet spectroscopy was undertaken at 200–400 nm for thalidomide at 10μg/mL in ethanol on a spectrophotometer(1800;Shimadzu).Origin v9.1 was used to adjust data.

    2.6.Raman spectroscopy

    Raman spectroscopy of solid thalidomide was done on a confocal micro-Raman spectrometer(Senterra;Bruker,Billerica,MA,USA)with an excitation laser set at 785 nm.The measurement conditions were as follows∶integration time of 5 s;spectral resolution of 3–5cm-1;and spectral range of 2000–100cm-1.The laser was focused with a 4×dry objective lens,with the laser power set to 25 mW.Origin v9.1 was used to adjust data.

    2.7.Gamma irradiation

    Experiments involving gamma irradiation were done at Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear(Belo Horizonte,MG,Brasil).The radiation system(IR-214;MDS Nordion,Ottawa,Canada)was equipped with a dry cobalt-60 source.The source had a maximum activity of 2200 TBq(60,000 Ci).The specific irradiation times were calculated,and then all samples were exposed to doses of 2,5,10,15,25,30 or 100 kGy.

    2.8.Attenuated total reflection Fourier transformed infrared spectroscopy(ATR-FTIR)

    FTIR analysis was performed at room temperature on a Spectrum 1000 spectrophotometer(PerkinElmer,United States)equipped with an attenuated total reflectance(ATR)accessory.The sample was pressed into a zinc selenide crystal,and 32 scans were averaged.For single FTIR without ATR,the samples were measured in KBr pressed pellets in the wavenumber range between 400 and 3400cm-1at room temperature,with a resolution of 4cm-1.

    2.9.Statistical analyses

    Data are the mean±standard deviation.All fitting procedures took into account three independent measurements with statistical analyses conducted using Origin v9.1.

    Fig.1.Thalidomide molecule showing the labile bond between phthalimide and glutarimide rings.

    Fig.2.The crystal structure of the polymorphs α (A)(a=8.233(1)?,b=10.070(2)?,c=14.865(2)?,α = γ =90.0°and β =102.53(2)°,monoclinic,P 21/n,Z=4)and β (B)(a=20.679(5)?,b=8.042(2)?,c=14.162(5)?,α = γ =90.0°and β =102.86(3)°,monoclinic,C 2/c,Z=8),and(C)keto-enol tautomerization.

    3.Results and discussion

    The thalidomide molecule has a labile bond that can be turned around from phthalimide and glutarimide rings(Fig.1).

    Fig.3.Powder X-ray diffraction experiments for irradiated thalidomide samples for 0,2,5,10,15,20,30 and 100 kGy.All samples were irradiated under the same conditions,only different times.

    Fig.4.Crystal projection of the asymmetric unit.Carbon(grey),oxygen(red)and nitrogen(blue)atoms.ORTEP plotted ellipsoids with 50%probability.

    In the thalidomide chemical structure,the chiral center has a neighboring ketone that may undergo to the enol form,then reforming it when switching back to the keto form.Even with uptaking of the correct R-thalidomide,a keto-enol tautomerization happened inside the human body,it would racemase into a mixture of R,S-thalidomide and the corresponding enol forms.The S-thalidomide causes the birth defects(Fig.2).

    The intensity of a diffracted peak of a certain reflection(hkl)plane for a given chemical structure is a direct contribution of the structural factor,which in turn corresponds to the number of electrons diffracting the X-ray beam on that plane.If any plane in the structure reduces its number of electrons,a direct effect of that condition will be a decrease in the intensity of that specific plane,and the resulting system will be a plane with lower electron density.In the solid state,the atoms in a structure are much less labile than in solubilized material because of numerous mutual interactions(e.g.,Van der Waals forces and/or hydrogen bonding).The fitting procedure was designed to allow the torsion angle between phthalimide and glutarimide rings to vary freely within the extraction and adjustment of the intensities in the diffraction.

    The thalidomide structure C13H10N2O4space groupP21/nhas a torsion angle of 57.28°(2θ).This structure was taken as a reference,with all procedures starting from the same template molecule, by varying the fitting sequence as follows∶(i)parameterization of the background with five polynomial terms;(ii)U,V and W(FWHM)of the pseudo-Voight function;(iii)pro file parameters NA and NB of the pseudo-Voight function;(iv)asymmetry factors P1,P2,P3 and P4 of the Berar–Baldinozzi asymmetric correction;(v)a and b beyond the beta angle of the crystal lattice;(vi)torsion angles N1-C11-C13-C2 with the initial value set to 57.28°(2θ);(vii)isotropic thermal parameter functions for all atoms.Fig.3 shows the experimental XRD pattern for all doses.

