• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of physicochemical properties as supporting information on quality control of raw materials and veterinary pharmaceutical formulations

    2018-06-20 05:50:48SrSilvAnltoMrllMtosCoriroBorgsHnnLijotoOlivirAnrssRisVintEuroCostFiguiroMronAugustoLlOlivirrrJulinPinhiroBorgsMrloAntonioOlivirWrlySouzBorgsKyllrBstosBorgs
    Journal of Pharmaceutical Analysis 2018年3期

    Sr Silv Anlto,Mrll Mtos Coriro Borgs,Hnn Lijoto Olivir,Anrss Ris Vint,Euro Cost Figuiro,Mron Augusto Ll Olivir,Bárr Julin Pinhiro Borgs,Mrlo Antonio Olivir,Wrly Souz Borgs,Kyllr Bstos Borgs,*

    aDepartamento de Ciências Naturais,Universidade Federal de S?o Jo?o del-Rei,Campus Dom Bosco,Pra?a Dom Helvécio 74,Fábricas,36301-160 S?o Jo?o del-Rei,Minas Gerais,Brazil

    bDepartamento de Química,Universidade Federal do Espírito Santo,Avenida Fernando Ferrari,514,Goiabeiras,29075-910 Vitória,Espírito Santo,Brazil

    cLaboratório de Análise de Toxicantes e Fármacos,Faculdade de Ciências Farmacêuticas,Universidade Federal de Alfenas,Rua Gabriel Monteiro da Silva 700,Centro,37130-000 Alfenas,Minas Gerais,Brazil

    dDepartamento de Química,Universidade Federal de Juiz de Fora,Rua José Louren?o Kelmer,s/n,36036-330 Juiz de Fora,Minas Gerais,Brazil

    eCentro de Ciências da Saúde,Universidade Federal do Espírito Santo,Avenida Marechal Campos,1468,Maruípe,29.043-900 Vitóri,Espírito Santo,Brazil

    fCentro Universitário Norte do Espírito Santo,Universidade Federal do Espírito Santo,Br 101 Norte,Km 67,S?o Mateus,Espírito Santo,Brazil

    1.Introduction

    During the development of pharmaceutical products,it is crucial to know the physicochemical properties of drugs.Pharmaceutical laws oblige drug manufacturers to assess the compatibility of active substances,excipients,and medicinal products with established standards.However,characterization of the active pharmaceutical ingredients(APIs)improves the quality parameters of all raw materials used during the manufacturing process of pharmaceuticals,as well as those in the final products[1].

    For adequate investigation of APIs,it is necessary to use appropriate instrumental analysis techniques,and recent reports have shown a high interest in the use of thermogravimetry analysis(TGA)[2,3],Fourier transform infrared spectroscopy(FTIR)[4,5],near-infrared spectroscopy[6],and Raman spectroscopy[7].

    Fluoroquinolones are broad-spectrum antibiotics with potent activity against pathogens that have clinical relevance in human and veterinary medicine.They are mainly employed in prevention of and therapy for diseases such as infections of the urinary,gastrointestinal,and respiratory tract,sexually transmitted diseases,skin infections,and chronic osteomyelitis[8].

    This class of agents is characterized by a favorable pharmacokinetic pro file,high tissue penetration,and rapid bactericidal action.Currently,the most frequently used fluoroquinolone is enrofloxacin(EFX,Fig.S1).Its antimicrobial properties constitute an advantage for use in poultry,notably for treating mycoplasma infections,colibacillosis,and in animals on pastures.EFX is also used in aquaculture,both as a prophylactic and as a chemotherapeutic agent.In the aquatic environment,it is employed against common bacterial pathogens,namelyYersinia ruckeri,Vibrio anguillarum,Renibacterium salmoninarum,andAeromonas salmonicida.There are reports that ciprofloxacin(CFX,Fig.S1),a primary metabolite of EFX,has a greater microbial efficacy[9].In fact,CFX has become the first fluoroquinolone widely available since the second half of the 1980s.This drug is efficient against numerous gram-negative and gram-positive pathogens,and has been used for treating a variety of bacterial infections[10],both in humans and poultry.One of its disadvantages is the food-drug interaction with divalent and trivalent atoms,such as Ca2+and Al3+,respectively[11].The oral absorption of CFX can be significantly reduced by concomitant administration of food containing milk,for example.Hence,CFX interaction with food may result in changes both in the rate and the extent of absorption and can potentially lead to sub-therapeutic concentrations of the drug and even treatment failure.

    Lidocaine(LID,Fig.S1),the most commonly used local anesthetic,is also used as a diluent in injectable formulations.LID contributes to relieving pain related to surgical,dental,and gynecological procedures,both in humans and in animals,despite having no antimicrobial or antiparasitic activity[12].Thus,it can be administered in association with other drugs,such as antiparasitics,anti-inflammatories,and antibiotics.For example,the use of LID in conjunction with fluoroquinolones has been reported previously∶CFX for human prostate surgery[13]and EFX for surgical procedures in birds,for insertion of transmitters for the purpose of species migration research [14].Therefore,the simultaneous analysis of LID,CFX,and EFX in pharmaceutical formulations and other matrices is highly desirable.

    Several bioanalytical methods used for measuring concentrations of CFX have been reported,including capillary electrophoresis[15],spectrophotometry[16,17],high performance liquid chromatography(HPLC)with ultraviolet(UV)detection[18–23],and fluorescence detection[24–31].Recently,HPLC methods coupled with mass spectrometry for the determination of CFX in human plasma have also been published.However,there have been few reports of methods for simultaneous determination of EFX and CFX,and mostly in biological fluids and animal tissue[32–41].No method for simultaneous analysis of these compounds in raw materials and veterinary pharmaceutical formulations has been reported.In addition,many HPLC procedures for analysis of LID in pharmaceutical preparations and biological fluids have been published[42–44],as have the use of electrochemical methods for the direct quantification of LID and its impurities in pharmaceutical samples[42–46].

    Hence,the objectives of this study were to∶(i)show that FTIR,thermogravimetry(TG),and scanning electronic microscopy(SEM)can be useful for evaluation of the APIs(bulk drugs),i.e.LID,CFX,and EFX,supplied as raw materials;(ii)develop and validate an HPLC method for simultaneous determination of LID,CFX,and EFX in bulk drugs and veterinary pharmaceutical formulations;and(iii)apply this method in commercial tablets of EFX;and injectables of CFX and LID.Despite the existence of a wide range of studiesfordetermining LID,CFX,and EFX,simultaneous determination of these drugs in raw materials and veterinary pharmaceutical formulations,aimed at application in quality control,are still lacking.Similarly,there is a lack of physicochemical studies of raw materials as a coadjutant in quality control described in literature.Finally,the availability of new methods with multidetection ability is very important,because this strategy can simplify the routine,improve the sensitivity and selectivity,and decrease operational costs.

