• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overview of the detection methods for equilibrium dissociation constant KDof drug-receptor interaction

    2018-06-20 05:50:46WeinaMaLiuYangLangchongHe
    Journal of Pharmaceutical Analysis 2018年3期

    Weina Ma,Liu Yang,Langchong He

    School of Pharmacy,Xi’an Jiaotong University Health Science Center,No.76,Yanta West Street,Xi’an,Shaanxi Province 710061,PR China

    1.Introduction

    The type of drug target is divided into receptor,enzyme,nucleic acid,and so on.There are about 40%drugs which interact with the corresponding receptors in order to exert their pharmacological effects.When the ligands( first messenger)combine with the corresponding receptor,a signal cascade reaction occurs through the second messenger in the cell,resulting in a series of biological effects,such as immune response and cell proliferation[1–3].Therefore,it is very necessary to study the interaction between drugs and receptors,which contributes to understanding the mechanisms of drugs[4–8].The equilibrium dissociation constant(KD)is the basic parameter to evaluate the binding properties of the drug-receptor[9–11].Thus,it is of great importance to determine theKDvalues of the drugs.

    A variety of analytical methods have been established to determine theKDvalues since the 1960s,including radioligand binding assay(RBA)[12],surface plasmon resonance(SPR)[13], fluorescence energy resonance transfer method(FRET)[14],affinity chromatography[15],and isothermal titration calorimetry(ITC)[16].

    The main purpose of this review is to analyze the applicability and characteristic of each analytical method in order to provide the guidance for researchers to choose an appropriate analytical tool to study the ligand-receptor interaction.

    2.Radioligand binding assay

    In the early 1960s,radiolabelled nuclide was used in the receptor pharmacology study.Based on occupation theory[17],RBA method was established.RBA is based on the interaction between radiolabeled ligand and receptor.RBA can be used to study the interaction between receptor and hormones,neurotransmitters,growth factors and drugs,as well as the interaction between the receptor and the second messenger[18].

    As shown in Table 1,RBA can be used to determine the affinity constant,dissociation constant and the number of binding receptors[19–34].The key condition of receptor binding experiments is to prepare an excellent radioligand.The basic requirements of radioligand are high radioactivity,high affinity,high specificity and stability[22,35,36].The ability to prepare novel and selective radioligands facilitates the study of drug-receptor interaction,and RBA provides an effective tool for studying the mechanisms of drugs at molecular level[37,38].A variety of receptor materials can be used in the RBA method,such as the cell membrane obtained from cell and tissue[19–28],intact cells[29,30],tissue slice[31–34],and engineered protein samples[38,39].

    RBA method provides a sensitive detection method for determiningKDvalues and promotes the study of receptor pharmacology[37,38].However,it is not very easy to synthesize the specific radioligands which are the essential elements for RBA method,and radioactive contamination should be prevented during the experiment.So the application of RBA method is greatly limited.

    3.Surface plasmon resonance technique

    SPR technique,which has been rapidly developed in recent years,is a sensitive and specific technique for the analysis of biomolecular interactions[40].SPR is based on the principle that the incident light can resonate with the plasma on the metal surface during the total reflection.SPR is utilized to detect whether biological molecules interact with each other,and further explore the specificity of the interaction,kinetic parameters and affinity of the interaction[41–43].SPR technique provides a powerful and nondestructive tool for cell sorting,cell surface characterization,protein-protein interaction,protein-small molecule interaction,and drug discovery[41,43–45].

    SPR is a label-free and real-time detection method for monitoring biomolecular interactions[40].In recent years,SPR has become a rapid developmental technology for studying the interaction between membrane protein receptors and ligands[44–56],which is shown in Table 2.Because of the high-throughput screening characteristic,SPR has been widely used in the identification of drug targets and the optimization of lead compounds[44–48].

    4.Affinity chromatography

    In the affinity chromatography,biological macromolecules bind in the carrier surface through chemical reaction.Affinity chromatography utilizes the liquid chromatography method to study the interaction between drugs and biological macromolecules[57–59].As shown in Table 3,affinity chromatography is widely used in biochemistry,molecular biology,and genomics.It is becoming a commonly used method in the interaction of drug and biological macromolecules[60,61].

    The frontal analysis and zonal elution method are utilized to determine theKDvalues.Wainer and Hage group have done a lot of work to characterize the affinity of drugs with biomolecules[62–65].The frontal analysis is mainly conducted by adding the analytes into the mobile phase without injection.Each drug solution with different concentrations is continuously applied to the column until a breakthrough curve with a level plateau is produced.TheKDvalues can be determined by analyzing the series of breakthrough curves[62,66–68].Zonal elution method is performed by using a site-specific maker in the mobile phase and injecting the analytes.TheKDvalues of the analytes at a specific site are calculated by investigating the capacity factor of the analytes with the increasing concentration of the marker in the mobile phase[69,70].

    Cell membrane chromatography(CMC)is a kind of bionic affinity chromatography,in which the membrane receptors are prepared as cell membrane stationary phase(CMSP),and is used in determining the interaction between drug and membrane receptors[71–74].With the development of molecular biology,it ispossible to construct cell lines with high expression of specific receptors,which makes the CMC method have stronger specificity and selectivity.Based on the development of CMC,a variety of CMC models such as L-type calcium channel,α1Aadrenergic receptor,histamine H1receptor and vascular endothelial growth factor receptor models are established in order to determine theKDvalues[75–78].

    Table 1 The RBA method and application examples.

    Table 2 The SPR method and application examples.

    Table 3 The affinity chromatography method and application examples.

    Affinity chromatography plays a very important role in the study of drug-receptor interaction.The methods of binding receptor to the carrier surface are divided into chemical bonding and physical adsorption.However,after the immobilization of biological macromolecules via chemical bonding,their original configurations and even functions are largely “l(fā)ost”.While physical adsorption can largely retain the three-dimensional configurations and biological activities of membrane receptors and can accurately reveal the drug-membrane receptor interaction process in vivo.

    5.Fluorescence energy resonance transfer method

    Fluorescence spectroscopy is the most popular technique in the field of biology and medicine,which leads people to the microcosmic world of bio-medicine.The theoretical basis for FRET is a nonradiative energy transfer between two fluorescent molecules(D and A,whose excitation spectra are partially overlapped)that are located close to each other(less than 10nm)[79–81].FRET can be used to study receptor-ligand interactions,affinity constants,receptor dimerization,and so on[82–84].