    Fig.5.Hirshfeld surface analysis and corresponding overall fingerprints for polymorphs α and β (A and B,respectively),the torsion angles(C),the fingerprint O-O interactions(π-πrespectively)(D).The 2 kGy irradiated αpolymorph with respectively torsion angle and overall fingerprint(E).

    Fig.6.Hirshfeld surface analysis and overall contributions for all atoms pairs in polymorphs α and β.

    Fig.7.Raman experimental spectra of polymorphs α and β evidencing the spectra differences.

    SCXRD was carried out on a recrystallized sample from an original polymorphαsample by solvent evaporation.To 20 mL of a methanol∶water(5∶3)solution was added 25 mg of polymorph α,which resulted in a supersaturated solution.Non-solubilized crystals were filtered out,and the solution was allowed to stand to recrystallize over 23 days.The crystal data,collection,and details of structure re finement of polymorphαare summarized in Table 1.Refinement was carried out in the absence of anomalous scattering.Changes in illuminated volume were kept to a minimum,and were taken into account[9–14]using multi-scan inter-frame scaling.Hydrogen atoms were geometrically fixed to their bonded atoms,with their thermal isotropic term,Uiso(H)in the range 1.2–1.5 times Ueqof the parent atom,after which the positions were re fined with adequate constraints.Fig.4 shows the asymmetric unit as an Ortep plot for the determination of crystal structure,as well as the unit cell ellipsoids with 50%probability.

    Hirschfeld surface analyses can provide a deep understanding of certain characteristics based on electron distribution,πinteractions,and the contributions of pairs of atoms.Polymorphsαand βshowed substantial differences for each fingerprint(Figs.5A and B).Polymorphβshowed a relatively largeπinteraction on the phthalimide ring.This was a direct evaluation of close contact and the internal distribution of theβcell lattice(Fig.5B).A largedistance of approximately 1.1 ? from the inside surface(di)interaction on polymorphβwas related to the appearance of hydrogenatom interaction from the phthalimide–glutarimide transversional ring arrangement within the unit cell(Figs.5B and C).The two interactions at about 1.0 and 1.3 ?(Fig.5B)from the inside surface(di)were due to the glutarimide–glutarimide nitrogen-hydrogen and carbonyl group of two close molecules within the unit cell.The overall O-H interactions showed shorter distances from the inside surface(di)of about 1.0 and 1.3 ? forα and β,respectively,and showed a more compact unit cell for polymorphβ(Fig.5D).For polymorphαirradiated at 2 kGy,the two adjacent glutarimide rings within the unit cell were responsible for the mutual O-H interactions leading to hydrogen-bond formation and/or the possibility of a tautomeric pair structure(Fig.5E).Fig.6 shows the individual contribution from each atom pair to the overall probability of interaction over the thalidomide molecule[15–17].

    Table 2 Torsion angle(degrees θ),lattice parameters(?),β (degrees θ)and Rp goodness of fitting parameter(%).

    Table 3 Experimentaland calculated Raman'sobserved peak,fully assigned forα polymorph.

    Fig.8.UV experimental spectra for α and β polymorphs.

    Raman spectroscopy was undertaken for both polymorphic forms of thalidomide.Theoretical calculations were carried out to increase understanding of the observed vibrational modes.Theoretical calculations were done using the structures of each polymorph published by the Cambridge Crystallographic Data Center(Cambridge,UK)using Spartan v14.Fig.7 shows the experimental Raman spectra for polymorphsα andβ.

    Table 2 shows the experimental and theoretical bands(as assigned)for each mode of polymorphα.For symmetric stretching of the carbonyl group,centered at 1785 and 1769 cm–1,no equivalent vibrational modes,when compared with polymorphβ,were identified.

    Asymmetric stretching of the carbonyl group was identified at 1754 cm–1.Vibrational modes appeared at two carbonyl groups for polymorphαwhereas,in polymorphβ,such modes were related primarily only to one carbonyl group.The stretching region of the CH2-CH bond in the glutarimide ring showed peaks at 1166 and 1176 cm-1,and showed a substantial difference for the ratio and axial offset for the two polymorphs.Peaks on the spectrum for polymorphαat 701 and 693 cm-1were assigned to the vibrational modes corresponding to ring deformations outside the plane.Peaks at 604 and 595 cm-1were assigned to the ring deformation and stretching of the CH group and CH bonds.For deformation out of the plane,peaks at 404,391,236 and 225 cm-1were observed.For crystalline structures in different polymorphs,the vibrational modes in the low vibrational frequency region(<200 cm-1)are attributed to vibrations of the crystal lattice,and that region can be regarded as a “second fingerprint”of the Raman spectrum for each substance(Table 3)[18,19].Comparison of these data suggested that differences in the spectra of polymorphsαand βwere due to compression of their molecules and the way they were interacting in their crystal lattices;these effects influenced their vibrational modes directly.Transformation between thalidomide polymorphs was achieved by providing adequate energy for the crystalline lattice with the aim of reorganization.This procedure was accompanied by TGA,DTA and DSC.

