• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cooperative Spectrum Sensing over Generalized Fading Channels Based on Energy Detection

    2018-06-07 05:22:34HeHuangChaoweiYuan
    China Communications 2018年5期

    He Huang, Chaowei Yuan*

    School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

    I. INTRODUCTION

    Cognitive radios (CRs) have been proposed to make full use of limited spectrum bands as wireless services develop rapidly [1-3]. There are mainly three categories spectrum sensing techniques, which include matched filter detection, cyclostationary feature detection and energy detection (ED). ED is a non-coherent signal detection algorithm and it has the advantages in low complexity, implementation simplicity and detection without a priori knowledge [4, 5], it employs ED radiometer at the receiver to compare the received energy value with fixed threshold, then determine the state of PU is absent or present instantaneously.

    Urkowitz firstly adopted binary hypothesis testing signal detection over a flat band-limited Gaussian noise channel by deriving the probability of detection Pdand false alarm Pf[6].Next, Kostylev and Alouini et al. considered ED model over multipath fading conditions such as Rayleigh, Nakagami-q and Nakagami-m [7-9]. Since then, ED algorithm has been widely used in corresponding fading scenarios with diversity combining, such as maximal ratio combining (MRC), selection combining(SC) and equal gain combining (EGC) etc [9-11]. In Ref. [12] unified close-form expressions for average detection probability of ED with cooperative spectrum sensing (CSS) are derived over generalized multipath fading channels. In Ref. [13] novel expressions have been derived over extended generalized K composite fading channels to provide unified models for fading channel statistics. Likewise,exact closed-form expressions of detective pattern over N*Rayleigh channels are derived with Meijer G-function, then they are extended to the case of square-law selection (SLS) to obtain better detective performance.

    On the other hand, as wireless radio propagation is affected by multipath and shadowing simultaneously, the adequate fading expressions are needed to represent the fundamental characteristics for fading statistical patterns[14]. The generalized fading channels κ-μ and η-μ which describe the line-of-sight (LOS)and non-line-of-sight (NLOS) communication conditions are proposed to provide accurate representation for radio propagation [15, 16].Furthermore, the general complex fading model α-η-κ-μ has been put forward to account for short-term propagation phenomena by employing joint phase-envelope method, which has been represented in the device to device communications, vehicle to vehicle communications and indoor to outdoor propagation for 5G [17]. Moreover, severe fading channels and composite fading/shadowed models have been developed to measure the practical communication channels in the complex conditions [18-20].

    The α-κ-μ distribution is a general flexible fading model which contains more fading parameters to describe the nonlinear LOS small-scale transmission scenario. Specially,it contains α-μ when κ is approached to 0 and κ-μ distribution when α is 2. It obviously shows that the α-κ-μ fading model is more effective and practical than α-μ, κ-μ, Rayleigh,Rice and Nakagami-m distributions. However,although a large number of papers have been devoted to study the SS performance over different generalized fading channels, no studies are related to ED over generalized non-linear LOS fading channels α-κ-μ in the open technical literatures, in addition how to improve the performance evaluation of detection algorithm is a key problem to be solved.

    This paper investigates the SS based on ED that is implemented over α-κ-μ fading channels to reveal the relationship between the performance of ED and nonlinear LOS fading channels.

    Motivated by above, in this paper we consider ED algorithm over α-κ-μ generalized fading channels and improve detective performance. The contributions are summarized as follows:

    1) The α-κ-μ fading distributions have been derived under instantaneous SNR condition to represent the non-linear variation of fading signals, which could be used for investigating the real-time and short-range sensing features for SS in severe fading communication scenarios.

    2) The novel exact close-form detection models are derived over α-κ-μ generalized fading channels with moment generating function (MGF) method and probability density function-based (PDF-based) approach firstly for point-to-point communication.

    3) The novel close-form expressions for area under the receiver operating characteristics curve (AUC) and average AUC () are derived over α-κ-μ fading channels for revealing and quantifying the relationship between the behavior of ED with the variations of the involved fading parameters algebraically.

    4) CSS with diversity reception cases have been considered to mitigate the shadowed fading features and improve detection probability practically. The tight closed-form upper bound of detection probability with MRC is derived to evaluate the optimized detection performance theoretically.

    The rest of this paper is organized as follows. In section II the ED system models are presented. In section III the α-κ-μ fading models are derived under instantaneous SNR condition. In Section IV the close-form detection expressions have been derived over general-ized fading channels. In Section V theperformance of ED has been analyzed over α-κ-μ fading models. The derivations of CSS with diversity techniques are given in Section VI. Simulation results are presented in Section VII and conclusions are provided in Section VIII.