    FRET has been widely used in drug-receptor affinity studies under equilibrium condition with no need to separate the free and combinative ligands[85–87].Piehler group studied the interaction of IFNR2 with Ifnar1-H10 and measured itsKDvalue to be 5μM by FRET technique[88].Domanov et al.[89]also used the FRET technique to study the interaction between cytochrome c and bilayer phospholipid membranes and found aKDvalue of 0.2–0.4μM.

    FRET has the following advantages compared with other methods.The first is high sensitivity,and it is now possible to study single receptor molecules in this way.Moreover,FRET can selectively study intermolecular interactions under physiological conditions(living cell states)[90,91].Another advantage is that a variety of fluorescent probes can be obtained commercially.The fluorescent probes can be used to label molecules with no fluorescence properties,thus greatly broadening the research approach.Combined with its high spatial resolution,FRET becomes an excellent tool for studying receptor-ligand interactions[92,93].

    6.Isothermal titration calorimetry

    ITC is a technique based on the reaction heat to quantify the interactions of various biomolecules.As a kind of rapid and direct tool without markers,ITC can detect any heat changes of biochemical reaction process.ITC is widely used in molecular biology research,drug design and structure optimization,and drug mechanism studies[94,95].

    Micro calorimeter with high sensitivity and high automation is used to monitor and record the calorimetric curve of the reaction process continuously and accurately.ITC,an in situ,on-line and non-destructive method,provides the thermodynamic and kinetic information(eg,binding constant(KD),reaction stoichiometry(n),enthalpy(ΔH)and entropy(ΔS)[96,97].ITC can be also used to study the properties of drug-receptor interaction by directly detecting the heat changes during the process of biochemical reaction[98,99].

    By means of the ITC method,Li et al.[16]studied the interaction of neomycin and tobramycin with MLL protein,and found that theKDvalues are18.8 for neomycin and 59.9μM for tobramycin,respectively.Daddaoua group found that only 2-ketoglutarate could act on PtxS with an affinity constantKDof 15μM from glucose,ketoglucose and 2-ketoglucose by ITC technology[100].

    Without any modification of receptors and ligands,ITC can directly determine the affinity of the drug-receptor under natural conditions[101].ITC can not only determine the binding affinity,but also clarify the potential mechanism of molecular interactions.ITC is able to confirm the expected binding targets in the drug discovery process,deeply understand the structure-function relationship,and provide the guidance for candidate compounds selection and lead compounds optimization[102,103].

    7.Conclusion

    In all,the above five methods are all effective analytical tools to study the ligand-receptor interaction.RBA and FRET methods both provide high sensitivity,while both of them need the specific label(radiolabeled ligand for RBA, fluorescent label for FRET),which limits the application of the methods.Affinity chromatography is a nondestructive and dynamical method to study the ligand-receptor interaction,but the sensitivity is limited by the detector of HPLC.As SPR and ITC methods are highly sensitive and nondestructive,they provide powerful tools for studying drugreceptor interaction.Therefore,high sensitive and nondestructive analysis methods play a crucial role in the exploration of ligandreceptor interaction.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    [1]S.Schmidt,H.Wang,D.Pussak,et al.,Probing multivalency in ligand-receptor-mediated adhesion of soft,biomimetic interfaces,Beilstein J.Org.Chem.11(2015)720–729.

    [2]X.Men,J.Zhou,J.Tang,et al.,Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis,Cell Rep.14(2016)1330–1338.

    [3]Y.Namkung,C.Le Gouill,V.Lukashova,et al.,Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET,Nat.Commun.7(2016)12178.

    [4]N.Ferruz,G.De Fabritiis,Binding kinetics in drug discovery,Mol.Inf.35(2016)216–226.

    [5]M.Vass,A.J.Kooistra,T.Ritschel,et al.,Molecular interaction fingerprint approaches for GPCR drug discovery,Curr.Opin.Pharmacol.30(2016)59–68.

    [6]L.G.Ferreira,R.N.Dos Santos,G.Oliva,et al.,Molecular docking and structure-based drug design strategies,Molecules 20(2015)13384–13421.

    [7]Y.Fang,Ligand-receptor interaction platforms and their applications for drug discovery,Expert.Opin.Drug Discov.7(2012)969–988.

    [8]M.R.Duff Jr,E.E.Howell,Thermodynamics and solvent linkage of macromolecule-ligand interactions,Methods 76(2015)51–60.

    [9]N.J.Alves,S.D.Stimple,M.W.Handlogten,et al.,Small-molecule-based affinity chromatography method for antibody purification via nucleotide binding site targeting,Anal.Chem.84(2012)7721–7728.

    [10]Z.Tong,J.E.Schiel,E.Papastavros,et al.,Kinetic studies of drug-protein interactions by using peak pro filing and high-performance affinity chromatography∶examination of multi-site interactions of drugs with human serum albumin columns,J.Chromatogr.A 1218(2011)2065–2071.

    [11]J.H.Seo,C.S.Kim,H.J.Cha,Structural evaluation of GM1-related carbohydrate-cholera toxin interactions through surface plasmon resonance kinetic analysis,Analyst 138(2013)6924–6929.

    [12]K.A.Frey,R.L.Albin,Receptor binding techniques,Curr.Protoc.Neurosci.Chapt.1(2001)(Unit 1.4).

    [13]K.Br?nnstr?m,A.?hman,L.Nilsson,et al.,The N-terminal region of amyloid βcontrols the aggregation rate and fibril stability at low pH through a gain of function mechanism,J.Am.Chem.Soc.136(2014)10956–10964.

    [14]B.R.Capraro,Z.Shi,T.Wu,et al.,Kinetics of endophilin N-BAR domain dimerization and membrane interactions,J.Biol.Chem.288(2013)12533–12543.

    [15]H.S.Kim,D.S.Hage,Chromatographic analysis of carbamazepine binding to human serum albumin,J.Chromatogr.B 816(2005)57–66.