    Fig.9.(A)TGA/DTA simultaneous curve of α polymorph form;(B)DSC curve of α polymorph form,with inset zoom of the endothermic peak.

    In simultaneous TGA/DTA,mass loss was observed only once at an onset temperature of 264°C,suggesting that the material was anhydrous and pure.The DTA curve revealed two endothermic peaks corresponding to fusion of polymorphsα andβ,respectively.The DSC curve showed two endothermic events at onset temperatures of 245 °C and 274 °C.Fig.8 shows the UV spectra for polymorphsαandβ.We observed five bands for polymorphα(A1,A2,A3,A4 and A5)and four bands for polymorphβ(B1,B2,B3 and B4).The A1 band at 207nm is related to the n→π*transitions in aromatic compounds.The A2 and B1 bands at 221nm and 222 nm,respectively,are related toπ*conjugated systems,showing aromatic compounds to have chromophore substitution.The A3 and B2 bands at 232 nm and 233nm,respectively,are related to tautomers generated by the working pH of the solution.The A4 and B3 bands at 240nm and 241 nm,respectively,are the characteristic bands of thalidomide.The A5 and B4 bands both at 300 nm are related to groups with a low-energy configuration state,just like the carbonyl groups in thalidomide.For better visualization of the first endothermic peak,enlargement of this region in the curve is shown(Fig.9).This event was identified as a crystalline transition between the two polymorphs of thalidomide.

    The second endothermic event corresponded to decomposition of the formed material,with this being only theβform in the case of total conversion and a mixture ofαandβin the case of partial conversion[19].To confirm these occurrences,an isotherm at 270°C using the material for further powder XRD was undertaken(Fig.10).Comparison of the diffractograms and interplanar distances enabled us to confirm and identify the material as polymorphβ.

    We wished to visualize possible changes in thermal behavior of the material after irradiation.Hence,DSC was done with samples receiving doses of 2,5,30 or 100 kGy.In the DSC curve of the samples irradiated with 2 and 5kGy,a single endothermic peak with an onset temperature of 275°C was noted for both samples.This finding suggested total conversion of theαform into theβ form during heating,so this peak was designated as the fusion follow by decomposition of polymorphβ(Fig.11).The DSC curves of samples irradiated with 30 and 100 kGy revealed two endothermic peaks with onset temperatures of 272 °C and 275 °C for samples irradiated with 30 kGy and at 272 °C and 274 °C for samples irradiated with 100 kGy(Fig.12).

    Fig.10.Comparative diffractogram between α and β polymorphs.

    We designated the first peak as the fusion of polymorphαand the second peak as the fusion of polymorphβfor both curves.Different from the report by Reepmeyer and colleagues[14],the DSC curve in our study was carried out at a heating rate of 10°C/min,but we observed values very close to those reported by Reepmeyer and colleagues.We propose that after irradiation with doses of 30 and 100 kGy,polymorphαacquired higher thermal stability in relation to polymorphic transformation.Therefore,the fusion and decomposition temperature ofαform was visualized in DSC curves instead of its crystalline transformation,as shown in the physicochemical characterization of the material.The irradiated sample had a more compact unit cell,so there was an increase in hydrogen-atom interactions within the unit cell,resulting in an increase in thermal stability of polymorphα.

    4.Conclusion

    Fig.11.DSC curves of α polymorph form after(A)2 kGy dose and(B)5 kGy dose.

    Fig.12.DSC curves of α polymorph form after(A)30 kGy dose and(B)100 kGy dose.

