• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Learning Virtual Impedance for Control of a Human-Coupled Lower Exoskeleton

    2018-06-11 05:51:22HUANGRuiCHENGHongandGUOHongliang

    HUANG Rui, CHENG Hong, and GUO Hong-liang

    (School of Automation Engineering, University of Electronic Science and Technology of China Chengdu 611731)

    Many lower exoskeletons have been developed for strength augmentation and walking assistance scenarios over the past few decades[1-5]. For strength augmentation related applications, lower exoskeletons are designed to track the pilot's motion with little interaction force between the exoskeleton and the pilot[6-8]. The controller of these lower exoskeletons can be roughly categorized into two categories, namely,sensor-based controller and model-based controller.

    For sensor-based controllers, extra sensors are always employed to measure the pilot's information and/or the interaction force between the pilot and the exoskeleton[9-11]. With the measured sensory information, many variations of control strategies can be employed to control the lower exoskeleton, i.e.,impedance control strategies. For example, the Hybrid assistive limb (HAL) exoskeleton system is an impedance control strategy proposed by Y. Sankai based on measuring eletro-myo-graphical (EMG)signals of the pilot[12]. In the impedance control strategy of HAL system, EMG signals are utilized to calculate reference patterns of the pilot which aims at estimating the human-exoskeleton interaction (HEI)between the pilot and the exoskeleton[13]. Furthermore,based on measuring the pilot’s motion with acceleration sensors, the active-impedance control strategy[14]and the fuzzy-based impedance control strategy[15]are proposed to adapt to the changing interaction dynamics among different pilots. However,sensor-based controllers heavily rely on complex sensory systems, which are unstable sometimes and is mostly costly. Hence, sensor-based controllers are, to some extent, limited in most strength augmentation scenarios.

    On the other hand, model-based controllers are designed to simplify the sensory system of the exoskeleton, which is only based on the information from exoskeleton itself. Sensitivity amplification control (SAC) is one of the model-based controllers proposed by the berkeley lower extremity exoskeleton(BLEEX)[16]. With a sensitivity factor in the modelbased controller, SAC can estimate the output joint torques based on current states (joint angle, angular velocity and angular acceleration) of the lower exoskeleton. The SAC strategy is able to reduce the interaction force between the pilot and the exoskeleton without measuring it directly, which also reduces the complexity of the exoskeleton sensory system.However, the SAC strategy requires accurate dynamic models of the lower exoskeleton (sensitive to model imperfections and different pilots) which makes the system identification process quite complicated[17].

    In this paper, we propose a novel variable virtual impedance control (VVIC) strategy which inherits both advantages of sensor-based controllers and modelbased controllers. On the one hand, it is a model-based control strategy, which reduces the complexity of the exoskeleton sensory system. On the other hand, we apply a reinforcement learning method based on policy improvement and path integrals (PI2) to learn parameters of the virtual impedance model, which circumvents the complicated system identification process. The main contributions of this paper can be summarized as follows:

    1) A novel VVIC strategy with a model-based controller named virtual impedance controller is proposed, which reduces the exoskeleton sensory system requirement;

    2) To reduce the complicated system identification process, a reinforcement learning method is utilized to learn/optimize parameters of the virtual impedance controller of VVIC strategy;

    3) The proposed VVIC strategy is verified on both a single DOF platform and HUALEX system.

    The proposed VVIC strategy is firstly validated on a single DOF exoskeleton platform, and then tested on a HUALEX system. Experimental results show that the proposed VVIC strategy is able to adapt different HEI to different pilots when compared with canonical model-based control strategies.

    1 Virtual Impedance Control Strategy

    This section presents the proposed virtual impedance control strategy. We will firstly introduce the design details of virtual impedance controller in Subsection 1.1. Then, in Subsection 1.2, we analyze the stability of the proposed model-based controller.

    1.1 Virtual Impedance Controller

    For the control of lower exoskeletons for strength augmentation related applications, the pilot always plays as a master role in the human-coupled system,which means that the exoskeleton should follow/track the pilot's motion. A general control system block diagram with the model-based controller for the single degree of freedom (DOF) case is depicted in Fig. 1,where: G represents the transfer function of the lower exoskeleton, C is the designed model-based controller of the lower exoskeleton. Khmis the impedance between the pilot and the exoskeleton. qeand qhindicate the joint angles of lower exoskeleton and the pilot, respectively. Thmis the resulting interaction torque applied by the pilot. Tactis the output torque applied by the lower exoskeleton actuator.

    Fig. 1 A general control system diagram with the model-based controller for the single DOF case

    As shown in Fig. 1, the input torque of the lower exoskeleton is combined with the actuator output torque Tactand pilot's resulting interaction torque Thm.The design goal of lower exoskeleton controller is to reduce the interaction torque, which also means that the exoskeleton can track the pilot's motion as soon as possible.