    [16]L.Li,R.Zhou,H.Geng,et al.,Discovery of two aminoglycoside antibiotics as inhibitors targeting the menin-mixed lineage leukaemia interface,Bioorg.Med.Chem.Lett.24(2014)2090–2093.

    [17]G.Perret,P.Simon,Radioreceptor assay∶principles and applications to pharmacology,J.Pharmacol.15(1984)265–286.

    [18]D.B.Bylund,M.L.Toews,Radioligand binding methods∶practical guide and tips,Am.J.Physiol.265(1993)L421–L429.

    [19]J.Zhang,J.Wu,J.Toyohara,et al.,Pharmacological characterization of[3H]CHIBA-3007 binding to glycine transporter 1 in the rat brain,PLoS One 6(2011)e21322.

    [20]J.Wu,J.Toyohara,Y.Tanibuchi,et al.,Pharmacological characterization of[(125)I]CHIBA-1006 binding,a new radioligand forα7 nicotinic acetylcholine receptors,to rat brain membranes,Brain Res.1360(2010)130–137.

    [21]I.Szatmári,G.Tóth,I.Kertész,et al.,Synthesis and binding characteristics of[3H]H-Tyr-Ticpsi[CH2-NH]Cha-Phe-OH,a highly specific and stable deltaopioid antagonist,Peptides 20(1999)1079–1083.

    [22]S.Parkel,A.Rinken,Characteristics of binding of[3H]WAY100635 to rat hippocampal membranes,Neurochem.Res.31(2006)1135–1140.

    [23]V.Casadó,C.Ferrada,J.Bonaventura,et al.,Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments.agonist-antagonist binding modulation,Biochem.Pharmacol.78(2009)1456–1463.

    [24]A.Alves-Rodrigues,R.Leurs,T.S.Wu,et al.,[3H]-thioperamide as a radioligand for the histamine H3 receptor in rat cerebral cortex,Br.J.Pharmacol.118(1996)2045–2052.

    [25]A.Uustare,A.Vonk,A.Terasmaa,et al.,Kinetic and functional properties of[3H]ZM241385,a high affinity antagonist for adenosine A2A receptors,Life Sci.76(2005)1513–1526.

    [26]S.B.Hwang,M.H.Lam,A.H.Hsu,Characterization of platelet-activating factor(PAF)receptor by specific binding of[3H]L-659,989,a PAF receptor antagonist,to rabbit platelet membranes∶possible multiple conformational states of a single type of PAF receptors,Mol.Pharmacol.35(1989)48–58.

    [27]N.J.Brenner,G.Y.Stonesifer,K.A.Schneck,et al.,[125I]PIP HOE 140,a high affinity radioligand for bradykinin B2 receptors,Life Sci.53(1993)1879–1886.

    [28]R.A.Armstrong,P.P.Humphrey,P.Lumley,Characteristics of the binding of[3H]-GR32191 to the thromboxane(TP-)receptor of human platelets,Br.J.Pharmacol.110(1993)539–547.

    [29]M.T.Le,M.K.Pugsley,G.Vauquelin,et al.,Molecular characterisation of the interactions between olmesartan and telmisartan and the human angiotensin II AT1 receptor,Br.J.Pharmacol.151(2007)952–962.

    [30]D.Macut,D.Vojnovi?Milutinovi?,I.Bo?i?,et al.,Age,body mass index,and serum level of DHEA-S can predict glucocorticoid receptor function in women with polycystic ovary syndrome,Endocrine 37(2010)129–134.

    [31]S.Sawai,H.Fukui,M.Fukuda,et al.,[3H]mepyramine binding sites,histamine H1-receptors,in bovine retinal blood vessels,Curr.Eye Res.10(1991)713–718.

    [32]T.J.Turner,S.M.Goldin,Calcium channels in rat brain synaptosomes∶identification and pharmacological characterization.High affinity blockade by organic Ca2+channel blockers,J.Neurosci.5(1985)841–849.

    [33]X.L.Zhang,J.C.Mak,P.J.Barnes,Characterization and autoradiographic mapping of[3H]CP96,345,a nonpeptide selective NK1 receptor antagonist in guinea pig lung,Peptides 16(1995)867–872.

    [34]A.J.Marchingo,J.M.Abrahams,E.A.Woodcock,et al.,Properties of[3H]1-desamino-8-D-arginine vasopressin as a radioligand for vasopressin V2-receptors in rat kidney,Endocrinology 122(1988)1328–1336.

    [35]J.J.Maguire,R.E.Kuc,A.P.Davenport,Radioligand binding assays and their analysis,Methods Mol.Biol.897(2012)31–77.

    [36]K.A.Krohn,The physical chemistry of ligand-receptor binding identifies some limitations to the analysis of receptor images,Nucl.Med.Biol.28(2001)477–483.

    [37]G.Tóth,J.R.Mallareddy,Tritiated opioid receptor ligands as radiotracers,Curr.Pharm.Des.19(2013)7461–7472.

    [38]A.B.Young,G.E.Fagg,Excitatory amino acid receptors in the brain∶membrane binding and receptor autoradiographic approaches,Trends Pharmacol.Sci.11(1990)126–133.

    [39]M.Keen,Radioligand-binding methods for membrane preparations and intact cells,Methods Mol.Biol.83(1997)1–24.

    [40]H.H.Nguyen,J.Park,S.Kang,et al.,Surface plasmon resonance∶a versatile technique for biosensor applications,Sensors 15(2015)10481–10510.

    [41]P.P.Vachali,B.Li,A.Bartschi,et al.,Surface plasmon resonance(SPR)-based biosensor technology for the quantitative characterization of protein-carotenoidinteractions,Arch.Biochem.Biophys.572(2015)66–72.

    [42]E.Zeidan,C.L.Kepley,C.Sayes,et al.,Surface plasmon resonance∶a label-free tool for cellular analysis,Nanomedicine 10(2015)1833–1846.

    [43]S.G.Patching,Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery,Biochim.Biophys.Acta 2014(1838)43–55.

    [44]W.T.Kuo,W.C.Lin,K.C.Chang,et al.,Quantitative analysis of ligand-EGFR interactions∶a platform for screening targeting molecules,PLoS One 10(2015)e0116610.