    The observed turning around phthalimide and glutarimide rings already occurs at low radiation values(e.g.,2kGy).Eventually,the absorbed energy will overcome the repulsive force due to the proximity of the carboxyl group and produce a full turn.With a continuous supply of energy,the system rotates completely at higher doses of 15,20,30 and 100kGy.With higher doses,the full turning effect is reached,allowing the network to relax its tension.The thalidomide molecule has a center of symmetry.Therefore,one full turn of phthalimide and glutarimide rings between each other,starting from 57.3°,will lead to the same molecule,with stabilization of the final angle based on the total amount of absorbed energy.After a full turn,the process starts again.Irradiated samples at 30 and 100kGy had more compact unit cells and a lower volume,so there was an increase in the intermolecular interaction between hydrogen atoms within the unit cell,which resulted in higher thermal stability for polymorphα.At 30 and 100kGy,each melting point could be seen separately,which was a different situation compared with that of the non-irradiated sample.A fourfold increase in the usual dose used in pharmaceuticals is employed for gamma-ray sterilization.Thalidomide molecules can release excess energy by turning the bond between phthalimide and glutarimide rings.Hence,gamma-ray sterilization of pure thalidomide before use in fixed-dose pharmaceutical formulations is possible.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors would like to thank the CNEN-CDTN(Comiss?o Nacional de Energia Nuclear–Centro de Desenvolvimento da Tecnologia Nuclear)LIG(Laboratório de Irradia??o Gama)facility for the assistance,and Funda??o de Amparo à Pesquisa do Estado de Minas Gerais(FAPEMIG)(APQ-02087-14),Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(245914/2012),Coordena??o de Aperfei?oamento de Pessoal de Nível Superior(CAPES)(PNPD-N-1648694-scholarship No2016752283)and Pró-Reitoria de Pesquisa/UFMG for financial support.

    [1]Health Products and Food Branch Inspectorate∶Process Validation∶Terminal Sterilization Processes for Pharmaceutical Products,Supersedes∶GUI-0007,GUI-0009 and GUI-0010,(GUIDE-0074),OTTAWA,Ontario,Canada,2006.

    [2]EN ISO 13408-1∶2008(en),Aseptic processing of health care products—Part 1∶General requirements,compilation prepared by Online Browsing Platform(OBP),2008,〈https∶//www.iso.org/obp/ui/#iso∶std∶iso∶13408∶-1∶ed-2∶v1∶en〉.

    [3]AAMI/ISO 11137-2∶2013,Sterilization of health care products-Radiation-Part 2∶Establishing the sterilization dose(revision of 11137-2∶2012),ISBN(s)∶1570205027,2013.

    [4]J.Agalloco,USP Microbiology&Sterility Assurance,Expert Committee USP∶Activities Impacting Sterilization&Sterility Assurance,USP 35 1211,revision 2008.

    [5]F.Hasanain,K.Guenther,W.M.Mullett,et al.,Gamma sterilization of pharmaceuticals-a review of the irradiation of excipients,active pharmaceutical ingredients and final drug product formulations,J.Pharm.Sci.Technol.68(2014)113–137.

    [6]T.Roisnel,J.Rodriguez-Carvajal,WinPLOTR∶a Windows tool for powder diffraction patterns analysis Materials Science Forum,Proceedings of the Seventh European Powder Diffraction Conference,EPDIC 7,2000∶118–123.

    [7]J.Rodriguez-Carvajal,T.Roisnel,FullProf.98 and WinPLOTR∶new windows 95/NT applications for diffraction.Commission for powder,Int.Union Crystallogr.Newsl.20(1998)35.

    [8]M.J.Turner,J.J.McKinnon,S.K.Wolff,et al.,CrystalExplorer17,University of Western,Australia,2017 〈http∶//crystalexplorer.scb.uwa.edu.au〉.

    [9]C.H.G?rbitz,What is the best crystal size for collection of X-ray data?Reif nement of the structure of glycyl-L-serine based on data from a very large crystal,Acta Cryst.B55(1999)1090–1098.

    [10]R.I.Cooper,A.L.Thompson,D.J.Watkin,CRYSTALS enhancements∶dealing with hydrogen atoms in re finement,J.Appl.Cryst.43(2010)1100–1107.

    [11]G.M.Sheldrick,A short history of SHELX,Acta Cryst.A64(2008)112–122.

    [12]P.W.Betteridge,J.R.Carruthers,R.I.Cooper,et al.,CRYSTALS Version 12∶software for guided crystal structure analysis,J.Appl.Cryst.36(2003)1487.

    [13]D.J.Watkin,C.K.Prout,J.R.Carruthers,et al.,Crystals Issue 10,Chemical CrystallographyLaboratory,Oxford,UK,1996.

    [14]J.C.Reepmeyer,M.O.Rhodes,D.C.Cox,et al.,Characterization and crystal structure of two polymorphic forms of racemic thalidomide,J.Chem.Soc.Perkin Trans.2(9)(1994)2063–2067.

    [15]M.A.Spackman,D.Jayatilaka,Hirshfeld surface analysis,CrystEngComm 11(2009)19–32.