    2.Experimental

    2.1.Standards and samples

    All reference standards of LID,CFX,and EFX from United States Pharmacopeia(USP)were acquired from Sigma Aldrich?(St Louis,MO,USA).Samples of CFX and EFX as bulk drugs were obtained from Hebei Veyong(Shanghai,China)and LID was obtained from Henrifarma(S?o Paulo,SP,Brazil).Samples of finished product of Enrotrat?200mg(Ourofino?,Ribeir?o Preto,SP,Brazil),Lidovet?injectable 2%(Bravet?,Rio de Janeiro,RJ,Brazil),and Ciprodez?injectable 10%(Biovet,Vargem Grande Paulista,SP,Brazil)were purchased from commercial sources in the local market.

    2.2.Solvents and chemicals

    Acetonitrile and methanol(HPLC grade)and triethylamine were obtained from J.T.Baker?(Mexico City,MX,Mexico).Water was distilled and purified using Millipore Milli-Q Plus system(Bedford,MA,USA).Analytical grade phosphoric acid(H3PO4,85%)was purchased from Merck?(Darmstadt,Germany).All other chemicals were of analytical grade with the highest purity available.

    2.3.Instruments for characterization of raw materials

    Analysis by FTIR was carried out using Fourier Transform Spectrometer(Bomem Hartmann&Braun,MB series,Quebec,Canada),operating between 4000 and 400 cm–1,with a resolution of 4 cm–1,using the KBr pellet method.TGA was conducted in a termobalance(2950 Thermal Analysis Instrument,TA Instrument,New Castle,DE,USA)with a heating rate of 10°C/min,under a flow rate of nitrogen at 50 mL/min,25–600 °C.The SEM images were obtained at magnifications of 200×and 500×using a microscope TM3000 Hitachi Analytical Table Top(Tarrytown,NY,USA)with an acceleration of tension at 5 kV,employing carbon tape to fix raw materials in the carrier.

    2.4.Instrument for chromatographic separation

    The Agilent(Agilent Technologies,Palo Alto,CA,USA)chromatographic system used to develop and validate this method consisted of an Agilent LC 1260 quaternary pump(G1311 B),a thermostat,model 1290(G1330B),an automatic injector,model 1260 Hip ALS(G1367E),a column oven,model 1290 TCC(G1316C),and a diode array detector(DAD),model 1260 VL+(G1315C).An Agilent OpenLAB Chromatography Data System?was used to control the HPLC system and was used for data acquisition.Separation was performed on a Gemini C18column(250mm × 4.6mm,5μm)from Phenomenex?(Torrance,CA,USA).The analyses were performed at the Laboratório de Separa??es,Departamento de Ciências Naturais,Universidade Federal de S?o Jo?o del-Rei(UFSJ).

    2.5.Analytical conditions

    The mobile phase consisted of a mixture of 10mM of phosphoric acid(pH 3.29)∶acetonitrile(85.7∶14.3,v/v).UV detection was performed at 210 and 280 nm.All chromatographic procedures were conducted at 25°C.A flow rate of 1.5 mL/min was used,and the injection volume was 10 μL for standards and samples.

    2.6.Preparation of reference solutions and mobile phase

    Working solutions of LID,CFX,and EFX used during the method validation step were prepared daily by diluting the stock solution with methanol to concentrations of 48,52,56,60,64,68,and 72 μg/mL for CFX;96,104,112,120,128,136,and 144 μg/mL for EFX and 144,156,168,180,192,204,and 216 μg/mL for LID.

    The aqueous solution was prepared by diluting 2.5 mL concentrated phosphoric acid in 500mL of purified water.The pH adjustment(pH 3.29)was performed with solutions of 1.0,0.1,and 0.01 M triethylamine.

    2.7.Validation of the method

    The parameters were evaluated following the International Conference on Harmonization[47].The method was validated for analysis of bulk drugs from Hebei Veyong?(CFX and EFX)and Henrifarma?(LID),and samples of finished products∶Lidovet?injectable 2%,Ciprodez?injectable 10%,and Enrotrat?200mg tablets.The following parameters were studied∶selectivity,linearity,limit of detection(LOD),limit of quantification(LOQ),precision,and accuracy.

    Samples were fortified and analyzed to evaluate the selectivity of the method.The linearity of the assay method was determined by constructing three calibration graphs using seven concentration levels ranging from 80%to 120%of the assay analytes concentration of LID(144,156,168,180,192,204,and 216μg/mL),CFX(48,52,56,60,64,68,and 72μg/mL),and EFX(96,104,112,120,128,136,and 144μg/mL).Three replicate injections of the standard solutions were performed,and the peak areas of the chromatograms were plotted against the concentrations of analytes to obtain the respective calibration curves.The data were then subjected to regression analysis by the least-squares method in order to calculate the calibration model and correlation coefficient(r)value.

    The LOD and LOQ values were calculated directly using the calibration curve.The LOD and LOQ were calculated from the slope and the standard deviation(SD)of the intercept of the mean of the three calibration curves determined by a linear regression model[47].

    The precision of the method was determined by repeatability and intermediate precision studies.Repeatability was determined by analyzing samples at three different concentrations of LID(156,180,and 204μg/mL),CFX(52,60,and 68μg/mL),and EFX(104,120,and 136 μg/mL)on the same day and under the same experimental conditions(intraday).The intermediate precision of the method was assessed by performing the analysis on two different days(interday).The accuracy was evaluated by applying the proposed method to the analysis of an in-house mixture of the placebo with known amounts of analytes.In order to carry out the test,the pharmaceutical solutions were prepared at the same concentration levels as precision test,and submitted for analysis under previously determined conditions so as to obtain the band areas of each reference chemical substance,at each concentration level.Precision and accuracy results obtained were expressed in terms of RSD(%)and relative error percentage(RE,%),respectively.

    2.8.Pharmaceutical formulation and sample preparation

    The Enrotrat?200mg tablet samples were milled using a mortar and pestle.Twenty tablets were weighed separately,triturated and dissolved in methanol and diluted to a concentration of 120 μg/mL for EFX analysis.The mixture was then sonicated for 10min and allowed to rest for 10 min.The samples of Lidovet?injectable 2%and Ciprodez?injectable 10%were diluted with methanol at 60 and 180 μg/mL.All analyses were performed in real triplicates and filtered through a Millipore Millex nylon membrane with a 0.45 μm pore size(Merck,Darmstadt,Germany).

    3.Results and discussion

    There have been some reports of studies combining analytical techniques,such as thermogravimetry and spectroscopyin stability tests[48],polymorphism[49],and quality control of drugs[2,5,6,50–52].Wesolowski et al.[5]evaluated the quality of 27 medicinal products and the composition of marketed pharmaceutical preparations using differential scanning calorimetry,FTIR,and Raman spectroscopy.In order to assess the utility of TG,FTIR and SEM as potential techniques for identification of the constituents of the raw materials,LID,CFX,and EFX were chosen,because methods for the simultaneous determination of these drugs in raw materials and veterinary pharmaceutical formulations are currently lacking.The results obtained by the physicochemical characterization of raw materials are represented by FTIR spectra(Fig.1),TGA(Fig.2),and images of morphological structures(Fig.3).

    Fig.1.FTIR spectra of(A)lidocaine (LID),(B)ciprofloxacin (CFX),and(C)enrofloxacin(EFX).