    The traditional impedance controller always be designed as in Eq. (1), the pilot's angles are taken as inputs to the controller:whereis the estimated dynamics of the lower exoskeleton. k and d are stiffness and damping parameters of the designed impedance model,respectively. However, for the design of model-based controllers, we do not measure sensory information from the pilot. In the exoskeleton control of strength augmentation scenarios, the exoskeleton will receive the pilot's joint states after several control cycles.Therefore, a virtual impedance model is presented for the model-based exoskeleton controller:

    wherehk andhd are positive parameters of the virtual impedance model. Hence, the proposed virtual impedance controller can be represented as Eq. (4),which is a model-based controller only based on the states of the lower exoskeleton:

    where Kh= k khand Dh= d dhare virtual impedance factors of the proposed virtual impedance controller.

    1.2 Stability Analysis

    Since the design goal of the lower exoskeleton controller is to reduce the interaction torque, Thmapproximates to zero, and the stability of the system can be guaranteed by the stability of qe/qh[18].

    From Fig. 1, the open loop system equation can be represented as:

    The proposed virtual impedance controller can be rewritten as:

    where Vh= Dhs2+ Khs . Through the model-based controller in Eq. (6) and the system equation described in Eq. (5), we have:

    then the equation of qe/qhcan be obtained as:

    If the dynamics of lower exoskeleton is estimated accurately (1G= ), then Eq. (8) can be simplified to:

    Since virtual impedance parameters Dhand Khand the impedance Khmall have positive values, the control system is always stable when the dynamics of lower exoskeleton can be accurately estimated.

    Another situation is that we haven't gained accurate dynamic models of the lower exoskeleton. In this case, we consider a single DOF exoskeleton with the second order dynamics and ignore the gravity composition, which indicates that:

    where J and B represent the inertial moment and viscous friction of the lower exoskeleton, respectively.The estimated exoskeleton dynamicscan be represented as:

    whereandrepresent the estimated inertial moment and viscous friction parameters. From Eq. (10)and Eq. (11), the equation of qe/qhcan be represented as:

    According to Eq. (12), if the virtual impedance parameters Dhand Khare small enough (always positive), the system will still be stable when the dynamic model of lower exoskeleton is not over estimated (J <, B <). Hence, the system is always stable when the dynamic model of lower exoskeleton is not over estimated.

    2 Virtual Impedance Adaptation through Reinforcement Learning

    For the implementation of traditional model-based controllers, i.e. SAC in BLEEX system, the systemidentification process is often employed to obtain system dynamics and human-related parameters of the designed controller (sensitivity factors in SAC)[19].However, the lower exoskeleton is a kind of humancoupled system for different pilots, which requires that the controller needs to recalibrate for different pilots.

    In this paper, a model-free reinforcement learning method is employed to learn the optimal virtual impedance parameters of VIC, which aims at adapting with different HEI for different pilots. Combining the learning process and the model-based controller, which is named as the VVIC strategy, we can reduce the system sensor requirement as well as the system identification process. In the reinforcement learning process, a model-free reinforcement learning method named policy improvement and path integral (PI2)algorithm[20-21]is employed to learn the parameters Khand Dhof VIC.

    The parameterized policy of PI2is defined as:

    where Θ is a vector of virtual impedance parameters[Kh, Dh]Tand ?tindicate the exploration noise. WtTis the basis function with Gaussian kernels ω :

    Eq. (14) calculates the jthaverage weight, where n is the number of parameters which is to be learned(n=2 in our case).

    In the implementation of VVIC strategy, we define the immediate cost based on the measured sensory information of the pilot. For single DOF case,the immediate cost function is defined as follows:

    where α1andα2are positive scale factors. In order to obtain the pilot motion information during the learning process, inclinometers are utilized to measure the pilot's joint angle position qhand angular velocity

    With the defined policy and cost function, the learning process of virtual impedance parameters based on PI2for single DOF algorithm is described in as:

    1) Initialize the virtual impedance parameter vector Θ.

    2) Initialize basis function Wtiaccording Eq. (14).

    3) Repeat.

    4) Run K gait cycles of the exoskeleton using stochastic parameters Θ +?tat every time step.

    5) For all gait cycles k ∈[1,K]:

    6) Compute the projection matrix M through Eq.(16).

    7) Compute the stochastic cost S through Eq. (17).

    8) Compute the probability P through Eq. (18).

    9) For all time steps i∈[1,T]:

    10) Compute ΔΘtifor each time step through Eq.(19).

    11) Normalize ΔΘ according Eq. (20).

    12) Update Θ ← Θ + ΔΘ .

    13) Run one noiseless gait cycle to compute the trajectory cost R through Eq. (21).

    14) Until Trajectory cost R is converged.

    As shown in Tab. 1, virtual impedance parameters of VIC will be updated every K+1 gait cycles. The updating rule is described in Tab. 1 with Eq. (16) to Eq.(20).

    The matrix H in Eq. (16) and Eq. (17) is a positive semi-definite weight matrix. The scale factor λ in Eq.(18) is set within (0,1]. With updated parameter vector Θ, a noiseless gait cycle (without exploration noise ?t) is taken to determine whether the learning process should be terminated through calculating the trajectory cost R:

    where 1/dtρ= (dt indicates time duration of the gait cycle) is a normalization factor, since the duration of each gait cycle are always different in real-time applications.