    II. SYSTEM MODEL

    The ED model is assumed to be the binary hypothesis-testing problem in Eq. (1) (H0: signal is absent; H1: signal is present) [5],

    where y(t) is the received signal, n(t) is additive white Gaussian noise (AWGN), h is the channel gain, s(t) is the transmitted primary signal. From figure 1 the ED model can be obtained as

    where m is the sampling number of received signal,is the AWGN for received signal yi(t). De fining the time bandwidth product as u=TW, T is the time interval and W is the single-sided signal bandwidth. The probability of detection Pdand the probability of false alarm Pfcan be expressed as [5]

    where Qu(a,b) is the u-th order generalized Marcum-Q function, Г(.) is the Gamma function and Г(.,.) is the incomplete Gamma function. γ is the instantaneous signal-to-ratio(SNR) and λ is the ED threshold. The cumulative density function (c.d.f.) are obtained as

    From Eq. (2) the probability density function (p.d.f.) of y(t) is given by

    Fig. 1. ED system model.

    where Iu-1(.) is the first kind modified Bessel function with the order u-1.

    III. THE α-κ-μ FADING MODELS

    The α-κ-μ fading distribution is a general fading distribution that represents the small-scale fading characteristics in the non-linear LOS condition. The envelope p.d.f. can be shown as[14]

    where α is the nonlinear characteristics of the propagation medium, κ is the ratio between the total power of the dominant components and the total power of the scattered waves, μ is related to the number of multipath waves. For the fading signal with normalized power is w/E(w), the power p.d.f. can be expressed as

    The SNR p.d.f. can be derived from [Eq.(2), Eq. (6), Eq. (7) and Eq. (8), 15],

    where

    IV. SPECTRUM SENSING OVER α-κ-μ FADING CHANNELS

    Evaluating detection probability Pdwith Eq.(3) and Marcum-Q function from Ref. [6] for single sensing node in CRs,

    The average probability of detection over α-κ-μ fading channels can be obtained as

    wheredenotes the probability of detection,is the p.d.f. of the α-κ-μ distribution under instantaneous SNR condition.Substituting Eq. (9) and Eq. (11) into Eq. (12),the average probability of detection can be expressed as

    The p.d.f. of the moment generating function (MGF) under the instantaneous SNR over α-κ-μ fading channels is shown as [21],

    where E(.) denotes the expectation. Deducing the n-th derivative of Eq. (14) as

    Likewise, the average probability of detection can be obtained in another way with Eq.(15),

    Moreover, the closed-form expression over α-κ-μ fading channels can be evaluated as

    The modified Bessel function of the first kind with the order v in Eq. (17) can be simplified with [Eq. (8.445), 22] as

    Then Eq. (17) can be derived by using infinite series representation

    Evaluating the integral in Eq. (19) with extended incomplete Gamma function,

    Eq. (19) can be simplified as

    Furthermore, the Eq. (21) can be evaluated with [Theorem 3.1, 23] as

    where

    The FOX-H function can be expressed as,

    V. AVERAGE AREA UNDER THE ROC CURVE (AUC) OVER α-κ-μ FADING CHANNELS

    5.1 AUC under instantaneous SNR condition

    The AUC measurement is usually used for characterizing the performance of ED [24],health care field tests [25] and machine learning algorithms [26] for plotting Pdversus Pf(ROC) or missed detection probability Pm(Pm=1-Pd) versus Pf(complementary ROC).Here we introduce the ED threshold λ varies from 0 to ∞ to analyze the capability of energy detector. When the instantaneous SNR value denotes γ, the AUC can be shown as [27, 28]

    Taking the derivative with Pf(u, λ), Eq. (25)can be written as

    With Eq. (3) and Eq. (4), Eq. (26) can be derived as

    5.2 over α-κ-μ fading channels

    The average AUC () can be investigated with the p.d.f. of generalized fading models to indicate the properties of the fading channels,therefore,can be shown as

    where

    Eq. (28) is derived as with Eq. (25)-Eq. (27)

    Depending on Eq. (9) and Eq. (30), Eq. (30)can be derived as

    By means of [Eq. (8.445), 22], eq. (31) can be derived as

    With Eq. (10), eq. (32) can be simplified as,

    Simplifying the integral B1in Eq. (33)based on Taylor series [22],

    Expanding Eq. (34) with Binomial theorem,

    The integral in Eq. (35) can be simplified as

    Lastly, the exact close-form expression can be obtained by substituting Eq. (36) into Eq.(33), Eq. (33) can be simplified as

    where

    VI. ED WITH RECEIVER DIVERSITY OVER α-κ-μ FADING CHANNELS

    6.1 Upper bound of detection performance with MRC

    It makes sense that implementing ED with diversity over fading channels at the receiver can improve detection probability in CRs. [12,21].

    Although MRC requires prior channel knowledge of the signal, it estimates the upper bound on the performance of ED in practice[4]. The total instantaneous SNR of MRC is given by

    where L is the number of antennas for each SU, the SNR of i-th receiver branch is defined as γi.