    Fig.2.Thermogravimetric curve(TGA)and derivative thermogravimetric curve(DrTGA)of(A)lidocaine(LID),(B)ciprofloxacin(CFX),and(C)enrofloxacin(EFX).

    3.1.Characterization of CFX,EFX,and LID raw materials

    3.1.1.FTIR

    The FTIR spectra offered valuable information about the bulk pharmaceuticals(APIs).As can be seen in Fig.1,the spectra of raw material were different,and can be used for identification of APIs from different suppliers.Fig.1A presents the FTIR spectrum of LID∶3500cm–1(OH stretching and bonding intermolecular H),3000cm–1(aromatic CH stretch and alkene),1750cm–1(CO stretch acid group),1600cm–1(NH bending present in quinolones),1500cm–1(CO stretch carbonyl group),1250cm–1(OH bending),and 1050cm–1(stretching the group CF).The FTIR spectrum of CFX shown in Fig.1B presents the following as main bands∶low intensity band at 3600cm–1(OH stretching),3000cm–1(aromatic CH stretch and alkene),1750cm–1(CO stretch acid group),1600cm–1(NH bending present in quinolones),1250cm–1(OH bending),and 1000cm–1(stretching the group CF).The FTIR spectrum presented in Fig.1C for EFX demonstrates the following as main bands∶3400cm–1(stretch NH2),1650cm–1(stretching C?O primary amide),1550cm–1(stretching C?C aromatic ring),1480 and 1450cm–1(stretch C-N),and 800cm–1( flexing outside the aromatic ring plane).

    3.1.2.TGA

    TGA of LID,CFX,and EFX in nitrogen presented two,two,and one thermal decomposition stages,respectively.Fig.2A shows two thermal events for LID.The first event(between 100 and 150°C)exhibits a small mass loss(<10%),due to evaporation of volatile compounds.The second event(approximately 300°C)indicates the decomposition process of the drug,demonstrating rapid weight loss(around 55%).CFX presented two thermal events as can be seen in Fig.2B.The first thermal event(up to 100°C)has a small weight loss(<10%)due to water evaporation.The second thermal event(approximately 350°C)indicates the drug decomposition process,which causes a rapid weight loss(around 85%).The thermogram of Fig.2C for EFX shows only a thermal event.In the single thermal event(about 350°C),the drug decomposition process causes rapid weight loss(around 70%).

    3.1.3.SEM

    These figures were obtained at magnifications of 200×and 500×for each raw material.Figs.3A and B show that LID has a morphological structure that is highly heterogeneous as it is possible to observe some larger,some smaller,and even some intermediate parts.It is also possible to observe that the LID particles are much larger than CFX and EFX particles.Figs.3C and D show that the morphological structure of CFX is very homogeneous and takes the form of small needles,unlike the others compounds.Finally,in Figs.3E and F the morphological structure of EFX is shown;it is heterogeneous and it is possible to observe some larger and other smaller parts.There is a large difference in the particle size of CFX and EFX.

    3.2.HPLC method development

    Due to the need for a method allowing simultaneous determination of CFX and EFX in the presence of the analgesic LID,we have developed and validated a reverse HPLC method.Analytical conditions were selected after testing the influence of different parameters,such as different columns,mobile phase composition, flow rate,temperature,and other chromatographic conditions.The chromatograms presented in Fig.S2 show that the increase in temperature caused loss of resolution and asymmetry.The optimized chromatographic conditions,such as mobile phase,column,wavelength, flow rate,injection volume,temperature and elution mode,are described in Table 1.Moreover,the chromatographic parameters,such as asymmetric factor,resolution,retention factor,separation factor,and theoretical plates,presented satisfactory results(Table 2).Fig.4 shows typical chromatograms of LID,CFX,and EFX under optimized conditions at 210 and 280 nm,in which LID does not show absorbance at 210nm.

    In the present study,some validation parameters,such as selectivity,linearity,LOD,LOQ,precision,and accuracy,were evaluated.Tables 3 and 4 show that the results were satisfactory.The application of the developed method showed satisfactory results.In order to optimize the separation of all analytes,three HPLC columns∶Gemini C18column(250mm × 4.6mm,5μm)from Phenomenex?,Gemini C8column(250mm × 4.6mm,5μm)from Phenomenex?,and an Agilent Poroshcell 120 EC-C18column(100mm×3.0mm,2.7μm),and several mobile phase compositions(phosphoric acid and monopotassium phosphate buffer solutions at different pHs,and different acetonitrile and methanol percentages)were evaluated.Experiments carried out using different mobile phases showed that the chromatographic signals corresponding to the three analytes were better resolved using the Gemini C18column.

    Fig.3.Scanning electron microscopy(SEM)images of lidocaine(LID)at magnifications of 200×(A)and 500×(B),ciprofloxacin(CFX)at magnifications of 200×(C)and 500×(D),and enro floxacin(EFX)at magnifications of 200×(E)and 500×(F).

    Table 1 HPLC conditions for determination of lidocaine(LID),ciprofloxacin(CFX),and enrofloxacin(EFX)in raw material and pharmaceutical veterinary formulations.

    Table 2 Chromatographic parameters for lidocaine(LID),ciprofloxacin(CFX),and enrofloxacin(EFX)under optimized conditions.

    Table 3 Linearity,limit of detection,and limit of quantification of the proposed method.

    CFX and EFX are amphoteric,with pKa1values between 5.5 and 6.0 and pKa2between 7.7 and 8.5,respectively[53].LID has a pKa value of 7.9[54].As they have functional ionisable groups,the pH of the mobile phase is a key factor in their separation.In this way,acid pH has been used to protonate the amino groups and the residual silanol groups of the stationary phase,in such a way that peak asymmetry could be reduced.

    To achieve the best chromatographic separation of the analytes,different mixtures of methanol and/or acetonitrile with 10 mM of phosphoric acid with the pH adjusted between 3 and 5 with 1,0.1,and 0.01 M triethylamine,were evaluated as the mobile phase.The tests showed that 10 mM of phosphoric acid(pH 3.29)provided a better separation,resulting in narrow and symmetrical peaks with good resolution.The analytical conditions were selected as adequate once all analytes showed baseline separation within 12 min.After careful evaluation of the electronic spectrum pro file in the DAD system,the wavelength was set at 210nm for LID and at 280 nm for CFX and EFX for quantitative analytical purposes.Therefore,a simple,rapid,low cost,and efficient HPLC method for separation of LID,CFX,and EFX was developed.