    In the implementation of VVIC strategy, the reinforcement learning process needs to be taken in the case of different pilots, which learns optimal virtual parameters to adapt different HEI to different pilots.Afterwards, with the learned optimal model-based controller, the lower exoskeleton is able to track the pilot's motion as soon as possible based only on joint information of lower exoskeleton.

    3 Experiments and Discussions

    In this section, the proposed VVIC strategy is validated both on a single DOF case in simulation environment and the HUALEX system. Experimental results and discussions will be introduced in next two subsections.

    3.1 Single DOF Case in Simulation Environment

    3.1.1 Introduction to the Single DOF Exoskeleton Platform

    Fig.2 illustrates the model of single DOF exoskeleton when coupling with the pilot in knee joint.As a human-coupled system, the resultant torque on exoskeleton knee joint is combined with two parts: one is Tactwhich is provided by the exoskeleton actuator,and another is Thmwhich is provided by the pilot through compliant connection between the exoskeleton and the pilot.

    Fig. 2 Model of single DOF exoskeleton coupling with the pilot in knee joint

    The dynamics of single DOF exoskeleton including the pilot is defined as Eq. (22) in the simulation environment:

    where the last term mgl?sin qeis the gravity composition. Hence, according the control law of proposed VIC in Eq. (4), the controller of single DOF exoskeleton is designed as follows:

    whereandare estimated inertial moment and viscous friction parameters, respectively. Khand Dhare the virtual impedance parameters of proposed VVIC strategy which should be learned to adapt different HEI to different pilots.

    3.1.2 Experiments of Simulated Single DOF Exoskeleton

    In the experiments of simulated single DOF exoskeleton, different values of the impedance Khm(described in Fig.1) are used to simulate different HEIs to different pilots. Here we choose three different impedance Khm. The estimated dynamic parameters of model-based controllerandare set as=0.9 J,=0.9 B with suitable values. Pilot's motion angles are set as periodic sine waves with different frequencies and amplitudes in simulation experiments.

    Fig. 3 Learning curves of reinforcement learning process for simulated different pilots

    In the learning process of the proposed VVIC strategy, the exoskeleton should take several gait cycles to obtain optimal virtual impedance parameters of the controller. The exoskeleton updates parameters every 4(K=4) gait cycle and spends one gait cycle to calculate trajectory cost R (the parameters Θ will beupdated every 5 gait cycles). Weight parameters1α and2α of immediate cost function (described in Eq.(15)) are both chosen as 1 500. Fig. 3 illustrates learning curves of reinforcement learning process for different simulated pilots (relationship between values of impedance parametershmK is C>B>A). As shown in Fig. 3, the learning process will take almost 120 gait cycles (24 updates) to obtain optimal virtual impedance parameters (trajectory cost R converged).

    After obtaining the optimal parameters of the VVIC strategy, comparative experiments are carried out to compare the proposed VVIC and traditional SAC algorithm. Fig. 4 shows the control performances of the proposed VVIC strategy and SAC algorithm with pilot A. In the comparison experiments, we choose 11 gait cycles (total 50 gait cycles) with different motion patterns to compare control performances of VVIC strategy and SAC algorithm.Black curves in Fig. 4 represent the interaction force between the pilot and exoskeleton, which is calculated by a spring-damping model in the simulator. As shown in Fig. 4, experimental results show that the proposed VVIC strategy achieves better performance (with less interaction force) than the traditional SAC algorithm.

    Fig. 4 Control performances of the proposed VVIC strategy and SAC algorithm

    Tab. 1 shows the normalized mean square error(nMSE) of VVIC strategy and SAC algorithm in total 50 gait cycles with three different simulated pilots.Results show that the proposed VVIC strategy achieves better performance when dealing with different HEI to different pilots, e.g. with simulated pilot C, nMSE of the SAC algorithm is almost three times comparing with the proposed VVIC strategy(0.124 rad compare to 0.038 rad).

    Table 1 Comparison of VVIC strategy and SAC algorithmfor three different simulated pilots in single DOF case

    3.2 Experiments on the HUALEX System

    3.2.1 Introduction to the HUALEX System

    HUALEX system is designed for the strength augmentation applications. Fig. 5 shows the total HUALEX system with a pilot. In Fig. 5, 1— The pilot;2— The load backpack with the power unit and main controller (rigid connection with the HUALEX spline);3— Semi-rigidly connecting HUALEX to the pilot(waist, thighs, shanks and feet); 4— Active joints with DC servo motors (hip joints and knee joints); 5—Node controllers for active joints; 6— Smart shoes with plantar sensors.

    Fig. 5 HUALEX with the pilot

    As shown in Fig. 5, four active joints (hips and knees) are designed to provide active torques for strength augmentation. Ankle joints of HUALEX system are energy-storage mechanisms which can store energy in the stance phase and release it in the swing phase. Between the pilot and HUALEX system, many compliant connections are utilized to connect the pilot and HUALEX system in a semi-rigid way.