    When the number of diversity branches is L, the average detection probability with MRC can be computed by substituting Eq. (39) and Eq. (22) into Eq. (13),

    where the Φ(·) denotes the MGF with MRC.Using [Eq. (24), 10], the MGF is given by

    It is worth noting that when the number of product terms of functions is two the Leibniz`s rule can be obtained as [Eq. (0.42), 22],

    Deriving the n-order Leibniz`s rule with the aid of [Eq. (26), 10], the n-th derivative of (41) can be deduced with Eq. (14) and Eq.(15) as

    Furthermore, from Eq. (22), Eq. (24), Eq.(40) and Eq. (43), the close-form detective expression of ED over α-κ-μ fading channels is given by

    where

    6.2 Cooperative spectrum sensing with diversity reception SLC and SLS

    Square Law Combining (SLC): the SLC scheme requires the received signals are integrated and squared, then summed together[28]. The degrees of freedom is 2Lu and the total received SNR γSLCis equal to combined instantaneous SNR γMRC, besides the time bandwidth product u is replaced by Lu for Eq.(44) to represent the detection capacity over α-κ-μ fading channels. When the number of diversity branches is L, the detection probability can be shown as

    where

    Square Law selection (SLS) [29]: In SLS scheme the maximum decision statistics ySLSis selected to calculate the average detection probability as

    where

    Fig. 2. Simulation for average probability of detection versus average SNR (dB)with u=2 and Pf =0.01.

    Cooperative spectrum sensing (CSS): In CSS SUs send own decisions to fusion center(FC) respectively, then FC makes the global decision by combining the received information to determine the absence or presence of PU [24]. As N is the number of collaborative users, the detection probability Pd-CSSwith SLC and SLS for the OR-rule are given by

    VII. NUMERICAL SIMULATION AND ANALYSIS

    Numerical simulation and analysis for the behavior of ED have been provided to reveal the crucial impact over α-κ-μ fading channels with MATHEMATICA [30]. The corresponding performances of Section IV to Section VI are quantified in the following figures to show the various numerical features of severe shadowing conditions. Figure 2 illustrates the average detection probability versus average SNR with different parameters α, κ and μ, when u=2 and Pf=0.01. Although α is low, the raise of κ and μ can improve the detection probability because higher ratio between the total power of the dominant components and the total power of the scattered waves and higher related variable of multipath clusters will lead to more received power of dominant components.Besides, the average detection probability also improves substantially, and if κ and μ are constant, higher α will lead to better detection.

    Figure 3 and figure 4 showagainstto present performance characteristics for ED like Ref. [14, 19, 20]. Figure 3 depictsversusfor low non linearity parameter. It can be seen that under low values of α small variations of μ will evidently improve the sensing performance of ED, as κ changes,it has been demonstrated that μ is more important than κ when α is low.

    Figure 4 illustratesagainst average SNR for higher α to Figure 3. Although under high values of α, it can be seen that higher α will lead to better detection, the variations of κ and μ could not significantly alteras parameter α increases. Besides, from Figure 3 and Figure 4, it shows higher α corresponds to better simulation results when average SNR is greater than 3 dB.

    In Figure 5 the upper bound of detection probability with MRC have been analyzed if u=2 and Pf=0.01. It shows the performance of detection is proportional to average SNR and number of diversity branch. As the diversity branch increases, the average detection probability can be obviously raised. For example,despite of low Pf, Pd≈0.835 for L=3 and it far exceeds the detection probability (Pd≈0.617)for L=2 when average SNR is 4 dB.

    Figure 6 and figure 7 show CSS with diversity combining jointly improve sensing performance over α-κ-μ fading channels. The average probability of detection versus average SNR with different collaborative users numbers are analyzed respectively. It indicates under low fixed α, diversity techniques and CSS both im-prove detection performance, although the Pffor SLC can be expressed as Г(Lu, λ/2)/Г(Lu)and the Pffor SLS is 1-(1-Г(u, λ/2)/Г(u))^N.Moreover, it can be inferred SLC has better effects and diversity combining is almost similar to CSS for detection probability improvement.

    Fig. 3. Average AUC versus average SNR (dB) over α-κ-μ fading channels with u=2 for low values of α.

    Fig. 5. The average probability of detection versus average SNR(dB) for upper bound of detection probability with MRC when u=2,α=1.35, κ=1.0, μ=1.0 and Pf =0.01.

    Fig. 4. Average AUC versus average SNR (dB) over α-κ-μ fading channels with u=2 for high values of α.

    Fig. 6. The average probability of detection versus average SNR(dB) for CSS with SLC and SLS when u=2, N=1, 2, α=1.35, κ=1.0,μ=1.0 and Pf =0.01.

    Fig. 7. The average probability of detection versus average SNR (dB) for CSS with SLC and SLS when u=2, N=2, 3, α=1.35, κ=1.0, μ=1.0 and Pf =0.01.