    [45]F.Li,J.L.Moake,L.V.McIntire,Characterization of von Willebrand factor interaction with collagens in real time using surface plasmon resonance,Ann.Biomed.Eng.30(2002)1107–1116.

    [46]K.Anraku,R.Fukuda,N.Takamune,et al.,Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance,Biochemistry 49(2010)5109–5116.

    [47]L.Ma,K.Gu,C.H.Zhang,et al.,Generation and characterization of a human nanobody against VEGFR-2,Acta Pharmacol.Sin.37(2016)857–864.

    [48]Y.Feng,Y.Wang,Z.Zhu,et al.,Differential killing of CD56-expressing cells by drug-conjugated human antibodies targeting membrane-distal and membrane-proximal non-overlapping epitopes,MAbs 8(2016)799–810.

    [49]K.Anraku,T.Inoue,K.Sugimoto,et al.,Design and synthesis of biotinylated inositol 1,3,4,5-tetrakisphosphate targeting Grp1 pleckstrin homology domain,Bioorg.Med.Chem.19(2011)6833–6841.

    [50]Z.Su,L.Chen,Y.Liu,et al.,35 MHz quartz crystal microbalance and surface plasmon resonance studies on the binding of angiotensin converting enzyme with Lisinopril,Biosens.Bioelectron.26(2011)3240–3245.

    [51]H.Li,W.Cao,Z.Chen,et al.,The antiangiogenic activity of a soluble fragment of the VEGFR extracellular domain,Biomed.Pharmacother.67(2013)599–606.

    [52]A.Lookene,L.Zhang,V.Tougu,et al.,1,1′-bis(anilino)-4-,4′-bis(naphtalene)-8,8′-disulfonate acts as an inhibitor of lipoprotein lipase and competes for binding with apolipoprotein CII,J.Biol.Chem.278(2003)37183–37194.

    [53]U.Holmskov,P.B.Fischer,A.Rothmann,et al.,Affinity and kinetic analysis of the bovine plasma C-type lectin collectin-43(CL-43)interacting with mannan,FEBS Lett.393(1996)314–316.

    [54]I.Habib,D.Smolarek,C.Hattab,et al.,V(H)H(nanobody)directed against human glycophorin A∶a tool for autologous red cell agglutination assays,Anal.Biochem.438(2013)82–89.

    [55]X.Pang,M.Zhang,L.Zhou,et al.,Discovery of a potent peptidic cyclophilin A inhibitor Trp-Gly-Pro,Eur.J.Med.Chem.46(2011)1701–1705.

    [56]K.H.Lin,W.J.Lu,S.H.Wang,et al.,Characteristics of endogenousγ-aminobutyric acid(GABA)in human platelets∶functional studies of a novel collagen glycoprotein VI inhibitor,J.Mol.Med.92(2014)603–614.

    [57]X.Zheng,Z.Li,S.Beeram,et al.,Analysis of biomolecular interactions using affinity microcolumns∶a review,J.Chromatogr.B 968(2014)49–63.

    [58]R.Matsuda,Z.Li,X.Zheng,et al.,Analysis of multi-site drug-protein interactions by high-performance affinity chromatography∶binding by glimepiride to normal or glycated human serum albumin,J.Chromatogr.A 1408(2015)133–144.

    [59]Y.An,X.Li,H.Sun,et al.,Target-directed screening of the bioactive compounds specifically binding toβ2-adrenoceptor in semen brassicae by highperformance affinity chromatography,J.Mol.Recognit.(2015),http∶//dx.doi.org/10.1002/jmr.2478.

    [60]J.Anguizola,K.S.Joseph,O.S.Barnaby,et al.,Development of affinity microcolumns for drug-protein binding studies in personalized medicine∶interactions of sulfonylurea drugs with in vivo glycated human serum albumin,Anal.Chem.85(2013)4453–4460.

    [61]Z.Zeng,M.Hincapie,S.J.Pitteri,et al.,A proteomics platform combining depletion,multi-lectin affinity chromatography(M-LAC),and isoelectric focusing to study the breast cancer proteome,Anal.Chem.83(2011)4845–4854.

    [62]M.Sanghvi,R.Moaddel,I.W.Wainer,The development and characterization of protein-based stationary phases for studying drug–protein and protein–protein interactions,J.Chromatogr.A 1218(2011)8791–8798.

    [63]K.Jozwiak,S.C.Hernandez,K.J.Kellar,et al.,Enantioselective interactions of dextromethorphan and levomethorphan with the alpha 3 beta 4-nicotinic acetylcholine receptor∶comparison of chromatographic and functional data,J.Chromatogr.B Anal.Technol.Biomed.Life Sci.797(2003)373–379.

    [64]R.Moaddel,A.Rosenberg,K.Spelman,et al.,Development and characterization of immobilized cannabinoid receptor(CB1/CB2)open tubular column for on-line screening,Anal.Biochem.412(2011)85–91.

    [65]D.S.Hage,J.A.Anguizola,C.Bi,et al.,Pharmaceutical and biomedical applications of affinity chromatography∶recent trends and developments,J.Pharm.Biomed.Anal.69(2012)93–105.

    [66]J.J.Slon-Usakiewicz,J.R.Dai,W.Ng,et al.,Global kinase screening.applications of frontal affinity chromatography coupled to mass spectrometry in drug discovery,Anal.Chem.77(2005)1268–1274.

    [67]F.Beigi,I.W.Wainer,Syntheses of immobilized G protein-coupled receptor chromatographic stationary phases∶characterization of immobilized í and K opioid receptors,Anal.Chem.75(2003)4480–4485.

    [68]E.Calleri,C.Temporini,G.Massolini,Frontal affinity chromatography in characterizing immobilized receptors,J.Pharm.Biomed.Anal.54(2011)911–925.

    [69]K.S.Joseph,A.C.Moser,S.B.Basiaga,et al.,Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin∶characterization by high-performance affinity chromatography,J.Chromatogr.A 1216(2009)3492–3500.

    [70]D.S.Hage,J.A.Anguizola,A.J.Jackson,et al.,Chromatographic analysis of drug interactions in the serum proteome,Anal.Methods 3(2011)1449–1460.

    [71]X.Chen,Y.Cao,H.Zhang,et al.,Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli,Anal.Chem.86(2014)4748–4757.