    The control system of HUALEX is combined with one main controller and four node controllers for each active joints. The control algorithm is running on the main controller, and node controllers are aiming to collect sensory information and execute control commands. In the HUALEX system, three kinds of sensors are utilized in the sensory system: 1) Encoders are embedded in each active joint to measure motion information of HUALEX. 2) IMU sensors are utilized to measure motion information of the pilot if necessary.3) Plantar sensors in smart shoes are aiming to judge the walking phases of HUALEX.

    3.2.2 Experimental Setup

    In experiments of the HULEX system, three different pilots (A: 172 cm/76 kg, B: 176 cm/80 kg, C:180 cm/96 kg) are chosen to operate the HUALEX system in sequence, which indicates that during learning process of VVIC strategy, the learned optimal parameters of VVIC with pilot A will be regarded as initial values of VVIC with pilot B (note that the VVIC parameters of each joint of HUALEX system are learned independently). During the learning process,IMU sensors are utilized to measure the pilot's motion information for obtaining optimal virtual impedance parameters. Besides the virtual impedance parameters of VVIC, parameters of HUALEX dynamics are identified through Solidworks software. After obtaining optimal parameters of VVIC, IMU sensors are remained to capture the pilot's motion information(not use for control) which are aiming to validate the control performance of the proposed VVIC strategy.

    3.2.3 Results and Discussions

    Fig. 6 shows the learning curves of VVICs in the HUALEX system with different pilots (in left hip and knee joints). As discussed in experimental setup section, pilot A operates the HUALEX system at first so that the learning process of VVIC strategy needs to spend more training gait cycles (almost 140 gait cycles). With better initial values from pilot A, the learning process of pilot B and C can be reduced to almost 80 gait cycles.

    After obtaining optimal virtual impedance parameters of the VVIC strategy through thereinforcement learning process, we validate the control performance of proposed VVIC strategy with comparison to the traditional SAC algorithm. The results show that the proposed VVIC strategy achieves good control performances. Moreover, Tab. 2 gives the comparison of the VVIC strategy and SAC algorithm with different pilots (100 gait cycles for each pilot). As shown in Tab. 2, the proposed VVIC strategy achieves better performances in experiments of the HUALEX system with different pilots, e.g. in the right knee joint of pilot C, the nMSE of SAC algorithm is almost three times than that of the VVIC strategy (0.094/rad compare to 0.032/rad).

    Fig. 6 Learning curves of VVICs in the HUALEX system withdifferent pilots at joint

    Table 2 Comparison of SAC and VVIC strategy in HUALEX with different pilots in total 100 gait cycles

    4 Conclusions and Future Work

    This paper has proposed a novel VVIC strategy to control of a HUALEX system, which aims at adapting different HEI to different pilots. The proposed VVIC strategy is based on a novel VIC, which is a model-based controller with a virtual impedance model.In order to adapt different HEI to different pilots, the PI2reinforcement learning algorithm is employed to obtain optimal parameters in virtual impedance of VIC.Control performances of the proposed VVIC strategy are validated on a single DOF exoskeleton simulation environment as well as the HUALEX system.Experimental results indicate that the proposed VVIC has better performances compared with the traditional SAC algorithm, and can deal with variation HEI from different pilots.

    In the future, we will investigate the methods which can learn/update the parameters of VVIC online.In this case, the HUALEX will be able to 'get used to'the pilot during the operation process. Moreover, the estimation to the accurate dynamic models of HUALEX is also important, the accurate dynamic models always achieve better performances for model-based controller in strength augmentation lower exoskeletons.

    [1]KAZEROONI H, CHU A, STEGER R. That which does not stabilize, will only make us stronger[J]. International Journal of Robotics Research, 2007, 26(1): 5-89.

    [2]SANKAI Y. HAL: Hybrid assistive limb based on cybernics[J]. Robotics Research, 2010: 25-34.

    [3]WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, under-actuated exoskeleton for loadcarrying augmentation[C]//IEEE International Conference on Robotics and Automation (ICRA). Florida, USA: IEEE,2006: 3485-3491.

    [4]STAUSSE K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). California, USA:IEEE, 2011: 4911-4916.

    [5]ESQUENAZI A, TALATY M, PACKEL A, et al. The rewalk powered exoskeleton to restore ambulatory function to individuals with theracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11): 911-921.

    [6]HUANG R, CHENG H, CHEN Q, et al. Interative learningfor sensitivity factors of a human-powered augmentation lower exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015: 6409-6415.

    [7]WALSH C J, PASCH K, HERR H. An autonomous,under-actuated exoskeleton for load-carrying augmentation[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE,2006: 1410-1415.

    [8]ZOSS A, KAZEROONI H, CHU A. On the mechanical design of the berkeley lower extremity exoskeleton (BLEEX)[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada: IEEE, 2005:3132-3139.

    [9]TRAN H T, CHENG H, LIN X, et al. The relationship between physical human-exoskeleton interaction and dynamic factors: using a learning approach for control applications[J]. Science China Information Science, 2014,57(12): 1-13.

    [10]KAZEROONI H, STEGER R, HUANG L, et al. Hybrid control of the berkeley lower extremity exoskeleton(BLEEX)[J]. International Journal of Robotics Research,2006, 25(6): 561-573.