    VIII. CONCLUSIONS

    This paper investigates the SS based on ED that is implemented over α-κ-μ fading channels to reveal the relationship between the performance of ED and nonlinear LOS fading channels. The novel unified close-form expressions of ED over α-κ-μ fading channels have been deduced to show essential sensing probability. In addition, exact close-form expressions of average AUC have been derived to quantify the behavior of ED with different values of nonlinear coefficient. Besides, it is demonstrated that diversity techniques and CSS can jointly improve the detection performance and the upper bound with MRC have been inferred to evaluate the sensing performance theoretically. Generally speaking, the sufficient results that are derived above can be completely used to quantify the performance of SS over α-κ-μ nonlinear LOS fading scenarios, and it can radically improve the energy efficiency for CR systems in wireless communications.

    ACKNOWLEDGEMENTS

    This work is supported by the science and technology project of state grid headquarters of China (SGLNDK00KJJS1700200).

    [1] T. Yucek, H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp. 116-130, First Quarter,2009.

    [2] P. C. Sofotasios, A. Bagheri, T. A. Tsiftsis, et al,“A Comprehensive Framework for Spectrum Sensing in No n-Linear and Generalized Fading Conditions,” IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 8615-8631, Oct,2017.

    [3] D. Bera, I. Chakrabarti, S. S. Pathak, et al, “Another Look in the Analysis of Cooperative Spectrum Sensing over Nakagami-m Fading Channels,” IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 856-871, Nov,2017.

    [4] S. K. Sharma, T. E. Bogale, S. Chatzinotas, et al.“Cognitive Radio Techniques Under Practical Imperfections: A Survey,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, pp. 1858-1884, Jul, 2015.

    [5] E. Chatziantoniou, B. Allen, V. Velisavljevic, et al, “Energy Detection Based Spectrum Sensing Over Two-Wave With Diffuse Power Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 868-874, Apr, 2017.

    [6] Urkowitz H., “Energy detection of unknown deterministic signals,” Proc. IEEE, vol. 55, no. 4, pp.523-531, 1967.

    [7] V. I. Kostylev., “Energy detection of a signal with random amplitude,” Proc. 2002 IEEE International Conference on Communications. Conference Proceedings (ICC), New York, USA, pp. 1606-1610.

    [8] Herath S. P., Rajatheva N., Tellambura C., “On the energy detection of unknown deterministic signal over Nakagami channels with selection combining,” Proc. 2009 Canadian Conference on Electrical and Computer Engineering (CCECE),2009, St. John’s, Canada, pp. 745-749.

    [9] F. F. Digham, M. S. Alouini, M. K. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Transactions on Communications, vol. 55, no. 1, pp. 21-24, Jan, 2007

    [10] A. Bagheri, P. C. Sofotasios, T. A. Tsiftsis, et al,“Spectrum sensing in generalized multipath fading conditions using square-law combining,”Proc. 2015 IEEE International Conference on Communications (ICC), London, England, pp.7528-7533.

    [11] P. C. Sofotasios, E. Rebeiz, L. Zhang, et al, “Energy Detection Based Spectrum Sensing Over κ-μ and extreme κ-μ fading channels,” IEEE Transactions on Vehicular Technology, vol. 62, no. 3, pp.1031-1040, Nov, 2013.

    [12] L. Mohjazi,D. Dawoud, P. Sofotasios, et al,“Unified analysis of cooperative spectrum sensing over generalized multipath fading channels,” Proc. 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong,CHINA, 2015, pp. 370-375.

    [13] H. R. Alhennawi, M. H. Ismail, H. A. M. Mourad,“Performance evaluation of energy detection over extended generalised-K composite fading channels,” Electronics Letters, vol. 50, no. 22, pp.1643-1645, Oct, 2014.

    [14] P. C. Sofotasios, S. Freear, “The α - κ - μ/gamma distribution: A generalized non-linear multipath/ shadowing fading model,” Proc. of 2011 Annual IEEE India Conference, Hyderabad, India,2011, pp. 1-6.

    [15] M. D. Yacoub, “The κ-μ distribution and the η-μ distribution,” IEEE Antennas and Propagation Magazine, vol. 49, no. 1, pp. 68-81, Jun, 2007.

    [16] O. S. Badarneh, M. S. Aloqlah, “Performance Analysis of Digital Communication Systems Over α?η?μ Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 65, no. 10,pp. 7972-7981, Nov, 2016.

    [17] M. D. Yacoub, “The α-η-κ-μ Fading Model,” IEEE Transactions on Antennas and Propagation, vol.64, no. 8, pp. 3597-3610, May, 2016.

    [18] P. C. Sofotasios, S. Freear, “The κ-μ Extreme/Gamma Distribution: A Physical Composite Fading Model,” Proc. 2011 IEEE Wireless Communications and Networking Conference, Cancun,Mexico, pp. 1398-1401.

    [19] A. Al Hammadi, O. Alhussein, P. C. Sofotasios, et al., “Unified Analysis of Cooperative Spectrum Sensing Over Composite and Generalized Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp. 6949-6961, Oct,2016,.