    3.3.HPLC method validation

    The calibration curves were prepared by plotting peak areas of LID,CFX,and EFX against the analyte concentrations,and they were linear in the range of 144–216μg/mL,48–72μg/mL,and 96–144μg/mL,respectively.Peak areas and concentrations were subjected to least-squares linear regression analysis to calculate the calibration equation andrvalue.Allrvalues were≥0.99,showing acceptable linearity for all analytes,since the normality test(Shapiro-Wilk)performed in residues presented no statistically significant result(p-value>0.05).The developed method presented LOD and LOQ in the concentration range of μg/mL,which permitted correct determination of the concentration of the studied drugs.The LOD and LOQ were found to be between 0.91 and 15.17 and between 3.04 and 50.55μg/mL,respectively,for all analytes.The precision and accuracy of the method were evaluated by calculating RSD%and RE%,respectively,for six determinations of CFX(52,60,and 68μg/mL),EFX(104,120,and 136μg/mL),and LID(156,180,and 204μg/mL)over the course of 2 days and under the same experimental conditions.Six replicates were carried out for each concentration(n=6)in the intraday test.These results confirmed the precision and accuracy of the method within the desired range.The results were satisfactory,as all values were less than 3.0%.The validation procedure was repeated the next day in order to evaluate the efficiency of the method on different days(interday).All the studied compounds showed good results with low RE%.

    Fig.4.Chromatogram referring to the optimized method for analysis of(1)Lidocaine(LID),(2)ciprofloxacin(CFX),and(3)enrofloxacin(EFX).Conditions∶Gemini C18(250 mm × 4.6 mm i.d.,5.0 μm)Phenomenex? column,mobile phase consisting of 10 mM of phosphoric acid(pH 3.29)∶acetonitrile(85.7∶14.3,v/v)at a flow rate of 1.5 mL/min,detection at 210 and 280 nm using a DAD,temperature at 25 °C,injection volume of 10 μL,and isocratic mode.

    Table 4 Precision and accuracy for the simultaneous determination of lidocaine(LID),ciprofloxacin(CFX)and enro floxacin(EFX).

    Table 5 Determination of lidocaine(LID),ciprofloxacin(CFX)and enrofloxacin(EFX)in bulk drugs and finished products.

    3.4.Application of the method in drug bulk and finished products

    The applicability of the proposed method was evaluated by determination of LID,CFX,and EFX in drug bulk and finished products,which were Enrotrat?200mg(Ourofino?,Ribeir?o Preto,SP,Brazil),Lidovet?injectable 2%(Bravet?,Rio de Janeiro,RJ,Brazil),and Ciprodez?injectable 10%.All results are presented in Table 5.All analyses showed RSD(%)lower than 5%,which proves the efficiency of the developed method.In addition,bulk drugs showed values around 92.8%for LID and 84.6%for CFX and EFX.This approach allows testing of raw material and can help raw material suppliers to produce finished products with the correct dosage and to adjust the dosage appropriately.Finally,all finished products that were analyzed are in accordance with their specifications.

    4.Conclusions

    The physicochemical proprieties obtained by FTIR,TGA,and SEM for LID,CFX,and EFX raw materials showed the presence of bands that are characteristic of the presence of the organic groups that comprise their molecular structures,a significance difference in the thermal events related to mass loss,and large differences between their morphological structures,respectively.These findings are useful for the evaluation,differentiation and quality assurance of raw materials.In this study,a HPLC-DAD method has been developed that allows simultaneous determination of raw materials and veterinary pharmaceutical formulations containing LID,CFX,and EFX.This method was proved to be simple,rapid,low cost,and efficient.The obtained results were considered satisfactory since the baseline separation for all analytes occurred in less than 12min under isocratic conditions.Temperature and pH conditions can markedly influence the elution of analytes during the optimization process.The method developed was proved to be useful for evaluation of raw materials and finished products,in addition to providing an analytical method for simultaneous determination of EFX,CFX,and LID,which can also be extended to other matrices and applications.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors would like to thank the Brazilian agencies CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico),CAPES(Coordena??o de Aperfei?oamento de Pessoal de Nível Superior),FAPES(Funda??o de Amparo à Pesquisa e Inova??o do Espírito Santo)and FAPEMIG(Funda??o de Amparo à Pesquisa do Estado de Minas Gerais)for financial support.This work is a collaborative research project with members of Rede Mineira de Química(RQ-MG)supported by FAPEMIG(Project∶REDE-113/10;Project∶CEX-RED-0010–14).

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found in the online version at doi∶10.1016/j.jpha.2018.01.001.

    [1]ICH,International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use,〈http∶//www.ich.org/home.htlm〉(Accessed 16 September 2016).

    [2]A.P.B.Gomes,L.P.Correia,M.O.da Silva Simoes,et al.,Development of thermogravimetric method for quantitative determination of ketoconazole,J.Therm.Anal.Calorim.91(2008)317–321.

    [3]M.Lappalainen,M.Karppinen,Techniques of differential scanning calorimetry for quantification of low contents of amorphous phases,J.Therm.Anal.Calorim.102(2010)171–180.

    [4]C.Tanase,L.Odochian,N.Apostolescu,TG-FTIR analysis applied to the study of thermal behaviour of some edible mushrooms,J.Therm.Anal.Calorim.103(2011)1079–1085.

    [5]M.Wesolowski,P.Szynkaruk,E.Makurat,DSC and IR as supporting tools for identification of methylxanthines in solid dosage forms of drugs,J.Therm.Anal.Calorim.109(2012)807–815.

    [6]G.J.Vergote,Ch Vervaet,J.P.Remon,et al.,Near-infrared FT-Raman spectroscopy as a rapid analytical tool for the determination of diltiazem hydrochloride in tablets,Eur.J.Pharm.Sci.16(2002)63–67.

    [7]Y.Roggo,K.Degardin,P.Margot,Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics,Talanta 81(2010)988–995.

    [8]P.C.Appelbaum,P.A.Hunter,The fluoroquinolone antibacterials∶past,present and future perspectives,Int.J.Antimicrob.Agents 16(2000)5–15.

    [9]N.Gorla,E.Chiostri,L.Ugnia,et al.,HPLC residues of enrofloxacin and ciprofloxacin in eggs of laying hens,Int.J.Antimicrob.Agents 8(1997)253–256.

    [10]D.A.Talan,K.G.Naber,J.Palou,et al.,Extended-release ciprofloxacin(Cipro XR)for treatment of urinary tract infections,Int.J.Antimicrob.Agents 23(Suppl.)(2004)S54–S66.

    [11]K.Pápai,M.Budai,K.Ludányi,et al.,In vitro food–drug interaction study∶which milk component has a decreasing effect on the bioavailability of ciprofloxacin?J.Pharm.Biomed.Anal.52(2010)37–42.

    [12]D.Smith,Determination and temperature effects of lidocaine(Lignocaine)hydrochloride,epinephrine,methylparaben,2,6-dimethylaniline,and p-hydroxybenzoic acid in USP Lidocaine Injection by ion-pair reversed-phase high pressure liquid chromatography,J.Chromatogr.Sci.19(1981)253–258.

    [13]D.E.Leocádio,T.L.Frenkl,B.S.Stein,Office based transurethral needle ablation of the prostate with analgesia and local anesthesia,J.Urol.178(2007)2052–2054.

    [14]J.-P.L.Savard,L.Lesage,S.G.Gilliland,et al.,Molting,staging,and wintering locations of common eiders breeding in the Gyrfalcon Archipelago,Ungava Bay,Arctic 64(2011)197–206.

    [15]M.I.Pascual-Reguera,G.P.Parras,A.M.Díaz,Solid-phase UV spectrophotometric method for determination of ciprofloxacin,Microchem.J.77(2004)79–84.