    [11]KAWAMOTO H, SANKAI Y. Power assist method based on phase sequence and muscle force condition for HAL[J].Advance Robotics, 2005, 19(7): 717-734.

    [12]LEE S, SANKAI Y. Power Assist control for walking aid with hal-3 based on EMG and impedance adjustment around knee joint[C]//International Conference on Intelligent Robots and Systems (IROS). Lausanne,Switzerland: [s.n.], 2002: 1499-1504.

    [13]HAYASHI T, KAWAMOTO H, SANKAI Y. Control method of robot suit HAL working as operator's muscle using biologic and dynamical information[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada: IEEE, 2005: 3063-3068.

    [14]GABRIEL A O, COLGATE J E, PESHKIN M A, et al.Active-impedance control of a lower-limb assistive exoskeleton[C]//IEEE International Conference on Rehabilitation Robotics. Noordwijk, Netherlands: IEEE,2007: 188-195.

    [15]TRAN H T, CHENG H, DUONG M K, et al. Fuuzy-based impedance regulation for control of the coupled human-exoskeleton system[C]//IEEE International Conference on Robotics and Biomimetics. Bali, Indonesia:IEEE, 2014: 986-992.

    [16]KAZEROONI H, RACINE J L, HUANG L, et al. On the control of the berkeley lower extremity exoskeleton(BLEEX)[C]//International Conference of Robotics and Automation (ICRA). Barcelona, Spain: [s.n.], 2005:4353-4360.

    [17]GHAN J, STEGER R, KAZEROONI H. Control and system identification for the berkeley lower extremity exoskeleton[J]. Advanced Robotics, 2006, 20(9): 989-1014.

    [18]RACINE J L. Control of a lower extremity exoskeleton for human performance amplification[D]. California, USA:University of California, Berkeley, 2003.

    [19]GHAN J, KAZEROONI H. System identification for the berkeley lower extremity exoskeleton (BLEEX) [C]//International Conference of Robotics and Automation(ICRA). Florida, USA: [s.n.], 2006: 3477-3484.

    [20]THEODOROU E A, BUCHILI J, SCHAAL S. A generalized path integral control aproach to reinforcement learning[J]. Journal of Machine Learning Research,2010,11: 3137-3181.

    [21]BUCHLI J, STULP F, THEODOROU E A, et al. Learning variable impedance control[J]. International Journal of Robotics Research, 2011, 30(7): 820-833.