    [20] H. Al-Hmood, H. S. Al-Raweshidy, “Unified Modeling of Composite κ ? μ/Gamma, η ? μ/Gamma, and α ? μ/Gamma Fading Channels Using a Mixture Gamma Distribution With Applications to Energy Detection,? IEEE Antennas and Wireless Propagation Letters, vol. 16, pp.104-108, Apr, 2017.

    [21] A. Annamalai, O. Olabiyi, S. Alam, et al, “Unified analysis of energy detection of unknown signals over generalized fading channels,” Proc. of 2011 7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey,pp. 636-641.

    [22] I. S. Gradshteyn, I. M. Ryzhik, “Table of Integrals,Series, and Products,” 7th ed. New York: Academic, 2007.

    [23] Chaudhry M. A., Zubair S. M., “Extended incomplete gamma functions with applications,” Journal of mathematical analysis and applications,vol. 274, no. 2, pp. 725-745, 2002.

    [24] J. P. Egan, “Signal Detection Theory and ROC Analysis,” NewYork: Academic Press, 1975.

    [25] J. A. Swets, R. M. Dawes, J. Monahan, “Better decisions through science,” Scientific American,vol. 283, no. 4, pp. 82-87, 2000.

    [26] F. J. Provost, T. Fawcett, “Robust classification for imprecise environments,” Machine Learning, vol.42, no. 3, pp. 203-231, 2001.

    [27] S. Atapattu, C. Tellambura, H. Jiang, “Analysis of area under the ROC curve of energy detection,”IEEE Transactions on Wireless Communications,vol. 9, no. 3, pp. 1216-1225, May, 2010.

    [28] A. Bagheri, P. C. Sofotasios, T. A. Tsiftsis, et al,“Area under ROC curve of energy detection over generalized fading channels,” Proc.2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, pp. 656-661.

    [29] P. C. Sofotasios, L. Mohjazi, S. Muhaidat, et al,“Energy Detection of Unknown Signals Over Cascaded Fading Channels,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 135-138, May, 2016.

    [30] Wolfram, The wolfram functions site. [Online].Available: http://functions.wolfram.com.