    [16]K.H.Bannefeld,H.Stass,G.Blaschke,Capillary electrophoresis with laser-induced fluorescence detection,an adequate alternative to high-performance liquid chromatography,for the determination of ciprofloxacin and its metabolite desethyleneciprofloxacin in human plasma,J.Chromatogr.B 692(1997)453–459.

    [17]S.Mostafa,M.El-Sadek,E.A.Alla,Spectrophotometric determination of ciprofloxacin,enrofloxacin and pefloxacin through charge transfer complex formation,J.Pharm.Biomed.Anal.27(2002)133–142.

    [18]L.Pou-Clave,F.Campos-Barreda,C.Pascual-Mostaza,Determination of ciprofloxacin in human serum by liquid chromatography,J.Chromatogr.B 563(1991)211–215.

    [19]G.Mack,Improved high-performance liquid chromatographic determination of ciprofloxacin and its metabolites in human specimens,J.Chromatogr.B 582(1992)263–267.

    [20]G.J.Krol,G.W.Beck,T.Benham,HPLC analysis of ciprofloxacin and ciprofloxacin metabolites in body fluids,J.Pharm.Biomed.Anal.14(1995)181–190.

    [21]M.T.Maya,N.J.Gon?alves,N.B.Silva,et al.,Simple high-performance liquid chromatographic assay for the determination of ciprofloxacin in human plasma with ultraviolet detection,J.Chromatrogr.B 755(2001)305–309.

    [22]R.M.Pellegrino,F.Segonoli,C.Cagini,Simultaneous determination of ciprofloxacin and the active metabolite of prulifloxacin in aqueous human humor by high-performance liquid chromatography,J.Pharm.Biomed.Anal.47(2008)567–574.

    [23]S.Watabe,Y.Yokoyama,K.Nakazawa,et al.,Simultaneous measurement of pazufloxacin,ciprofloxacin,and levo floxacin in human serum by high-performance liquid chromatography with fluorescence detection,J.Chromatogr.B 878(2010)1555–1561.

    [24]S.Zhai,M.R.Korrapati,X.Wei,et al.,Simultaneous determination of theophylline,enoxacin and ciprofloxacin in human plasma and saliva by highperformance liquid chromatography,J.Chromatogr.B 669(1995)372–376.

    [25]B.B.Ba,D.Ducint,M.Fourtillan,et al.,Fully automated high-performance liquid chromatography of ciprofloxacin with direct injection of plasma and Mueller–Hinton broth for pharmacokinetic/pharmacodynamic studies,J.Chromatogr.B 714(1998)317–324.

    [26]H.Scholl,K.Schmidt,B.Weber,Sensitive and selective determination of picogram amounts of ciprofloxacin and its metabolites in biological samples using high-performance liquid chromatography and photothermal post-column derivatization,J.Chromatogr.416(1987)321–330.

    [27]A.Misuno,T.Uematsu,M.Nakashima,Simultaneous determination of ofloxacin,nor floxacin and ciprofloxacin in human hair by high-performance liquid chromatography and fluorescence detection,J.Chromatogr.B 653(1994)187–193.

    [28]A.Zotou,N.Miltiadou,Sensitive LC determination of ciprofloxacin in pharmaceutical preparations and biological fluids with fluorescence detection,J.Pharm.Biomed.Anal.28(2002)559–568.

    [29]S.Imre,M.T.Dogaru,C.E.Vari,et al.,Validation of an HPLC method for the determination of ciprofloxacin in human plasma,J.Pharm.Biomed.Anal.33(2003)125–130.

    [30]O.R.Idowu,J.O.Peggins,Simple,rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection,J.Pharm.Biomed.Anal.35(2004)143–153.

    [31]Z.Bybíralová,M.Nobilis,J.Zoulova,et al.,High-performance liquid chromatographic determination of ciprofloxacin in plasma samples,J.Pharm.Biomed.Anal.37(2005)851–858.

    [32]K.L.Tyczkowska,K.M.Hedeen,D.P.Aucoin,et al.,High-performance liquid chromatographic method for the simultaneous determination of enrofloxacin and its primary metabolite ciprofloxacin in canine serum and prostatic tissue,J.Chromatogr.493(1989)337–346.

    [33]V.Hormazabal,A.Rogstad,I.Steffenak,et al.,Rapid assay for monitoring residues of enrofloxacin and sara floxacin in fish tissues by high performance liquid chromatography,J.Liq.Chromatogr.14(1991)1605–1614.

    [34]K.Flammer,D.P.Aucoin,D.A.Whitt,Intramuscular and oral disposition of enrofloxacin in African grey parrots following single and multiple doses,J.Vet.Pharmacol.Ther.14(1991)359–366.

    [35]J.A.Tarbin,D.J.Tyler,G.Shearer,Analysis of enrofloxacin and its metabolite ciprofloxacin in bovine and porcine muscle by high‐performance liquid chromatography following cation exchange clean‐up,Food Addit.Contam.9(1992)345–350.

    [36]M.Horie,K.Saito,N.Nose,et al.,Simultaneous determination of benofloxacin,dano floxacin,enrofloxacin and o floxacin in chicken tissues by highperformance liquid chromatography,J.Chromatogr.B 653(1994)69–76.

    [37]K.L.Tyczkowska,R.D.Voyksner,K.L.Anderson,et al.,Simultaneous determination of enrofloxacin and its primary metabolite ciprofloxacin in bovine milk and plasma by ion-pairing liquid chromatography,J.Chromatogr.B 658(1994)341–348.

    [38]G.Carlucci,Analysis of fluoroquinolones in biological fluids by high-performance liquid chromatography,J.Chromatogr.A 812(1998)343–367.

    [39]L.Escuder-Gilabert,S.Sagrado,R.M.Villanueva-Camafiasand,et al.,Analysis of pharmaceutical preparations containing local anesthetics by micellar liquid chromatography and spectrophotometric detection,Chromatographia 49(1999)85–90.

    [40]J.Manceau,M.Gicquel,M.Laurentine,et al.,Simultaneous determination of enrofloxacin and ciprofloxacin in animal biological fluids by high-performance liquid chromatography∶application in pharmacokinetic studies in pig and rabbit,J.Chromatogr.B 726(1999)175–184.

    [41]A.Posyniak,J.Zmudzki,S.Semeniuk,et al.,Determination of fluoroquinolone residues in animal tissues by liquid chromatography,Biomed.Chromatogr.13(1999)279–285.

    [42]Z.Fija?ek,E.Baczynski,A.Piwońska,et al.,Determination of local anaesthetics and their impurities in pharmaceutical preparations using HPLC method with amperometric detection,J.Pharm.Biomed.Anal.37(2005)913–918.

    [43]M.A.A.Mohammad,LC determination of lidocaine and prilocaine containing potential risky impurities and application to pharmaceuticals,Chromatographia 70(2009)563–568.

    [44]M.Abdel-Rehim,M.Bielenstein,Y.Askemark,et al.,High-performance liquid chromatography–tandem electrospray mass spectrometry for the determination of lidocaine and its metabolites in human plasma and urine,J.Chromatogr.B 741(2000)175–188.