    [72]H.Du,J.Y.He,S.C.Wang,et al.,Investigation of calcium antagonist-L-type calcium channel interactions by a vascular smooth muscle cell membrane chromatography method,Anal.Bioanal.Chem.397(2010)1947–1953.

    [73]S.C.Wang,M.Sun,Y.M.Zhang,et al.,A new A431/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening epidermal growth factor receptor antagonists from Radix sophorae flavescentis,J.Chromatogr.A 1217(2010)5246–5252.

    [74]H.Du,J.Ren,S.C.Wang,et al.,Cell membrane chromatography competitive binding analysis for characterization of α1A adrenoreceptor binding interactions,Anal.Bioanal.Chem.400(2011)3625–3633.

    [75]W.N.Ma,D.D.Zhang,J.Li,et al.,Interactions between histamine H1 receptor and its antagonists by using cell membrane chromatography method,J.Pharm.Pharmacol.67(2015)1567–1574.

    [76]Y.Wang,B.Yuan,X.Deng,et al.,Comparison of alpha1-adrenergic receptor cell-membrane stationary phases prepared from expressed cell line and from rabbit hepatocytes,Anal.Bioanal.Chem.386(2006)2003–2011.

    [77]H.Du,S.C.Wang,J.Ren,et al.,Revealing multi-binding sites for taspine to VEGFR-2 by cell membrane chromatography zonal elution,J.Chromatogr.B 887–888(2012)67–72.

    [78]W.Yu,B.Yuan,X.Deng,et al.,The preparation of HEK293 alpha1A or HEK293 alpha1B cell membrane stationary phase and the chromatographic affinity study of ligands of alpha1 adrenoceptor,Anal.Biochem.339(2005)198–205.

    [79]B.Hochreiter,A.P.Garcia,J.A.Schmid,Fluorescent proteins as genetically encoded FRET biosensors in life sciences,Sensors 15(2015)26281–26314.

    [80]J.Y.Liao,Y.Song,Y.Liu,A new trend to determine biochemical parameters by quantitative FRET assays,Acta Pharmacol.Sin.36(2015)1408–1415.

    [81]E.Hirata,E.Kiyokawa,Future perspective of single-molecule FRET biosensors and intravital FRET microscopy,Biophys.J.111(2016)1103–1111.

    [82]S.Ding,A.A.Cargill,S.R.Das,et al.,Biosensing with f?rster resonance energy transfer coupling between fluorophores and nanocarbon allotropes,Sensors 15(2015)14766–14787.

    [83]K.F.Chou,A.M.Dennis,F?rster resonance energy transfer between quantum dot donors and quantum dot acceptors,Sensors 15(2015)13288–13325.

    [84]M.Stanisavljevic,S.Krizkova,M.Vaculovicova,et al.,Quantum dots- fluorescence resonance energy transfer-based nanosensors and their application,Biosens.Bioelectron.74(2015)562–574.

    [85]C.De.Los Santos,C.W.Chang,M.A.Mycek,et al.,FRAP,FLIM,and FRET∶detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy,Mol.Reprod.Dev.82(2015)587–604.

    [86]D.Shrestha,A.Jenei,P.Nagy,et al.,Understanding FRET as a research tool for cellular studies,Int.J.Mol.Sci.16(2015)6718–6756.

    [87]C.D.Kinz-Thompson,R.L.Gonzalez Jr,smFRET studies of the'encounter'complexes and subsequent intermediate states that regulate the selectivity of ligand binding,FEBS Lett.588(2014)3526–3538.

    [88]S.Lata,M.Gavutis,J.Piehler,Monitoring the dynamics of ligand-receptor complexes on model membranes,J.Am.Chem.Soc.128(2006)6–7.

    [89]Y.A.Domanov,J.G.Molotkovsky,G.P.Gorbenko,Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET,Biochim.Biophys.Acta 2005(1716)49–58.

    [90]E.Alvarez-Curto,J.D.Pediani,G.Milligan,Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors,Anal.Bioanal.Chem.398(2010)167–180.

    [91]S.Lu,Y.Wang,Fluorescence resonance energy transfer biosensors for cancer detection and evaluation of drug efficacy,Clin.Cancer Res.16(2010)3822–3824.

    [92]L.Lecarme,E.Prado,A.De Rache,et al.,Interaction of polycationic Ni(II)-salophen complexes with G-quadruplex DNA,Inorg.Chem.53(2014)12519–12531.

    [93]R.S.Kasai,A.Kusumi,Single-molecule imaging revealed dynamic GPCR dimerization,Curr.Opin.Cell Biol.27(2014)78–86.

    [94]R.J.Falconer,A.Penkova,I.Jelesarov,et al.,Survey of the year 2008∶applications of isothermal titration calorimetry,J.Mol.Recognit.23(2010)395–413.

    [95]W.H.Ward,G.A.Holdgate,Isothermal titration calorimetry in drug discovery,Prog.Med.Chem.38(2001)309–376.

    [96]R.J.Falconer,Applications of isothermal titration calorimetry-the research and technical developments from 2011 to 2015,J.Mol.Recognit.29(2016)504–515.

    [97]R.Huang,B.L.Lau,Biomolecule-nanoparticle interactions∶Elucidation of the thermodynamics by isothermal titration calorimetry,Biochim.Biophys.Acta 2016(1860)945–956.

    [98]L.D.Hansen,M.K.Transtrum,C.Quinn,et al.,Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry,Biochim.Biophys.Acta 1860(2016)957–966.

    [99]M.Kabiri,L.D.Unsworth,Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions∶peptide self-assembly and protein adsorption case studies,Biomacromolecules 15(2014)3463–3473.

    [100]A.Daddaoua,T.Krell,C.Alfonso,et al.,Compartmentalized glucose metabolism in Pseudomonas putida is controlled by the PtxS repressor,J.Bacteriol.192(2010)4357–4366.

    [101]M.W.Freyer,E.A.Lewis,Isothermal titration calorimetry∶experimental design,data analysis,and probing macromolecule/ligand binding and kinetic interactions,Methods Cell Biol.84(2008)79–113.

    [102]X.Du,Y.Li,Y.L.Xia,et al.,Insights into protein-ligand interactions∶mechanisms,models,and methods,Int.J.Mol.Sci.17(2016).