    a级毛片在线看网站| 欧美日韩亚洲高清精品| 黄片小视频在线播放| 久久精品国产亚洲av高清一级| av福利片在线| 美女福利国产在线| av线在线观看网站| 美女脱内裤让男人舔精品视频| 亚洲色图 男人天堂 中文字幕| 777米奇影视久久| 久久韩国三级中文字幕| 乱人伦中国视频| 国产在线视频一区二区| 日韩伦理黄色片| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| 亚洲欧美成人精品一区二区| 汤姆久久久久久久影院中文字幕| 黄片播放在线免费| 如何舔出高潮| 色94色欧美一区二区| 一级,二级,三级黄色视频| 最黄视频免费看| 在线亚洲精品国产二区图片欧美| 国产在视频线精品| 亚洲精品第二区| 老司机靠b影院| 另类精品久久| 亚洲伊人色综图| 亚洲国产精品999| 波野结衣二区三区在线| 午夜日本视频在线| 免费不卡黄色视频| svipshipincom国产片| 天堂8中文在线网| 91精品国产国语对白视频| 啦啦啦在线免费观看视频4| 好男人视频免费观看在线| 亚洲自偷自拍图片 自拍| 777久久人妻少妇嫩草av网站| 国产乱来视频区| 纯流量卡能插随身wifi吗| 女人高潮潮喷娇喘18禁视频| 青春草视频在线免费观看| 久久亚洲国产成人精品v| 女性生殖器流出的白浆| 国产有黄有色有爽视频| 人成视频在线观看免费观看| 久久精品亚洲av国产电影网| 成人国语在线视频| 不卡av一区二区三区| 欧美av亚洲av综合av国产av | 在线观看三级黄色| 久热爱精品视频在线9| avwww免费| 久久久久久久久久久久大奶| 青春草亚洲视频在线观看| 秋霞在线观看毛片| 十八禁网站网址无遮挡| 亚洲一卡2卡3卡4卡5卡精品中文| 日本av手机在线免费观看| 老汉色∧v一级毛片| 一本一本久久a久久精品综合妖精| 18在线观看网站| 久久久久精品国产欧美久久久 | 日韩av不卡免费在线播放| av网站在线播放免费| 国产高清国产精品国产三级| 国产日韩欧美视频二区| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| 美女福利国产在线| av在线老鸭窝| 色精品久久人妻99蜜桃| 国产人伦9x9x在线观看| 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频| 久久久精品国产亚洲av高清涩受| 日本欧美国产在线视频| 亚洲精品一二三| 日韩av不卡免费在线播放| 欧美精品av麻豆av| 999精品在线视频| 另类亚洲欧美激情| 亚洲成色77777| 成人亚洲欧美一区二区av| 成人毛片60女人毛片免费| 国产精品秋霞免费鲁丝片| 晚上一个人看的免费电影| 免费黄网站久久成人精品| 日韩欧美一区视频在线观看| 亚洲人成77777在线视频| av.在线天堂| 最近最新中文字幕大全免费视频 | 国产黄频视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品免费大片| 黄色怎么调成土黄色| 99久久综合免费| 黄色视频在线播放观看不卡| 欧美日韩亚洲高清精品| 久久婷婷青草| 国产一区二区激情短视频 | 天天影视国产精品| 国产精品久久久久久人妻精品电影 | 亚洲熟女毛片儿| 宅男免费午夜| 99精品久久久久人妻精品| 国产成人a∨麻豆精品| 人人妻,人人澡人人爽秒播 | 一区在线观看完整版| 丁香六月欧美| 青春草视频在线免费观看| 亚洲精品视频女| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品大桥未久av| 久久免费观看电影| 午夜免费鲁丝| 国产无遮挡羞羞视频在线观看| 国产日韩欧美在线精品| 国产精品无大码| 久久国产亚洲av麻豆专区| 国产亚洲精品第一综合不卡| 久久99精品国语久久久| √禁漫天堂资源中文www| 亚洲国产欧美网| 九色亚洲精品在线播放| 亚洲三区欧美一区| tube8黄色片| 五月开心婷婷网| 永久免费av网站大全| 国产一区二区三区av在线| 十分钟在线观看高清视频www| 欧美日韩视频高清一区二区三区二| 夜夜骑夜夜射夜夜干| 成年人午夜在线观看视频| 三上悠亚av全集在线观看| 人妻 亚洲 视频| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久久久久婷婷小说| 女人精品久久久久毛片| 日本av手机在线免费观看| 日韩 亚洲 欧美在线| 久久精品国产a三级三级三级| 熟女av电影| 伊人亚洲综合成人网| 两个人看的免费小视频| 欧美精品高潮呻吟av久久| 日韩人妻精品一区2区三区| 人人澡人人妻人| 自线自在国产av| 国产伦人伦偷精品视频| 制服人妻中文乱码| 久久久久久久国产电影| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久 | 午夜免费鲁丝| 亚洲国产看品久久| bbb黄色大片| av不卡在线播放| 久久毛片免费看一区二区三区| 欧美日韩福利视频一区二区| 国产精品熟女久久久久浪| 宅男免费午夜| 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 欧美精品av麻豆av| 日本91视频免费播放| 久久久国产精品麻豆| 在线观看三级黄色| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 91成人精品电影| 视频在线观看一区二区三区| 一本久久精品| 亚洲久久久国产精品| 国产精品亚洲av一区麻豆 | 日韩精品有码人妻一区| 日韩 亚洲 欧美在线| 成年人免费黄色播放视频| 一级毛片 在线播放| 国产精品免费视频内射| 精品国产一区二区三区久久久樱花| 国产精品三级大全| 国产深夜福利视频在线观看| 亚洲美女黄色视频免费看| 一区二区三区乱码不卡18| 国产成人午夜福利电影在线观看| 成人国产av品久久久| av网站免费在线观看视频| 我的亚洲天堂| 午夜福利乱码中文字幕| 亚洲欧洲国产日韩| 精品国产超薄肉色丝袜足j| 国产高清不卡午夜福利| 久久久久久久精品精品| 久久国产精品男人的天堂亚洲| 如日韩欧美国产精品一区二区三区| 亚洲欧美一区二区三区久久| 