    [45]British Pharmacopoeia,Medicines and Healthcare Products Regulatory Agency,London,UK,2011.

    [46]European Pharmacopoeia,European Directorate for the Quality of Medicines&Healthcare(EDQM),Strasbourg,France,2011.

    [47]International Conference on Harmonization(ICH),Validation of Analytical Procedures∶Methodology,Technical Requirements for the Registration of Pharmaceuticals for Human Use,Geneva,Switzerland,1996.

    [48]S.Y.Lin,S.L.Wang,Advances in simultaneous DSC–FTIR microspectroscopy for rapid solid-state chemical stability studies∶some dipeptide drugs as examples,Adv.Drug Deliv.Rev.64(2012)461–478.

    [49]S.Y.Lin,An overview of famotidine polymorphs∶solid-state characteristics,thermodynamics,polymorphic transformation and quality control,Pharm.Res.31(2014)1619–1631.

    [50]L.C.S.Cides,A.A.S.Araújo,M.Santos-Filho,et al.,Thermal behaviour,compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions,J.Therm.Anal.Calorim.84(2006)441–445.

    [51]F.A.Aguiar,C.M.de Gaitani,K.B.Borges,Capillary electrophoresis method for the determination of isradipine enantiomers∶stability studies and pharmaceutical formulation analysis,Electrophoresis 32(2011)2673–2682.

    [52]F.A.de S.Ribeiro,C.R.T.Tarley,K.B.Borges,et al.,Development of a square wave voltammetric method for dopamine determination using a biosensor based on multiwall carbon nanotubes paste and crude extract ofCucurbita pepoL,Sens.Actuators B Chem.185(2013)743–754.

    [53]J.Barbosa,D.Barron,J.Cano,et al.,Evaluation of electrophoretic method versus chromatographic,potentiometric and absorptiometric methodologies for determining pKa values of quinolones in hydroorganic mixtures,J.Pharm.Biomed.Anal.24(2001)1087–1098.

    [54]H.A.McLure,A.P.Rubin,Review of local anaesthetic agents,Minerva.Anestesiol.71(2005)59–74.