    一边亲一边摸免费视频| 日韩一卡2卡3卡4卡2021年| 一区福利在线观看| 国产精品久久久久成人av| 国产精品女同一区二区软件| 伦理电影免费视频| 日韩精品有码人妻一区| 国产精品免费视频内射| 国产老妇伦熟女老妇高清| 91老司机精品| 国产成人av激情在线播放| 国产日韩一区二区三区精品不卡| 久久热在线av| 国产99久久九九免费精品| 午夜免费鲁丝| 亚洲av电影在线观看一区二区三区| 多毛熟女@视频| 男女边吃奶边做爰视频| 国产亚洲午夜精品一区二区久久| 亚洲欧洲精品一区二区精品久久久 | 欧美激情 高清一区二区三区| 久久久精品免费免费高清| 精品一品国产午夜福利视频| 赤兔流量卡办理| 久久av网站| 亚洲精品美女久久久久99蜜臀 | 免费观看av网站的网址| 精品一区二区三区四区五区乱码 | 中文字幕高清在线视频| 亚洲国产成人一精品久久久| 欧美黑人精品巨大| 亚洲av日韩在线播放| 国产精品秋霞免费鲁丝片| 亚洲情色 制服丝袜| 久久精品亚洲熟妇少妇任你| 在线观看一区二区三区激情| 欧美日韩一区二区视频在线观看视频在线| 成人国语在线视频| 又黄又粗又硬又大视频| 一级毛片 在线播放| 人人澡人人妻人| 黄色视频在线播放观看不卡| 精品国产一区二区三区四区第35| 叶爱在线成人免费视频播放| 国产精品无大码| 亚洲综合色网址| 男男h啪啪无遮挡| 黑人欧美特级aaaaaa片| 国产老妇伦熟女老妇高清| 极品少妇高潮喷水抽搐| 国产精品.久久久| 黄片无遮挡物在线观看| 亚洲国产中文字幕在线视频| 咕卡用的链子| 在线观看人妻少妇| 国产免费福利视频在线观看| 亚洲成国产人片在线观看| 国产av国产精品国产| 99热全是精品| 欧美人与善性xxx| 最新的欧美精品一区二区| 最近最新中文字幕免费大全7| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 人妻一区二区av| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 蜜桃国产av成人99| 精品人妻熟女毛片av久久网站| 天天躁夜夜躁狠狠久久av| 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 超碰97精品在线观看| 青春草视频在线免费观看| 色网站视频免费| 日本一区二区免费在线视频| 少妇猛男粗大的猛烈进出视频| 日韩一区二区三区影片| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产在线视频一区二区| 美女高潮到喷水免费观看| 亚洲av日韩精品久久久久久密 | 国产1区2区3区精品| 在线观看国产h片| 亚洲av福利一区| 欧美日韩一级在线毛片| 成人国产av品久久久| 王馨瑶露胸无遮挡在线观看| 老司机深夜福利视频在线观看 | 精品国产乱码久久久久久男人| 天堂中文最新版在线下载| 日韩熟女老妇一区二区性免费视频| 搡老岳熟女国产| 日本欧美视频一区| 国产亚洲精品第一综合不卡| 水蜜桃什么品种好| 亚洲四区av| 婷婷色综合www| 又黄又粗又硬又大视频| 最近2019中文字幕mv第一页| 蜜桃国产av成人99| 精品亚洲成国产av| 久久久精品免费免费高清| 久久精品国产亚洲av涩爱| 人体艺术视频欧美日本| 1024视频免费在线观看| 欧美人与性动交α欧美精品济南到| 国产成人91sexporn| 一级毛片电影观看| 久久青草综合色| 日本欧美国产在线视频| 一个人免费看片子| 亚洲精品aⅴ在线观看| 中文精品一卡2卡3卡4更新| 精品久久久精品久久久| 久久精品熟女亚洲av麻豆精品| 国产福利在线免费观看视频| 夫妻午夜视频| 秋霞在线观看毛片| 看免费成人av毛片| e午夜精品久久久久久久| av国产久精品久网站免费入址| 亚洲av在线观看美女高潮| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 日韩免费高清中文字幕av| 亚洲成人免费av在线播放| 99国产综合亚洲精品| 亚洲av成人精品一二三区| av卡一久久| 黑人巨大精品欧美一区二区蜜桃| 男女之事视频高清在线观看 | 成人三级做爰电影| 一区二区三区激情视频| 女性生殖器流出的白浆| 在线观看三级黄色| 亚洲欧美激情在线| 成年人免费黄色播放视频| 91aial.com中文字幕在线观看| 天堂8中文在线网| 黄色 视频免费看| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 女人爽到高潮嗷嗷叫在线视频| 一个人免费看片子| 18在线观看网站| 成人18禁高潮啪啪吃奶动态图| 国产乱来视频区| 久久亚洲国产成人精品v| 王馨瑶露胸无遮挡在线观看| 国产乱人偷精品视频| 欧美日韩亚洲综合一区二区三区_| 桃花免费在线播放| 亚洲国产精品成人久久小说| 亚洲成av片中文字幕在线观看| 日本av免费视频播放| 久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 亚洲欧美精品自产自拍| 成人18禁高潮啪啪吃奶动态图| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 在线观看三级黄色| 亚洲av综合色区一区| 岛国毛片在线播放| 国产成人欧美在线观看 | 国产精品麻豆人妻色哟哟久久| 制服丝袜香蕉在线| 精品一区二区免费观看| 欧美日韩精品网址| 高清视频免费观看一区二区| 国产精品亚洲av一区麻豆 | 成人毛片60女人毛片免费| 免费久久久久久久精品成人欧美视频| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 人人妻人人澡人人看| 一区二区三区乱码不卡18| 97在线人人人人妻| 1024视频免费在线观看| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 精品国产一区二区三区久久久樱花| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 成人免费观看视频高清| 国产精品人妻久久久影院| 777久久人妻少妇嫩草av网站| 午夜免费男女啪啪视频观看| 精品国产乱码久久久久久小说| av国产久精品久网站免费入址| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 久久久久久久久免费视频了| 国产亚洲av片在线观看秒播厂| 国产成人精品久久久久久| 欧美少妇被猛烈插入视频| 性色av一级| 国产精品.