在线精品无人区一区二区三| 国产亚洲午夜精品一区二区久久| 男人舔女人的私密视频| 国产精品偷伦视频观看了| 国语对白做爰xxxⅹ性视频网站| 另类亚洲欧美激情| 大码成人一级视频| 黑人巨大精品欧美一区二区蜜桃| 中文欧美无线码| 人妻人人澡人人爽人人| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 男男h啪啪无遮挡| 国产精品香港三级国产av潘金莲 | 久久久久久久精品精品| 赤兔流量卡办理| 少妇人妻久久综合中文| 国产亚洲av高清不卡| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 国产色婷婷99| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 尾随美女入室| √禁漫天堂资源中文www| 亚洲图色成人| 日韩大码丰满熟妇| 欧美国产精品va在线观看不卡| 99国产精品免费福利视频| 亚洲av福利一区| 久久久久久久大尺度免费视频| 在线天堂最新版资源| 搡老乐熟女国产| videos熟女内射| 色网站视频免费| 可以免费在线观看a视频的电影网站 | 国产一区二区三区综合在线观看| 狂野欧美激情性xxxx| 欧美成人精品欧美一级黄| 亚洲精品aⅴ在线观看| 中文字幕av电影在线播放| 亚洲精品久久成人aⅴ小说| 日韩不卡一区二区三区视频在线| 精品国产超薄肉色丝袜足j| 男女免费视频国产| netflix在线观看网站| 国产成人一区二区在线| 国产精品欧美亚洲77777| 女人高潮潮喷娇喘18禁视频| 日本一区二区免费在线视频| 美女视频免费永久观看网站| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 久久av网站| 一级片'在线观看视频| 久久久久久人人人人人| 国产精品一国产av| 久久人人爽人人片av| 精品免费久久久久久久清纯 | 欧美日韩亚洲高清精品| 街头女战士在线观看网站| 夜夜骑夜夜射夜夜干| 九草在线视频观看| 天美传媒精品一区二区| 赤兔流量卡办理| 最近最新中文字幕免费大全7| 婷婷成人精品国产| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| www.av在线官网国产| 亚洲精品国产色婷婷电影| 少妇精品久久久久久久| 亚洲欧洲国产日韩| 999久久久国产精品视频| 国产精品国产三级专区第一集| 高清欧美精品videossex| 国产精品.久久久| 国产高清国产精品国产三级| 欧美变态另类bdsm刘玥| 午夜久久久在线观看| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 免费看av在线观看网站| 麻豆av在线久日| 高清欧美精品videossex| 性高湖久久久久久久久免费观看| xxxhd国产人妻xxx| 久久av网站| 男女边吃奶边做爰视频| 午夜福利乱码中文字幕| 免费久久久久久久精品成人欧美视频| 欧美97在线视频| 性少妇av在线| av线在线观看网站| 丝袜人妻中文字幕| 少妇 在线观看| 国产成人精品久久久久久| 热re99久久国产66热| 日本黄色日本黄色录像| 色视频在线一区二区三区| 国产av一区二区精品久久| 久久久久视频综合| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线 | av在线app专区| 中文字幕人妻熟女乱码| 精品国产超薄肉色丝袜足j| 麻豆av在线久日| 成年人午夜在线观看视频| 国产有黄有色有爽视频| 亚洲精品国产av成人精品| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 亚洲,欧美精品.| 一级片'在线观看视频| 日本91视频免费播放| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 婷婷成人精品国产| 观看av在线不卡| 亚洲精品第二区| av网站免费在线观看视频| 亚洲四区av| 美女脱内裤让男人舔精品视频| 毛片一级片免费看久久久久| 女人久久www免费人成看片| 日本av手机在线免费观看| 欧美激情 高清一区二区三区| 欧美另类一区| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 尾随美女入室| 黄色怎么调成土黄色| 午夜福利,免费看| 国产精品一区二区在线不卡| 国产伦理片在线播放av一区| 黑人欧美特级aaaaaa片| 国产探花极品一区二区| 久久99热这里只频精品6学生| 亚洲,欧美精品.| 久久久久人妻精品一区果冻| 国产成人一区二区在线| 日本av手机在线免费观看| 国产精品二区激情视频| 日韩成人av中文字幕在线观看| 国产毛片在线视频| 看免费av毛片| 久久久久久久久久久免费av| 午夜日韩欧美国产| 香蕉丝袜av| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 无限看片的www在线观看| 99精国产麻豆久久婷婷| av不卡在线播放| 国产成人精品久久久久久| 欧美人与性动交α欧美软件| 国产成人精品久久二区二区91 | 免费高清在线观看日韩| 最近手机中文字幕大全| 国产成人精品久久久久久| 欧美 亚洲 国产 日韩一| 精品国产露脸久久av麻豆| 天天躁日日躁夜夜躁夜夜| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 国产成人精品无人区| www日本在线高清视频| 久久人妻熟女aⅴ| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 国产在视频线精品| 午夜福利网站1000一区二区三区| 最近的中文字幕免费完整| 这个男人来自地球电影免费观看 | 国产一区二区在线观看av| 国产乱人偷精品视频| 七月丁香在线播放| 国产免费又黄又爽又色| 国产精品免费大片| 国产一卡二卡三卡精品 | 亚洲国产av新网站| 无遮挡黄片免费观看| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 男女国产视频网站| 人人妻人人爽人人添夜夜欢视频| 日日摸夜夜添夜夜爱| 美女高潮到喷水免费观看| 午夜福利视频精品| 一级毛片黄色毛片免费观看视频| 一边摸一边抽搐一进一出视频| 国产精品 国内视频| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 亚洲成人一二三区av| 99精品久久久久人妻精品| 久久人人97超碰香蕉20202| 极品人妻少妇av视频| 高清在线视频一区二区三区| 中国三级夫妇交换| 日韩 欧美 亚洲 中文字幕| √禁漫天堂资源中文www| 国产不卡av网站在线观看| 精品第一国产精品| 国产精品.