    [16]M.A.Spackman,J.J.McKinnon,Fingerprinting intermolecular interactions in molecular crystals,CrystEngComm 4(2002)378–392.

    [17]M.J.Turner,J.J.McKinnon,D.Jayatilaka,et al.,Visualisation and characterisation of voids in crystalline materials,CrystEngComm 13(2011)1804–1813.

    [18]P.J.Larking,M.Dabros,B.Sars field,et al.,Polymorph characterization of active pharmaceutical ingredients(APIs)using low-frequency Raman spectroscopy,Appl.Spectrosc.68(7)(2014)758–776.

    [19]E.P.J.Parrot,B.M.Fischer,L.F.Fladden,et al.,Terahertz spectroscopy of crystalline and non-crystalline solids,Terahertz spectroscopy and imaging Springer Series in Optical Sciences book series(SSOS),171,2012∶191–227.

    最近中文字幕高清免费大全6| 尾随美女入室| 天天操日日干夜夜撸| 精品国产一区二区久久| 久久99热这里只频精品6学生| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 捣出白浆h1v1| 国产精品一国产av| 观看美女的网站| 亚洲精品日本国产第一区| 欧美成人午夜免费资源| 国产免费现黄频在线看| 少妇人妻 视频| 亚洲精品国产色婷婷电影| 2021少妇久久久久久久久久久| 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 日本色播在线视频| 啦啦啦在线免费观看视频4| 一级黄片播放器| 久久狼人影院| 美女大奶头黄色视频| 中文字幕色久视频| 一本久久精品| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区 | 日本wwww免费看| 天美传媒精品一区二区| 中文字幕制服av| 99re6热这里在线精品视频| 1024视频免费在线观看| 丰满迷人的少妇在线观看| 国产黄色视频一区二区在线观看| 男人添女人高潮全过程视频| 午夜福利在线观看免费完整高清在| 美女主播在线视频| 午夜福利视频精品| 九九爱精品视频在线观看| 宅男免费午夜| 欧美日本中文国产一区发布| 久久久久精品久久久久真实原创| av网站在线播放免费| 亚洲国产欧美网| 18禁观看日本| 国产精品av久久久久免费| 少妇人妻久久综合中文| 国产精品久久久久成人av| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 少妇的丰满在线观看| 在线观看舔阴道视频| 韩国精品一区二区三区| 久久中文字幕人妻熟女| 大码成人一级视频| 国产精品一区二区精品视频观看| 宅男免费午夜| 精品熟女少妇八av免费久了| 丝袜美足系列| 村上凉子中文字幕在线| 满18在线观看网站| 色尼玛亚洲综合影院| 老司机在亚洲福利影院| 国产一卡二卡三卡精品| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 成人av一区二区三区在线看| 一个人免费在线观看的高清视频| 亚洲成国产人片在线观看| 91国产中文字幕| 精品第一国产精品| 欧美一区二区精品小视频在线| 国产精品九九99| 中文字幕人妻熟女乱码| 女人爽到高潮嗷嗷叫在线视频| ponron亚洲| 黄色视频不卡| 免费不卡黄色视频| 国产精品久久久久成人av| 欧美在线黄色| 男人的好看免费观看在线视频 | 久久久久久久午夜电影 | 亚洲国产看品久久| 桃红色精品国产亚洲av| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 成在线人永久免费视频| 久久久国产一区二区| 亚洲午夜精品一区,二区,三区| 日韩 欧美 亚洲 中文字幕| 国产精品久久久久久人妻精品电影| 欧美另类亚洲清纯唯美| 成人特级黄色片久久久久久久| 亚洲,欧美精品.