久久久| 可以免费在线观看a视频的电影网站 | 伦理电影大哥的女人| 日本vs欧美在线观看视频| 亚洲精品日本国产第一区| 国产精品国产av在线观看| 91aial.com中文字幕在线观看| 男男h啪啪无遮挡| 免费少妇av软件| 日韩av在线免费看完整版不卡| 9色porny在线观看| 99久久人妻综合| 国产女主播在线喷水免费视频网站| 在线观看国产h片| 天天躁夜夜躁狠狠躁躁| 美女大奶头黄色视频| 中国国产av一级| 黄色 视频免费看| 美女脱内裤让男人舔精品视频| 国产激情久久老熟女| 国产精品一二三区在线看| 国产在线免费精品| 大片电影免费在线观看免费| 国产乱来视频区| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| av线在线观看网站| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 丝袜喷水一区| 国产一区二区三区av在线| 久久精品国产综合久久久| 国产精品久久久av美女十八| 成人手机av| 毛片一级片免费看久久久久| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 午夜av观看不卡| 欧美中文综合在线视频| 婷婷色av中文字幕| 久久亚洲国产成人精品v| 汤姆久久久久久久影院中文字幕| 午夜老司机福利片| 国产高清国产精品国产三级| 久久97久久精品| 2021少妇久久久久久久久久久| 国产亚洲av片在线观看秒播厂| 大香蕉久久网| 视频区图区小说| 99久久99久久久精品蜜桃| 国产深夜福利视频在线观看| 91精品三级在线观看| 国产黄色免费在线视频| 精品一区在线观看国产| 妹子高潮喷水视频| 啦啦啦 在线观看视频| 别揉我奶头~嗯~啊~动态视频 | 人人妻人人澡人人爽人人夜夜| 少妇人妻久久综合中文| 91精品伊人久久大香线蕉| 九九爱精品视频在线观看| 日本黄色日本黄色录像| 亚洲精品aⅴ在线观看| 色综合欧美亚洲国产小说| 99久国产av精品国产电影| videos熟女内射| 一级黄片播放器| 国产成人欧美| 巨乳人妻的诱惑在线观看| 波野结衣二区三区在线| 亚洲熟女精品中文字幕| 久久综合国产亚洲精品| svipshipincom国产片| 99精品久久久久人妻精品| 久久午夜综合久久蜜桃| 欧美人与性动交α欧美软件| 九九爱精品视频在线观看| 午夜福利,免费看| 男女免费视频国产| 久久久久国产一级毛片高清牌| 国产av国产精品国产| 综合色丁香网| av女优亚洲男人天堂| 看免费av毛片| 日本欧美国产在线视频| 一个人免费看片子| 国产av精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品久久精品一区二区三区| 老司机靠b影院| 欧美日本中文国产一区发布| 亚洲激情五月婷婷啪啪| e午夜精品久久久久久久| netflix在线观看网站| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 亚洲成人av在线免费| 午夜老司机福利片| 啦啦啦在线免费观看视频4| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品 | 99国产综合亚洲精品| 免费在线观看黄色视频的| 观看美女的网站| 少妇人妻精品综合一区二区| 成年动漫av网址| 亚洲欧美一区二区三区黑人| 午夜激情久久久久久久| 99久久综合免费| 如何舔出高潮| 人妻一区二区av| 亚洲人成电影观看| 国产成人欧美在线观看 | 免费高清在线观看视频在线观看| 国产成人啪精品午夜网站| 国产精品久久久久成人av| 嫩草影视91久久| 人体艺术视频欧美日本| 国产成人91sexporn| 9191精品国产免费久久| 熟妇人妻不卡中文字幕| 国产精品一区二区在线观看99| 少妇人妻久久综合中文| 女人爽到高潮嗷嗷叫在线视频| 嫩草影视91久久| 国产精品av久久久久免费| 欧美人与性动交α欧美精品济南到| 亚洲成人手机| 涩涩av久久男人的天堂| 男女免费视频国产| 制服人妻中文乱码| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 久久久国产一区二区| 国产精品久久久久久精品古装| 色94色欧美一区二区| 国产精品人妻久久久影院| 国产精品一区二区精品视频观看| 免费黄频网站在线观看国产| 天天操日日干夜夜撸| av又黄又爽大尺度在线免费看| 最近2019中文字幕mv第一页| 国产精品国产av在线观看| 大香蕉久久成人网| 校园人妻丝袜中文字幕| 亚洲国产欧美日韩在线播放| av有码第一页| 少妇人妻久久综合中文| a 毛片基地| 亚洲精品一二三| 国产 一区精品| 最近中文字幕高清免费大全6| 天堂俺去俺来也www色官网| 欧美人与善性xxx| 国产极品粉嫩免费观看在线| 午夜91福利影院| 一个人免费看片子| 成年动漫av网址| 这个男人来自地球电影免费观看 | 最近的中文字幕免费完整| 18禁国产床啪视频网站| 日本一区二区免费在线视频| 欧美日韩视频高清一区二区三区二| 国产亚洲一区二区精品| 不卡视频在线观看欧美| 欧美人与性动交α欧美精品济南到| 久久久久久久久免费视频了| 国产爽快片一区二区三区| 90打野战视频偷拍视频| 一级毛片 在线播放| www日本在线高清视频| 国产淫语在线视频| 亚洲精品,欧美精品| 精品第一国产精品| 国产精品久久久久久久久免| 伦理电影大哥的女人| 一级毛片 在线播放| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| 欧美国产精品一级二级三级| 亚洲精品国产区一区二| 人人妻人人爽人人添夜夜欢视频| 日韩伦理黄色片| 嫩草影院入口| 亚洲精品久久成人aⅴ小说| 亚洲精品日韩在线中文字幕| 91老司机精品| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区大全| 丰满迷人的少妇在线观看| 飞空精品影院首页| 五月开心婷婷网| 精品国产一区二区久久| 精品久久久精品久久久| 精品视频人人做人人爽| 久久免费观看电影| 99久久综合免费| 日韩欧美一区视频在线观看| 又大又爽又粗| av国产精品久久久久影院| 丁香六月天网| 日韩大码丰满熟妇| xxxhd国产人妻xxx| 亚洲图色成人| 免费观看人在逋| 一边亲一边摸免费视频| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 五月天丁香电影| videos熟女内射| 亚洲国产精品一区二区三区在线| 亚洲综合色网址| 97精品久久久久久久久久精品| 亚洲,欧美精品.