    [103]P.Draczkowski,D.Matosiuk,K.Jozwiak,Isothermal titration calorimetry in membrane protein research,J.Pharm.Biomed.Anal.87(2014)313–325.

    亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 日韩 亚洲 欧美在线| 国产又黄又爽又无遮挡在线| 色综合色国产| eeuss影院久久| 亚洲国产欧美人成| 在线免费观看不下载黄p国产| 成人美女网站在线观看视频| 国产一级毛片七仙女欲春2| 精品人妻视频免费看| 色哟哟·www| 禁无遮挡网站| 真实男女啪啪啪动态图| 一级黄色大片毛片| 色吧在线观看| 1024手机看黄色片| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 日韩欧美三级三区| 一本一本综合久久| 亚洲在线自拍视频| 久久久久久九九精品二区国产| 爱豆传媒免费全集在线观看| 性色avwww在线观看| 日韩av在线大香蕉| 国产中年淑女户外野战色| 成人综合一区亚洲| 久久久久久九九精品二区国产| 亚洲av成人av| 日韩 亚洲 欧美在线| 午夜a级毛片| 亚洲国产精品sss在线观看| 欧美最黄视频在线播放免费| 免费人成在线观看视频色| 在线播放国产精品三级| 99久久精品一区二区三区| 色尼玛亚洲综合影院| 欧美日韩国产亚洲二区| 天堂中文最新版在线下载 | 熟妇人妻久久中文字幕3abv| 身体一侧抽搐| 日本色播在线视频| 日韩欧美在线乱码| 亚洲丝袜综合中文字幕| 欧美+日韩+精品| 亚洲色图av天堂| 国产午夜福利久久久久久| 成年版毛片免费区| 九九在线视频观看精品| 成人毛片a级毛片在线播放| 亚洲精品自拍成人| 精华霜和精华液先用哪个| 国产蜜桃级精品一区二区三区| 国产成年人精品一区二区| 欧美性猛交黑人性爽| 日日干狠狠操夜夜爽| 一边摸一边抽搐一进一小说| 亚洲国产色片| 91精品国产九色| 日韩欧美国产在线观看| 亚洲精华国产精华液的使用体验 | 成人漫画全彩无遮挡| 国产美女午夜福利| 91狼人影院| 亚洲真实伦在线观看| 激情 狠狠 欧美| 在线免费观看不下载黄p国产| kizo精华| 91av网一区二区| 国产黄片视频在线免费观看| 欧美另类亚洲清纯唯美| 大香蕉久久网| 久久中文看片网| 男插女下体视频免费在线播放| 亚洲国产精品国产精品| 国产极品精品免费视频能看的| 久久中文看片网| 亚洲av免费高清在线观看| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| 99九九线精品视频在线观看视频| 精品99又大又爽又粗少妇毛片| 白带黄色成豆腐渣| 亚州av有码| 99在线视频只有这里精品首页| 中文字幕久久专区| 国产av在哪里看| 18禁在线播放成人免费| 午夜福利成人在线免费观看| 日韩制服骚丝袜av| 国产精品久久久久久久电影| 亚洲欧洲日产国产| 国产精品久久久久久久久免| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 99在线视频只有这里精品首页| 精品久久久久久久久久免费视频| 国产伦在线观看视频一区| 午夜视频国产福利| 免费av观看视频| 亚洲最大成人中文| 在线天堂最新版资源| 日日啪夜夜撸| 精品一区二区免费观看| 成人特级av手机在线观看| 一区二区三区四区激情视频 | 国产免费男女视频| 精品一区二区三区人妻视频| 国产 一区精品| 日韩欧美三级三区| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 日韩精品青青久久久久久| 久久综合国产亚洲精品| 国产av一区在线观看免费| 在线天堂最新版资源| 变态另类丝袜制服| 韩国av在线不卡| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 亚洲精品国产av成人精品| 啦啦啦韩国在线观看视频| 亚洲激情五月婷婷啪啪| 狠狠狠狠99中文字幕| 尤物成人国产欧美一区二区三区| 国产爱豆传媒在线观看| 国产视频首页在线观看| 午夜福利成人在线免费观看| 国产女主播在线喷水免费视频网站 | 国产精品乱码一区二三区的特点| 久久中文看片网| 国产真实乱freesex| 日韩欧美在线乱码| 国产精品久久久久久精品电影| 99久国产av精品国产电影| 国产伦精品一区二区三区四那| 日本与韩国留学比较| 99久久无色码亚洲精品果冻| 日韩视频在线欧美| 久久国产乱子免费精品| 六月丁香七月| av专区在线播放| 最好的美女福利视频网| 国产成人影院久久av| 国产精品电影一区二区三区| 久久精品久久久久久噜噜老黄 | 国产大屁股一区二区在线视频| 不卡一级毛片| 一夜夜www| av黄色大香蕉| 国产精品福利在线免费观看| 亚洲va在线va天堂va国产| 99热精品在线国产| eeuss影院久久| 成年女人永久免费观看视频| 麻豆乱淫一区二区| 波野结衣二区三区在线| 久久久精品94久久精品| 亚洲人成网站在线播| 亚洲国产高清在线一区二区三| 国产精品日韩av在线免费观看| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 丰满乱子伦码专区| 日本三级黄在线观看| 成人毛片60女人毛片免费| 欧美一区二区亚洲| 十八禁国产超污无遮挡网站| 哪个播放器可以免费观看大片| 精品久久久久久久末码| 亚洲成av人片在线播放无| 日韩精品有码人妻一区| 51国产日韩欧美| 国产精品乱码一区二三区的特点| 深夜精品福利| 极品教师在线视频| 欧美精品一区二区大全| 午夜福利在线观看吧| 联通29元200g的流量卡| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 国产精品乱码一区二三区的特点| 国产一区二区亚洲精品在线观看| 在线播放国产精品三级| 深夜a级毛片| 97热精品久久久久久| a级一级毛片免费在线观看| 18禁黄网站禁片免费观看直播| 一本久久精品| 久久精品国产亚洲av涩爱 | 少妇的逼水好多| 国内揄拍国产精品人妻在线| 一进一出抽搐动态| 亚洲国产高清在线一区二区三| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影 | 一区二区三区免费毛片| 亚洲性久久影院| 久久久久久伊人网av| 久久精品国产亚洲网站| 我的老师免费观看完整版| 