| 青草久久国产| 一级毛片女人18水好多| 波多野结衣av一区二区av| 性色av乱码一区二区三区2| 91麻豆av在线| 热re99久久精品国产66热6| www.999成人在线观看| 国产熟女午夜一区二区三区| 咕卡用的链子| 黄色女人牲交| 日韩有码中文字幕| 欧美性长视频在线观看| 深夜精品福利| x7x7x7水蜜桃| 老熟妇乱子伦视频在线观看| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜制服| 操出白浆在线播放| 国产精品自产拍在线观看55亚洲| 男女午夜视频在线观看| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 最好的美女福利视频网| 免费高清视频大片| 亚洲人成电影观看| 高清av免费在线| 一本大道久久a久久精品| av天堂在线播放| 琪琪午夜伦伦电影理论片6080| 国产精品久久视频播放| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 在线视频色国产色| 青草久久国产| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 国产黄色免费在线视频| 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久九九精品影院| 国产成人精品久久二区二区免费| 色在线成人网| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| 久久国产乱子伦精品免费另类| 亚洲国产欧美一区二区综合| 久久 成人 亚洲| 午夜影院日韩av| 国产成人精品无人区| 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播| 亚洲av第一区精品v没综合| 高清在线国产一区| 婷婷精品国产亚洲av在线| 51午夜福利影视在线观看| 免费av中文字幕在线| 超碰97精品在线观看| 黑丝袜美女国产一区| 国产精品久久电影中文字幕| 午夜视频精品福利| 日本免费a在线| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 成在线人永久免费视频| 最近最新中文字幕大全电影3 | 丰满人妻熟妇乱又伦精品不卡| 欧美成人午夜精品| 国产免费现黄频在线看| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 成人亚洲精品一区在线观看| 亚洲国产中文字幕在线视频| 三上悠亚av全集在线观看| 免费女性裸体啪啪无遮挡网站| 色尼玛亚洲综合影院| 午夜视频精品福利| 久久亚洲真实| 色播在线永久视频| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三区视频在线观看免费 | 在线永久观看黄色视频| 亚洲欧美激情综合另类| 日本黄色视频三级网站网址| 久久中文字幕人妻熟女| 人人妻人人添人人爽欧美一区卜| 日韩 欧美 亚洲 中文字幕| tocl精华| 水蜜桃什么品种好| 极品教师在线免费播放| 久久久久久久久免费视频了| 国产xxxxx性猛交| 午夜精品在线福利| 成年版毛片免费区| 国产午夜精品久久久久久| 久久久国产成人精品二区 | 国产成人av教育| 又黄又爽又免费观看的视频| 成人免费观看视频高清| av天堂久久9| 亚洲 国产 在线| 99国产精品一区二区蜜桃av| 亚洲 欧美一区二区三区| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片 | 亚洲一区高清亚洲精品| 欧美日韩亚洲高清精品| 电影成人av| 中文字幕高清在线视频| 欧美老熟妇乱子伦牲交| 丝袜人妻中文字幕| 国产成+人综合+亚洲专区| 久久精品国产清高在天天线| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 在线观看午夜福利视频| 老司机亚洲免费影院| 中文字幕人妻丝袜一区二区| 国产精品亚洲av一区麻豆| 国产99白浆流出| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| av视频免费观看在线观看| 亚洲人成伊人成综合网2020| 亚洲精品国产区一区二| 啪啪无遮挡十八禁网站| av电影中文网址| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 黑人欧美特级aaaaaa片| 男人舔女人下体高潮全视频| av片东京热男人的天堂| 悠悠久久av| 国产精品 国内视频| 亚洲欧美一区二区三区久久| 99国产精品免费福利视频| 狂野欧美激情性xxxx| 精品国产亚洲在线| 亚洲国产精品一区二区三区在线| 亚洲av片天天在线观看| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本wwww免费看| 亚洲中文字幕日韩| 亚洲黑人精品在线| 咕卡用的链子| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一区av在线观看| 午夜精品在线福利| 亚洲中文字幕日韩| 麻豆av在线久日| 成人永久免费在线观看视频| 亚洲精品粉嫩美女一区| 9色porny在线观看| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 伊人久久大香线蕉亚洲五| 一级,二级,三级黄色视频| 好看av亚洲va欧美ⅴa在| 国产成年人精品一区二区 | 免费高清视频大片| 9色porny在线观看| 国产欧美日韩一区二区三| 中文字幕色久视频| 天天躁夜夜躁狠狠躁躁| 国产色视频综合| 老熟妇乱子伦视频在线观看| 精品免费久久久久久久清纯| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩精品亚洲av| 高清av免费在线| 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器 | 