    欧美激情久久久久久爽电影| 一级毛片高清免费大全| 亚洲成a人片在线一区二区| 日韩大码丰满熟妇| 国产高清视频在线播放一区| 国产一区二区三区视频了| 国产伦在线观看视频一区| 人妻丰满熟妇av一区二区三区| 真人做人爱边吃奶动态| 精品少妇一区二区三区视频日本电影| 一区二区三区激情视频| 精品电影一区二区在线| 啦啦啦免费观看视频1| 欧美黑人欧美精品刺激| 亚洲男人天堂网一区| 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 女人被狂操c到高潮| 法律面前人人平等表现在哪些方面| 精品无人区乱码1区二区| 两人在一起打扑克的视频| 欧美一级毛片孕妇| 色av中文字幕| 久久久久性生活片| 在线观看日韩欧美| 女警被强在线播放| 亚洲人与动物交配视频| 啪啪无遮挡十八禁网站| 男女视频在线观看网站免费 | 男人的好看免费观看在线视频 | 老熟妇仑乱视频hdxx| 亚洲一区二区三区色噜噜| 777久久人妻少妇嫩草av网站| 51午夜福利影视在线观看| 这个男人来自地球电影免费观看| 在线视频色国产色| 国产不卡一卡二| 哪里可以看免费的av片| 日本免费a在线| 亚洲五月天丁香| 久久天躁狠狠躁夜夜2o2o| 国产精华一区二区三区| 在线观看免费午夜福利视频| 最新在线观看一区二区三区| 国产区一区二久久| 色av中文字幕| 黄色a级毛片大全视频| 麻豆一二三区av精品| 亚洲专区字幕在线| 精品福利观看| 99久久久亚洲精品蜜臀av| 亚洲av成人不卡在线观看播放网| 99久久久亚洲精品蜜臀av| 午夜福利高清视频| 亚洲欧美日韩无卡精品| 国产真人三级小视频在线观看| 色综合亚洲欧美另类图片| 91麻豆精品激情在线观看国产| 日本 av在线| 五月玫瑰六月丁香| av有码第一页| 午夜福利免费观看在线| 最近视频中文字幕2019在线8| 18禁美女被吸乳视频| av超薄肉色丝袜交足视频| 成年人黄色毛片网站| 无人区码免费观看不卡| 国产日本99.免费观看| 亚洲精品国产一区二区精华液| 制服人妻中文乱码| 啦啦啦韩国在线观看视频| 一区二区三区国产精品乱码| 午夜福利成人在线免费观看| 99久久无色码亚洲精品果冻| 国产精品久久久久久精品电影| 久久香蕉精品热| 九色国产91popny在线| 麻豆国产av国片精品| 免费电影在线观看免费观看| 国产亚洲精品久久久久久毛片| 成人18禁在线播放| 丝袜美腿诱惑在线| 国产一级毛片七仙女欲春2| 成人18禁在线播放| 久久天躁狠狠躁夜夜2o2o| 美女大奶头视频| √禁漫天堂资源中文www| 国产亚洲欧美在线一区二区| 老汉色∧v一级毛片| 成人av在线播放网站| 精品乱码久久久久久99久播| 亚洲国产高清在线一区二区三| 国产av麻豆久久久久久久| 国产片内射在线| 欧美黄色淫秽网站| 真人一进一出gif抽搐免费| 中文字幕熟女人妻在线| 久久香蕉国产精品| 久久亚洲精品不卡| 日韩 欧美 亚洲 中文字幕| 亚洲欧美精品综合一区二区三区| 波多野结衣巨乳人妻| 可以在线观看毛片的网站| 日韩欧美在线二视频| 麻豆成人午夜福利视频| 最近最新免费中文字幕在线| 亚洲无线在线观看| 午夜福利在线观看吧| 成人手机av| 黄片大片在线免费观看| 亚洲成av人片免费观看| 黄色视频不卡| 亚洲精品粉嫩美女一区| 亚洲成人国产一区在线观看| 亚洲精品在线观看二区| 在线a可以看的网站| 亚洲 欧美一区二区三区| 蜜桃久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 成人手机av| 性色av乱码一区二区三区2| 国产黄a三级三级三级人| 日韩精品青青久久久久久| 色哟哟哟哟哟哟| 亚洲精品中文字幕在线视频| 熟女电影av网| 国产激情欧美一区二区| 看片在线看免费视频| 亚洲午夜精品一区,二区,三区| 久久婷婷成人综合色麻豆| 精品一区二区三区视频在线观看免费| 久久婷婷成人综合色麻豆| 身体一侧抽搐| 日本黄色视频三级网站网址| 亚洲成人免费电影在线观看| 丁香六月欧美| 高潮久久久久久久久久久不卡| 久久久精品大字幕| 色av中文字幕| 午夜激情福利司机影院| 非洲黑人性xxxx精品又粗又长| 久久这里只有精品19| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9| 97超级碰碰碰精品色视频在线观看| 国产69精品久久久久777片 | 91麻豆精品激情在线观看国产| 宅男免费午夜| 美女高潮喷水抽搐中文字幕| 久久婷婷人人爽人人干人人爱| 久久亚洲精品不卡| 99久久精品热视频| 午夜免费观看网址| 久久精品国产亚洲av香蕉五月| 久久99热这里只有精品18| 久久久久亚洲av毛片大全| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品青青久久久久久| 妹子高潮喷水视频| 大型黄色视频在线免费观看| 精品国产超薄肉色丝袜足j| 欧美成人午夜精品| av免费在线观看网站| 久久香蕉精品热| 在线观看www视频免费| 男人舔女人的私密视频| 美女免费视频网站| 免费在线观看完整版高清| 日韩 欧美 亚洲 中文字幕| 国产免费av片在线观看野外av| 1024香蕉在线观看| 亚洲av美国av| 中文字幕人妻丝袜一区二区| 欧美黄色片欧美黄色片| 色综合亚洲欧美另类图片| 国产精品,欧美在线| 国产一区二区在线av高清观看| 国产91精品成人一区二区三区| 国产精品免费一区二区三区在线| 亚洲熟妇熟女久久| 老汉色av国产亚洲站长工具| 国产亚洲欧美在线一区二区| 中文字幕熟女人妻在线| 最近最新中文字幕大全免费视频| 亚洲国产精品成人综合色| 在线观看午夜福利视频| 免费搜索国产男女视频| 国产熟女午夜一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲一区高清亚洲精品| 欧美大码av| 久久热在线av| 中文资源天堂在线| 亚洲一区中文字幕在线| 激情在线观看视频在线高清| 欧美不卡视频在线免费观看 | 在线观看午夜福利视频| 99在线视频只有这里精品首页| 久久草成人影院| 脱女人内裤的视频| 国产又黄又爽又无遮挡在线| 午夜福利成人在线免费观看| 最近在线观看免费完整版| 亚洲av日韩精品久久久久久密| 97人妻精品一区二区三区麻豆| 国产精品一区二区精品视频观看| 精品第一国产精品| 狂野欧美白嫩少妇大欣赏| 精品免费久久久久久久清纯| 波多野结衣高清作品| 国产精品久久久av美女十八| 大型黄色视频在线免费观看| 我的老师免费观看完整版| 亚洲中文字幕一区二区三区有码在线看 | 曰老女人黄片| 在线视频色国产色| cao死你这个sao货| 欧美大码av| 亚洲中文字幕一区二区三区有码在线看 | 看片在线看免费视频| 国产乱人伦免费视频| 亚洲精品一区av在线观看| 亚洲av美国av| or卡值多少钱| 亚洲欧美日韩高清专用| 特大巨黑吊av在线直播| 亚洲成av人片在线播放无| 国产99白浆流出| av在线播放免费不卡| 亚洲人成77777在线视频| 最近最新免费中文字幕在线| 久久久国产成人精品二区| 人妻丰满熟妇av一区二区三区| 欧美日韩黄片免| 两个人免费观看高清视频| 免费搜索国产男女视频| 成年免费大片在线观看| 50天的宝宝边吃奶边哭怎么回事| www日本在线高清视频| 免费看a级黄色片| 视频区欧美日本亚洲| 一本一本综合久久| 男女那种视频在线观看| 成人国产综合亚洲| 精品久久久久久,| 免费看美女性在线毛片视频| 嫁个100分男人电影在线观看| 熟女少妇亚洲综合色aaa.| 91九色精品人成在线观看| 国产视频一区二区在线看| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 真人一进一出gif抽搐免费| 欧美一级a爱片免费观看看 | 久久久久久久午夜电影| 国模一区二区三区四区视频 | 色av中文字幕| 亚洲av成人一区二区三| 悠悠久久av| 一区二区三区激情视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品1区2区在线观看.| 久久久久国产精品人妻aⅴ院| 久久精品国产综合久久久| 亚洲国产欧美网| 超碰成人久久| 亚洲午夜理论影院| 看片在线看免费视频| 黄色毛片三级朝国网站| 国产在线精品亚洲第一网站| 久久国产精品人妻蜜桃| 欧美久久黑人一区二区| 97超级碰碰碰精品色视频在线观看| 欧美一区二区国产精品久久精品 | 黑人操中国人逼视频| 给我免费播放毛片高清在线观看| 国产又色又爽无遮挡免费看| 日本一区二区免费在线视频| 中文字幕人成人乱码亚洲影| 亚洲av成人精品一区久久| 国产成人一区二区三区免费视频网站| 女人被狂操c到高潮| 亚洲av五月六月丁香网| 国产一区二区在线观看日韩 | 深夜精品福利| 欧美在线一区亚洲| av福利片在线| 色综合欧美亚洲国产小说| 国产精品野战在线观看| 欧美精品亚洲一区二区| 波多野结衣高清无吗| 国产私拍福利视频在线观看| 午夜亚洲福利在线播放| 日韩有码中文字幕| 一本精品99久久精品77| 国产精品一区二区三区四区免费观看 | 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 岛国视频午夜一区免费看| 两个人视频免费观看高清| 亚洲色图 男人天堂 中文字幕| 欧美丝袜亚洲另类 | 一本综合久久免费| 日韩欧美 国产精品| 黄色女人牲交| 久久精品国产亚洲av高清一级| 99久久国产精品久久久| 伦理电影免费视频| 欧美激情久久久久久爽电影| 日韩精品青青久久久久久| 亚洲国产欧洲综合997久久,| 