免费大片18禁| 麻豆一二三区av精品| 日韩中字成人| 中文字幕精品亚洲无线码一区| 亚洲经典国产精华液单| 18禁在线播放成人免费| 最近最新中文字幕大全电影3| 免费看a级黄色片| 卡戴珊不雅视频在线播放| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 三级经典国产精品| 一个人免费在线观看电影| 精品久久久久久久久久免费视频| 免费观看a级毛片全部| 久久国内精品自在自线图片| 少妇高潮的动态图| 黄色视频,在线免费观看| 一本精品99久久精品77| 日韩中字成人| 亚洲成人久久爱视频| 大香蕉久久网| 超碰av人人做人人爽久久| 国产高清三级在线| 看非洲黑人一级黄片| 麻豆成人午夜福利视频| 国产亚洲精品久久久久久毛片| 免费大片18禁| 亚洲av成人精品一区久久| 免费观看a级毛片全部| av女优亚洲男人天堂| 99久久九九国产精品国产免费| 久久久精品94久久精品| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 日本撒尿小便嘘嘘汇集6| 免费观看在线日韩| 久久午夜福利片| 91精品一卡2卡3卡4卡| 亚洲一级一片aⅴ在线观看| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 毛片女人毛片| .国产精品久久| 深爱激情五月婷婷| 在线国产一区二区在线| 一边亲一边摸免费视频| 老师上课跳d突然被开到最大视频| 99国产极品粉嫩在线观看| 99久久精品国产国产毛片| 久久精品国产亚洲av涩爱 | 天天一区二区日本电影三级| 亚洲精品国产成人久久av| 国产色爽女视频免费观看| 久久国产乱子免费精品| 成年免费大片在线观看| 欧美又色又爽又黄视频| 久久久色成人| 久久精品91蜜桃| 少妇猛男粗大的猛烈进出视频 | 久久午夜福利片| 国产伦在线观看视频一区| 久久精品影院6| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 人妻系列 视频| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 色5月婷婷丁香| 国产亚洲91精品色在线| 99热这里只有是精品50| 国产私拍福利视频在线观看| 久久精品国产鲁丝片午夜精品| 国产亚洲5aaaaa淫片| 亚洲av免费高清在线观看| 国语自产精品视频在线第100页| 国产视频首页在线观看| 波多野结衣巨乳人妻| 我的女老师完整版在线观看| 直男gayav资源| 黄片无遮挡物在线观看| 成人av在线播放网站| 熟女电影av网| 少妇猛男粗大的猛烈进出视频 | 97热精品久久久久久| 少妇的逼水好多| 国产高潮美女av| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费男女啪啪视频观看| 国产高潮美女av| 观看美女的网站| 婷婷色av中文字幕| 少妇高潮的动态图| 国产高清视频在线观看网站| 乱系列少妇在线播放| 亚洲,欧美,日韩| 日韩制服骚丝袜av| a级毛色黄片| 网址你懂的国产日韩在线| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 中文欧美无线码| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱 | 欧美性感艳星| 免费av观看视频| 床上黄色一级片| 国产乱人偷精品视频| 亚洲欧美日韩无卡精品| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 99热6这里只有精品| 成人毛片a级毛片在线播放| 国产精华一区二区三区| 国产极品精品免费视频能看的| 一边摸一边抽搐一进一小说| 国产精品.久久久| 一夜夜www| av专区在线播放| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 少妇丰满av| 成人鲁丝片一二三区免费| 久久久午夜欧美精品| 国产美女午夜福利| 国产三级中文精品| 国产片特级美女逼逼视频| 国产亚洲精品久久久久久毛片| 欧美成人a在线观看| 国产成人freesex在线| 深爱激情五月婷婷| 欧美激情国产日韩精品一区| 亚洲最大成人av| 国产在线男女| 我要看日韩黄色一级片| 国产精品.久久久| 床上黄色一级片| 黄色欧美视频在线观看| 一边亲一边摸免费视频| 亚洲av中文字字幕乱码综合| 狂野欧美激情性xxxx在线观看| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片| av在线天堂中文字幕| 久久久久久久久中文| 一级毛片电影观看 | 国产亚洲精品av在线| 国产视频首页在线观看| 麻豆成人av视频| 最近视频中文字幕2019在线8| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 看片在线看免费视频| 久久精品影院6| 日韩大尺度精品在线看网址| 成年女人永久免费观看视频| 在线播放无遮挡| 青春草亚洲视频在线观看| 久久久久久久久中文| 九九热线精品视视频播放| 亚洲人成网站在线观看播放| 国产一区二区三区在线臀色熟女| 成人永久免费在线观看视频| 免费观看人在逋| 亚洲在久久综合| 精品免费久久久久久久清纯| 欧美激情久久久久久爽电影| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 亚洲五月天丁香| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| 熟女电影av网| 麻豆成人午夜福利视频| 男人舔奶头视频| 久久人人爽人人片av| 日产精品乱码卡一卡2卡三| 桃色一区二区三区在线观看| 亚洲精品成人久久久久久| 人妻久久中文字幕网| www日本黄色视频网| 国产精品蜜桃在线观看 | 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 在线播放国产精品三级| 精品午夜福利在线看| 99热这里只有是精品50| 亚洲欧洲日产国产| av在线亚洲专区| 欧美一区二区亚洲| 国产精品一区二区三区四区免费观看| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 麻豆成人av视频| 亚洲av第一区精品v没综合| 日本熟妇午夜| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 