亚洲精品国产区一区二| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 中亚洲国语对白在线视频| 欧美人与性动交α欧美软件| 久久中文字幕一级| 午夜91福利影院| 啦啦啦 在线观看视频| 搡老乐熟女国产| 丁香欧美五月| 色婷婷av一区二区三区视频| 久久人人97超碰香蕉20202| 18禁裸乳无遮挡免费网站照片 | 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区蜜桃| 午夜精品在线福利| 热re99久久精品国产66热6| 国产精品 国内视频| 欧美人与性动交α欧美软件| 久久人妻福利社区极品人妻图片| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 伦理电影免费视频| 日韩欧美一区视频在线观看| av网站在线播放免费| 国产野战对白在线观看| 很黄的视频免费| 一进一出抽搐gif免费好疼 | 日本欧美视频一区| 成人国语在线视频| 男女午夜视频在线观看| 两人在一起打扑克的视频| 精品电影一区二区在线| 国产欧美日韩综合在线一区二区| 黄色 视频免费看| 亚洲一区二区三区欧美精品| 亚洲av五月六月丁香网| 啪啪无遮挡十八禁网站| 欧美精品亚洲一区二区| 精品免费久久久久久久清纯| 老司机深夜福利视频在线观看| 亚洲狠狠婷婷综合久久图片| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 欧美久久黑人一区二区| 国产精品二区激情视频| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 欧美另类亚洲清纯唯美| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 丁香欧美五月| 高清av免费在线| 日本欧美视频一区| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 亚洲欧美精品综合久久99| av中文乱码字幕在线| 热99re8久久精品国产| 老汉色∧v一级毛片| 国产色视频综合| 亚洲成人免费电影在线观看| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 亚洲人成电影观看| 超碰97精品在线观看| 国产精品偷伦视频观看了| 国产精品亚洲一级av第二区| 日韩大码丰满熟妇| 欧美日韩黄片免| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 免费搜索国产男女视频| 国产乱人伦免费视频| 久久99一区二区三区| 国产免费男女视频| 亚洲国产精品一区二区三区在线| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 久久精品91蜜桃| 在线观看免费日韩欧美大片| 国产成人欧美| 久久香蕉激情| 97碰自拍视频| 成人国语在线视频| 精品一区二区三卡| 国内久久婷婷六月综合欲色啪| 男人舔女人下体高潮全视频| 国产av一区在线观看免费| 国产免费av片在线观看野外av| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 国产精品 欧美亚洲| av视频免费观看在线观看| 色尼玛亚洲综合影院| 久久精品国产亚洲av香蕉五月| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 50天的宝宝边吃奶边哭怎么回事| 国产精品九九99| 99国产精品99久久久久| 叶爱在线成人免费视频播放| 欧美日韩瑟瑟在线播放| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 中亚洲国语对白在线视频| 侵犯人妻中文字幕一二三四区| 亚洲一区二区三区欧美精品| 免费av毛片视频| 午夜成年电影在线免费观看| 黄片小视频在线播放| 丰满迷人的少妇在线观看| 国产成年人精品一区二区 | 一夜夜www| 亚洲自偷自拍图片 自拍| 亚洲av第一区精品v没综合| 岛国在线观看网站| 在线观看午夜福利视频| 丝袜在线中文字幕| 日本wwww免费看| 欧美+亚洲+日韩+国产| 很黄的视频免费| 91成人精品电影| 国产精品亚洲av一区麻豆| 欧美在线黄色| 搡老乐熟女国产| 中文字幕人妻丝袜一区二区| 一级毛片高清免费大全| 91av网站免费观看| 日韩精品中文字幕看吧| 久久精品91无色码中文字幕| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 嫩草影视91久久| 亚洲免费av在线视频| 波多野结衣av一区二区av| 一级片'在线观看视频| 国产蜜桃级精品一区二区三区| www.