69av精品久久久久久| xxxwww97欧美| 欧美最黄视频在线播放免费| 国产视频一区二区在线看| 五月伊人婷婷丁香| 日韩三级视频一区二区三区| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 国产高清视频在线观看网站| 亚洲五月婷婷丁香| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 最好的美女福利视频网| 久久精品综合一区二区三区| 欧美色视频一区免费| 91老司机精品| 一区二区三区激情视频| 精品乱码久久久久久99久播| 国产精品 国内视频| 老司机福利观看| 国产伦在线观看视频一区| 午夜免费成人在线视频| 老汉色av国产亚洲站长工具| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 久热爱精品视频在线9| 黄色女人牲交| 18美女黄网站色大片免费观看| 法律面前人人平等表现在哪些方面| 国产成+人综合+亚洲专区| 国产亚洲精品第一综合不卡| 19禁男女啪啪无遮挡网站| 成人手机av| 50天的宝宝边吃奶边哭怎么回事| 夜夜看夜夜爽夜夜摸| 1024香蕉在线观看| 久久久久国内视频| 国产高清videossex| 成年版毛片免费区| 国产不卡一卡二| 免费搜索国产男女视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| av国产免费在线观看| 国产亚洲精品久久久久5区| 女人被狂操c到高潮| 日韩国内少妇激情av| 色噜噜av男人的天堂激情| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 久久久久性生活片| 啦啦啦韩国在线观看视频| 12—13女人毛片做爰片一| 黄色女人牲交| 嫁个100分男人电影在线观看| 黄色a级毛片大全视频| 999精品在线视频| 麻豆国产97在线/欧美 | 欧美国产日韩亚洲一区| av福利片在线观看| 18禁国产床啪视频网站| 男人的好看免费观看在线视频 | 亚洲国产精品999在线| 人成视频在线观看免费观看| 在线播放国产精品三级| 在线观看66精品国产| 久久这里只有精品中国| 久久久久九九精品影院| 成人18禁高潮啪啪吃奶动态图| 国产视频一区二区在线看| 宅男免费午夜| 午夜精品在线福利| 一级毛片精品| 男女午夜视频在线观看| 91av网站免费观看| 午夜福利成人在线免费观看| 亚洲av五月六月丁香网| 在线永久观看黄色视频| 日本一二三区视频观看| 一本精品99久久精品77| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| 最近在线观看免费完整版| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 国产高清视频在线观看网站| 国产真实乱freesex| 亚洲av中文字字幕乱码综合| 久久久久亚洲av毛片大全| 色综合站精品国产| 女人被狂操c到高潮| 国产伦在线观看视频一区| 无遮挡黄片免费观看| 最近最新免费中文字幕在线| 国产成人av激情在线播放| 久久久久久人人人人人| 国产精品日韩av在线免费观看| 久久久精品国产亚洲av高清涩受| 色综合婷婷激情| 999精品在线视频| 亚洲精品美女久久久久99蜜臀| a级毛片在线看网站| 中文在线观看免费www的网站 | 久久精品综合一区二区三区| 免费在线观看成人毛片| 国产精品乱码一区二三区的特点| 精品久久久久久,| 一个人观看的视频www高清免费观看 | 免费高清视频大片| 国产精品精品国产色婷婷| 夜夜爽天天搞| 日本一区二区免费在线视频| 亚洲国产精品久久男人天堂| 久久 成人 亚洲| 精品少妇一区二区三区视频日本电影| 蜜桃久久精品国产亚洲av| 大型av网站在线播放| 婷婷丁香在线五月| 女同久久另类99精品国产91| av有码第一页| 99热这里只有精品一区 | 欧美国产日韩亚洲一区| 91字幕亚洲| 成人手机av| 韩国av一区二区三区四区| 最新美女视频免费是黄的| 在线视频色国产色| 日本撒尿小便嘘嘘汇集6| 精品国产超薄肉色丝袜足j| 两个人视频免费观看高清| 一本大道久久a久久精品| 他把我摸到了高潮在线观看| 亚洲免费av在线视频| 国内少妇人妻偷人精品xxx网站 | 国产精品久久久久久亚洲av鲁大| 亚洲五月婷婷丁香| 久久久久性生活片| 午夜福利视频1000在线观看| 看黄色毛片网站| 国产精品香港三级国产av潘金莲| 在线观看免费日韩欧美大片| 亚洲国产欧美网| 两个人免费观看高清视频| 在线看三级毛片| 久久国产精品影院| 中文字幕熟女人妻在线| 级片在线观看| 日本五十路高清| 18美女黄网站色大片免费观看| 亚洲av中文字字幕乱码综合| 97碰自拍视频| a在线观看视频网站| 国产熟女xx| 亚洲激情在线av| 精品无人区乱码1区二区| 一边摸一边做爽爽视频免费| 久久久久久久午夜电影| 久久伊人香网站| 动漫黄色视频在线观看| videosex国产| 级片在线观看| 村上凉子中文字幕在线| 又大又爽又粗| 女人爽到高潮嗷嗷叫在线视频| 91麻豆精品激情在线观看国产| 国产97色在线日韩免费| 亚洲中文字幕日韩| 亚洲欧美一区二区三区黑人| 日韩欧美在线二视频| 999久久久国产精品视频| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 日韩欧美一区二区三区在线观看| 精品一区二区三区四区五区乱码| 又黄又粗又硬又大视频| 波多野结衣高清作品| 法律面前人人平等表现在哪些方面| 18禁观看日本| 又大又爽又粗| 国产精品野战在线观看| 99久久久亚洲精品蜜臀av| 亚洲欧美一区二区三区黑人| 脱女人内裤的视频| 成人三级黄色视频| 午夜福利免费观看在线| x7x7x7水蜜桃| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 久久九九热精品免费| 国产亚洲精品av在线| 久久中文看片网| 99热这里只有精品一区 | 麻豆国产av国片精品| 亚洲av五月六月丁香网| 国产精品爽爽va在线观看网站| 色综合欧美亚洲国产小说| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 国产久久久一区二区三区| 我的老师免费观看完整版| 免费看十八禁软件| 看片在线看免费视频| 国产不卡一卡二| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻丝袜一区二区| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 亚洲一码二码三码区别大吗| 亚洲av片天天在线观看| 国产高清视频在线观看网站| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 丝袜人妻中文字幕| 香蕉久久夜色| 久久久久久国产a免费观看| 欧美久久黑人一区二区| 国产av一区二区精品久久| 久久精品国产99精品国产亚洲性色| 欧美一区二区精品小视频在线| 国产成人影院久久av| www日本在线高清视频| 亚洲av电影在线进入| 国产精品电影一区二区三区| 久久中文看片网| 在线观看免费日韩欧美大片| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 可以在线观看毛片的网站| 亚洲,欧美精品.| 最新在线观看一区二区三区| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 搡老熟女国产l中国老女人| 长腿黑丝高跟| 欧美久久黑人一区二区| 国产精品av视频在线免费观看| 国产69精品久久久久777片 | 久久国产精品影院| 一夜夜www| 搡老熟女国产l中国老女人| a级毛片a级免费在线| 天堂影院成人在线观看| 国产高清激情床上av| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 午夜精品久久久久久毛片777| 亚洲国产高清在线一区二区三| 午夜福利在线观看吧| 日韩国内少妇激情av| 国产亚洲欧美在线一区二区| 亚洲在线自拍视频| 一进一出好大好爽视频| 久久伊人香网站| 亚洲片人在线观看| 色av中文字幕| 在线视频色国产色| 成人手机av| 午夜两性在线视频| 桃红色精品国产亚洲av| 一二三四在线观看免费中文在| 亚洲aⅴ乱码一区二区在线播放 | 一二三四社区在线视频社区8| 久久热在线av| 亚洲男人天堂网一区| 午夜精品一区二区三区免费看| 欧美黑人欧美精品刺激| 正在播放国产对白刺激| 在线永久观看黄色视频| 在线播放国产精品三级| 国产高清激情床上av| svipshipincom国产片| 久久精品夜夜夜夜夜久久蜜豆 | 看黄色毛片网站| 久久久久久大精品| 91在线观看av| av在线天堂中文字幕| 99国产精品99久久久久| videosex国产| 亚洲成av人片在线播放无| 午夜福利免费观看在线| 精品高清国产在线一区| 视频区欧美日本亚洲| 国产激情偷乱视频一区二区| 亚洲男人天堂网一区| 99热这里只有是精品50| 美女黄网站色视频| 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 亚洲美女视频黄频| svipshipincom国产片| 少妇被粗大的猛进出69影院| 高清在线国产一区| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久| 久久这里只有精品中国| 特大巨黑吊av在线直播| 日本 av在线|