亚洲精品国产av成人精品| 亚洲一区二区三区色噜噜| 在线免费十八禁| 日韩精品青青久久久久久| 夜夜夜夜夜久久久久| 91aial.com中文字幕在线观看| 如何舔出高潮| 久久久久久伊人网av| 99热这里只有是精品50| a级毛片免费高清观看在线播放| 91精品一卡2卡3卡4卡| 欧美日韩乱码在线| 99久久九九国产精品国产免费| 性插视频无遮挡在线免费观看| 国产老妇女一区| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 国产精品一二三区在线看| 欧美日韩在线观看h| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美成人综合另类久久久 | 高清午夜精品一区二区三区 | 国产真实伦视频高清在线观看| 中文字幕制服av| 成人国产麻豆网| 又爽又黄a免费视频| 亚洲国产欧美在线一区| 亚洲成av人片在线播放无| 日本av手机在线免费观看| 亚洲在久久综合| av卡一久久| 熟女电影av网| 亚洲人与动物交配视频| 哪个播放器可以免费观看大片| 亚洲图色成人| 精品午夜福利在线看| 国产在线男女| 偷拍熟女少妇极品色| 亚洲欧美日韩东京热| 一区二区三区免费毛片| 一区二区三区高清视频在线| 国产视频内射| 99久久精品热视频| 国产精品电影一区二区三区| 观看美女的网站| 亚洲av二区三区四区| 春色校园在线视频观看| 神马国产精品三级电影在线观看| 欧美极品一区二区三区四区| 美女黄网站色视频| 午夜视频国产福利| 两个人视频免费观看高清| 人体艺术视频欧美日本| 成人性生交大片免费视频hd| 少妇人妻一区二区三区视频| 国产精品永久免费网站| 精品久久国产蜜桃| 久久精品国产亚洲av涩爱 | 日韩一本色道免费dvd| 夜夜夜夜夜久久久久| 亚洲欧洲国产日韩| 欧美最黄视频在线播放免费| 观看美女的网站| 国产高清不卡午夜福利| 国产真实乱freesex| 国产三级在线视频| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在现免费观看毛片| 身体一侧抽搐| 干丝袜人妻中文字幕| www.色视频.com| 国产色婷婷99| 日韩成人av中文字幕在线观看| 国产精品1区2区在线观看.| 好男人在线观看高清免费视频| 午夜福利在线在线| 亚洲久久久久久中文字幕| 国产男人的电影天堂91| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 久久久久久九九精品二区国产| 男人狂女人下面高潮的视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | www.色视频.com| 国产精品电影一区二区三区| 69人妻影院| 成人特级黄色片久久久久久久| 非洲黑人性xxxx精品又粗又长| av国产免费在线观看| 国产大屁股一区二区在线视频| 久久精品综合一区二区三区| 少妇熟女aⅴ在线视频| 禁无遮挡网站| 村上凉子中文字幕在线| 国产又黄又爽又无遮挡在线| 我要看日韩黄色一级片| 成人亚洲欧美一区二区av| 国产成人aa在线观看| 美女大奶头视频| av在线老鸭窝| 听说在线观看完整版免费高清| 波野结衣二区三区在线| 热99re8久久精品国产| 3wmmmm亚洲av在线观看| 中文字幕久久专区| 亚洲七黄色美女视频| 高清午夜精品一区二区三区 | 人人妻人人澡欧美一区二区| 99久久人妻综合| 九色成人免费人妻av| 免费看光身美女| 亚洲四区av| 只有这里有精品99| 老女人水多毛片| 青春草亚洲视频在线观看| 一级黄色大片毛片| 日韩一区二区三区影片| 高清日韩中文字幕在线| 91狼人影院| 六月丁香七月| 日韩精品青青久久久久久| 久久精品国产亚洲av天美| 精品久久国产蜜桃| 久久久久久久久久久免费av| 能在线免费观看的黄片| 久久亚洲精品不卡| 国产欧美日韩精品一区二区| 免费搜索国产男女视频| 一进一出抽搐gif免费好疼| 成熟少妇高潮喷水视频| 国产一区二区在线av高清观看| 黄色一级大片看看| 国产精品美女特级片免费视频播放器| 3wmmmm亚洲av在线观看| 国产av一区在线观看免费| 国产精品,欧美在线| 久久这里有精品视频免费| 91在线精品国自产拍蜜月| 亚洲色图av天堂| 18禁裸乳无遮挡免费网站照片| 亚洲一区二区三区色噜噜| 99久国产av精品| 亚洲熟妇中文字幕五十中出| 伊人久久精品亚洲午夜| 在线免费十八禁| 国内揄拍国产精品人妻在线| 看黄色毛片网站| 日韩高清综合在线| 91aial.com中文字幕在线观看| 国产成人a区在线观看| 最近中文字幕高清免费大全6| 国产一级毛片七仙女欲春2| 如何舔出高潮| 国产黄a三级三级三级人| 少妇高潮的动态图| 少妇人妻精品综合一区二区 | 女的被弄到高潮叫床怎么办| 国产av不卡久久| 老熟妇乱子伦视频在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲av男天堂| 久久久久免费精品人妻一区二区| 久久九九热精品免费| 五月伊人婷婷丁香| 成人午夜精彩视频在线观看| 一边摸一边抽搐一进一小说| 亚洲自拍偷在线| 青春草视频在线免费观看| 女人十人毛片免费观看3o分钟| 国产成人精品久久久久久| 精品日产1卡2卡| 有码 亚洲区| 不卡视频在线观看欧美| 国产真实乱freesex| 久久婷婷人人爽人人干人人爱| 成人一区二区视频在线观看| 99久久无色码亚洲精品果冻| 99国产极品粉嫩在线观看| 别揉我奶头 嗯啊视频| av在线天堂中文字幕| 身体一侧抽搐| 国产久久久一区二区三区| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 高清毛片免费看| 听说在线观看完整版免费高清| 国产一级毛片七仙女欲春2| 中文字幕免费在线视频6| 国产一区二区亚洲精品在线观看| 精品不卡国产一区二区三区| 欧美丝袜亚洲另类| 亚洲av免费在线观看| 久久鲁丝午夜福利片| 可以在线观看的亚洲视频| 99久久中文字幕三级久久日本| 天天一区二区日本电影三级| 热99re8久久精品国产| 日韩欧美三级三区| 伦理电影大哥的女人| 久久久久性生活片| 亚洲精品色激情综合| 国产精品.久久久| 桃色一区二区三区在线观看| 国产av不卡久久| 小说图片视频综合网站| 极品教师在线视频| a级毛片a级免费在线| 高清午夜精品一区二区三区 | 国产精品一区二区三区四区久久| 欧美激情久久久久久爽电影| 免费在线观看成人毛片|