| 久久精品久久久久久噜噜老黄| 女人爽到高潮嗷嗷叫在线视频| 久久久精品免费免费高清| 丝袜人妻中文字幕| 色视频在线一区二区三区| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| 综合色丁香网| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 国产免费视频播放在线视频| 欧美97在线视频| 只有这里有精品99| 亚洲综合精品二区| 高清视频免费观看一区二区| 国产成人91sexporn| 最近2019中文字幕mv第一页| 国产精品.久久久| 自拍欧美九色日韩亚洲蝌蚪91| 五月天丁香电影| 尾随美女入室| 久久久久精品久久久久真实原创| 午夜91福利影院| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费看片子| 无限看片的www在线观看| 国产精品久久久人人做人人爽| 日韩伦理黄色片| 夜夜骑夜夜射夜夜干| 亚洲视频免费观看视频| 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一二三| 人人妻人人澡人人看| 美国免费a级毛片| 亚洲,欧美精品.| 日韩精品有码人妻一区| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 亚洲熟女精品中文字幕| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 国产乱人偷精品视频| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 美女高潮到喷水免费观看| 国产人伦9x9x在线观看| 丝袜喷水一区| 成人国产麻豆网| 亚洲精品在线美女| 国产成人精品无人区| 国产免费一区二区三区四区乱码| 国产精品二区激情视频| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产av蜜桃| 满18在线观看网站| 我的亚洲天堂| 亚洲成人免费av在线播放| av免费观看日本| 九色亚洲精品在线播放| 九草在线视频观看| 超色免费av| 一本大道久久a久久精品| 热99久久久久精品小说推荐| av片东京热男人的天堂| 国产成人欧美| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 久久av网站| 久久久久精品国产欧美久久久 | 亚洲欧美成人精品一区二区| 桃花免费在线播放| 婷婷成人精品国产| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 久久久久精品人妻al黑| 多毛熟女@视频| 亚洲第一av免费看| 久久精品久久久久久噜噜老黄| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久男人| 国产一区二区 视频在线| 国产av一区二区精品久久| 午夜老司机福利片| 在线免费观看不下载黄p国产| 中文字幕人妻丝袜制服| 国产成人91sexporn| 一边摸一边做爽爽视频免费| 国产av码专区亚洲av| 天美传媒精品一区二区| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| 99久国产av精品国产电影| 国产在线免费精品| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| 日本色播在线视频| 少妇 在线观看| 免费观看av网站的网址| 日日摸夜夜添夜夜爱| 午夜福利一区二区在线看| 女人精品久久久久毛片| 亚洲三区欧美一区| 黄色一级大片看看| 亚洲国产精品一区三区| 一区福利在线观看| 国产成人91sexporn| 熟妇人妻不卡中文字幕| 免费人妻精品一区二区三区视频| 一级a爱视频在线免费观看| 成年美女黄网站色视频大全免费| 9色porny在线观看| 赤兔流量卡办理| 色综合欧美亚洲国产小说| 麻豆乱淫一区二区| 大陆偷拍与自拍| av在线播放精品| av视频免费观看在线观看| 精品午夜福利在线看| 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| 卡戴珊不雅视频在线播放| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 80岁老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 涩涩av久久男人的天堂| 日本色播在线视频| 日韩一区二区三区影片| 大话2 男鬼变身卡| 午夜日韩欧美国产| 在线天堂中文资源库| 欧美人与善性xxx| 中文字幕色久视频| 久久久久久久大尺度免费视频| 久久99一区二区三区| 咕卡用的链子| 成人亚洲精品一区在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲视频免费观看视频| 久久99一区二区三区| 悠悠久久av| 亚洲国产精品一区二区三区在线| 日韩成人av中文字幕在线观看| 18禁国产床啪视频网站| 国产片内射在线| 欧美变态另类bdsm刘玥| 欧美另类一区| 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 精品一区二区三区四区五区乱码 | 高清av免费在线| 一个人免费看片子| 成人国语在线视频| 亚洲少妇的诱惑av| 久久久久精品久久久久真实原创| 黄色 视频免费看| 街头女战士在线观看网站| 国产精品免费视频内射| 老鸭窝网址在线观看| av女优亚洲男人天堂| 美女大奶头黄色视频| 老司机亚洲免费影院| 免费高清在线观看日韩| 午夜福利视频精品| 不卡视频在线观看欧美| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 9色porny在线观看| 黄片小视频在线播放| 亚洲欧洲日产国产| 秋霞伦理黄片| 欧美中文综合在线视频| 青春草视频在线免费观看| 日韩av免费高清视频| 久久婷婷青草| 高清av免费在线| 国产色婷婷99| 成人国产av品久久久| 18禁观看日本| 别揉我奶头~嗯~啊~动态视频 | 免费不卡黄色视频| 高清在线视频一区二区三区| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 国产一区亚洲一区在线观看| 久久狼人影院| 国产片内射在线| 尾随美女入室| av国产精品久久久久影院| 大香蕉久久网| 99九九在线精品视频| av.在线天堂| 国产精品一区二区精品视频观看| 最新的欧美精品一区二区|