熟女人妻精品国产| 免费高清视频大片| netflix在线观看网站| 久久人妻熟女aⅴ| 岛国在线观看网站| 超色免费av| 妹子高潮喷水视频| 日韩有码中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 午夜福利,免费看| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 日韩国内少妇激情av| 国产精品 国内视频| 久久精品91蜜桃| 日韩有码中文字幕| 国产成人系列免费观看| 亚洲精品国产色婷婷电影| 亚洲熟妇中文字幕五十中出 | 一夜夜www| 九色亚洲精品在线播放| 中文欧美无线码| 午夜视频精品福利| 久久精品国产99精品国产亚洲性色 | 99久久人妻综合| www国产在线视频色| 国产不卡一卡二| 久久久久精品国产欧美久久久| 岛国视频午夜一区免费看| 麻豆一二三区av精品| 日韩欧美免费精品| 国产精品98久久久久久宅男小说| 中文欧美无线码| 韩国精品一区二区三区| av网站在线播放免费| a级片在线免费高清观看视频| 啦啦啦在线免费观看视频4| 国产精品av久久久久免费| 亚洲av五月六月丁香网| 十八禁人妻一区二区| 国产成人欧美| 性欧美人与动物交配| 国产av一区二区精品久久| 久久亚洲精品不卡| 日本三级黄在线观看| 中文字幕人妻丝袜一区二区| 韩国av一区二区三区四区| 亚洲黑人精品在线| 欧美亚洲日本最大视频资源| 性少妇av在线| 国产av一区二区精品久久| 亚洲精品久久午夜乱码| 中文字幕人妻丝袜制服| 亚洲三区欧美一区| 国产成人一区二区三区免费视频网站| 午夜福利欧美成人| xxxhd国产人妻xxx| 久久中文字幕一级| 亚洲人成网站在线播放欧美日韩| 精品国产一区二区久久| 国产主播在线观看一区二区| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 日韩中文字幕欧美一区二区| 性少妇av在线| 丰满的人妻完整版| 丝袜美足系列| 中亚洲国语对白在线视频| 欧美日韩亚洲高清精品| 成人三级做爰电影| 长腿黑丝高跟| 久久精品亚洲精品国产色婷小说| 久久久久九九精品影院| 国产男靠女视频免费网站| 色尼玛亚洲综合影院| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久成人av| a在线观看视频网站| 嫩草影视91久久| 欧美另类亚洲清纯唯美| 日韩三级视频一区二区三区| 亚洲国产精品合色在线| 国产熟女午夜一区二区三区| 巨乳人妻的诱惑在线观看| 人人澡人人妻人| 黑丝袜美女国产一区| 久热爱精品视频在线9| 欧美人与性动交α欧美精品济南到| 色在线成人网| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久男人| 国产亚洲av高清不卡| x7x7x7水蜜桃| 久久天堂一区二区三区四区| 精品卡一卡二卡四卡免费| 中亚洲国语对白在线视频| 亚洲全国av大片| 免费久久久久久久精品成人欧美视频| 一二三四社区在线视频社区8| 咕卡用的链子| 嫁个100分男人电影在线观看| av中文乱码字幕在线| 正在播放国产对白刺激| 国产精品自产拍在线观看55亚洲| 在线观看免费视频日本深夜| av片东京热男人的天堂| 黄片小视频在线播放| 国产亚洲精品一区二区www| 国产成人影院久久av| av天堂在线播放| 级片在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲五月色婷婷综合| 极品人妻少妇av视频| 国产免费av片在线观看野外av| 美女福利国产在线| 亚洲一区二区三区欧美精品| 亚洲少妇的诱惑av| 两个人看的免费小视频| 午夜亚洲福利在线播放| 欧美亚洲日本最大视频资源| 人妻久久中文字幕网| 日韩三级视频一区二区三区| 老熟妇乱子伦视频在线观看| 国产成人av教育| 国产免费av片在线观看野外av| 色播在线永久视频| 18禁裸乳无遮挡免费网站照片 | 久久精品亚洲熟妇少妇任你| 久久性视频一级片| 免费少妇av软件| 人人澡人人妻人| 亚洲七黄色美女视频| 99久久久亚洲精品蜜臀av| 美女扒开内裤让男人捅视频| 国产免费现黄频在线看| 欧美成人午夜精品| 亚洲成国产人片在线观看| 亚洲熟妇中文字幕五十中出 | 麻豆国产av国片精品| 在线视频色国产色| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕一二三四区| 悠悠久久av| 国产成人啪精品午夜网站| 国产成人精品在线电影| av免费在线观看网站| 99久久精品国产亚洲精品| 人人妻人人爽人人添夜夜欢视频| 在线十欧美十亚洲十日本专区| 久久久国产成人免费| 国产高清激情床上av| 成人精品一区二区免费| 久久久久九九精品影院| 搡老岳熟女国产| 黄色毛片三级朝国网站| 一级片免费观看大全| 精品人妻1区二区| 久久人人爽av亚洲精品天堂| 一夜夜www| 日韩免费av在线播放| 级片在线观看| 精品免费久久久久久久清纯| 精品电影一区二区在线| 中文字幕最新亚洲高清| 亚洲av第一区精品v没综合| 午夜精品国产一区二区电影| 国产高清videossex| 日本免费a在线| 三上悠亚av全集在线观看| 国产高清videossex| 国产伦人伦偷精品视频| 少妇粗大呻吟视频| 正在播放国产对白刺激| 精品免费久久久久久久清纯| 男人舔女人的私密视频| 正在播放国产对白刺激| 色综合站精品国产| 久久精品亚洲熟妇少妇任你| 十八禁人妻一区二区| 9191精品国产免费久久| 新久久久久国产一级毛片| 大码成人一级视频| 国产欧美日韩一区二区三| 黄色毛片三级朝国网站| 久久精品人人爽人人爽视色| 久久精品亚洲熟妇少妇任你| 亚洲人成电影观看| 欧美+亚洲+日韩+国产| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av高清一级| 国产亚洲av高清不卡| 国产极品粉嫩免费观看在线| 最好的美女福利视频网| 亚洲avbb在线观看| 深夜精品福利|