久久久| 99九九在线精品视频| 肉色欧美久久久久久久蜜桃| 国产精品99久久99久久久不卡 | 成年av动漫网址| 99久久精品国产亚洲精品| 国产亚洲av片在线观看秒播厂| 国产精品人妻久久久影院| 男人添女人高潮全过程视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品古装| 哪个播放器可以免费观看大片| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| 久久久欧美国产精品| 欧美日韩视频高清一区二区三区二| 欧美激情极品国产一区二区三区| 咕卡用的链子| 欧美精品一区二区大全| 欧美成人午夜精品| 日韩精品有码人妻一区| 国产日韩欧美在线精品| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 天天躁日日躁夜夜躁夜夜| 最近最新中文字幕大全免费视频 | 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 国产熟女欧美一区二区| 国产精品久久久久久精品电影小说| 婷婷色麻豆天堂久久| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| 精品人妻一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| 国产精品熟女久久久久浪| 日韩一本色道免费dvd| 热re99久久精品国产66热6| 99热国产这里只有精品6| 波多野结衣av一区二区av| 国产成人啪精品午夜网站| 人人妻人人爽人人添夜夜欢视频| 9191精品国产免费久久| 母亲3免费完整高清在线观看| 性色av一级| 国产麻豆69| 一级爰片在线观看| 国产精品一区二区在线不卡| 看十八女毛片水多多多| www日本在线高清视频| 欧美日韩成人在线一区二区| 狠狠精品人妻久久久久久综合| 国产成人欧美在线观看 | 只有这里有精品99| 黑人巨大精品欧美一区二区蜜桃| 久久久国产一区二区| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 日韩制服骚丝袜av| 考比视频在线观看| 在线观看免费高清a一片| 天堂中文最新版在线下载| 韩国av在线不卡| 视频区图区小说| 天天影视国产精品| 国产成人av激情在线播放| 免费高清在线观看日韩| 一二三四在线观看免费中文在| av免费观看日本| tube8黄色片| av天堂久久9| 亚洲成色77777| 丝袜脚勾引网站| 国产熟女午夜一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品av麻豆av| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 看非洲黑人一级黄片| 久久国产精品男人的天堂亚洲| 两个人看的免费小视频| 美女脱内裤让男人舔精品视频| 国产黄色视频一区二区在线观看| 99热国产这里只有精品6| 欧美在线黄色| 人人妻人人添人人爽欧美一区卜| 在线天堂最新版资源| 在线免费观看不下载黄p国产| 国产国语露脸激情在线看| 日韩电影二区| av在线播放精品| 天堂中文最新版在线下载| 性色av一级| 成人国产av品久久久| 亚洲情色 制服丝袜| 亚洲人成77777在线视频| 午夜激情av网站| 日本一区二区免费在线视频| h视频一区二区三区| 啦啦啦在线免费观看视频4| 最近最新中文字幕大全免费视频 | 九草在线视频观看| 亚洲欧美中文字幕日韩二区| 看非洲黑人一级黄片| 男女无遮挡免费网站观看| 亚洲色图综合在线观看| 欧美在线一区亚洲| 天天躁夜夜躁狠狠躁躁| 欧美国产精品一级二级三级| 久久精品人人爽人人爽视色| 一二三四在线观看免费中文在| 日韩不卡一区二区三区视频在线| 80岁老熟妇乱子伦牲交| 亚洲国产欧美网| 亚洲精品日韩在线中文字幕| 男女午夜视频在线观看| 久久久久久久久免费视频了| 成年美女黄网站色视频大全免费| 亚洲精品中文字幕在线视频| 成人三级做爰电影| 国产精品.久久久| 国产精品免费视频内射| 少妇人妻久久综合中文| 亚洲第一青青草原| 国产精品久久久久成人av| 大香蕉久久成人网| 一级爰片在线观看| 啦啦啦中文免费视频观看日本| 男女下面插进去视频免费观看| 中文字幕亚洲精品专区| 亚洲欧洲日产国产| 波野结衣二区三区在线| 日韩中文字幕欧美一区二区 | 色婷婷久久久亚洲欧美| 在线观看免费午夜福利视频| 美女中出高潮动态图| 久久国产亚洲av麻豆专区| 色精品久久人妻99蜜桃| 精品人妻一区二区三区麻豆| 人人澡人人妻人| 最近最新中文字幕大全免费视频 | 午夜福利免费观看在线| 国产精品一区二区精品视频观看| 日韩制服骚丝袜av| 亚洲国产精品999| 99久国产av精品国产电影| 99精品久久久久人妻精品| 人妻 亚洲 视频| 亚洲国产最新在线播放| 国产一区二区三区av在线| 精品国产一区二区三区四区第35| 一二三四中文在线观看免费高清| 日韩一本色道免费dvd| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| 午夜福利网站1000一区二区三区| 亚洲美女搞黄在线观看| 久久久久人妻精品一区果冻| 亚洲第一区二区三区不卡| 欧美日韩亚洲高清精品| 男女高潮啪啪啪动态图| 欧美激情高清一区二区三区 | 狂野欧美激情性xxxx| 啦啦啦 在线观看视频| 国产精品一区二区精品视频观看| 操美女的视频在线观看| 99re6热这里在线精品视频| 国产精品久久久久久精品电影小说| 久久这里只有精品19| 1024香蕉在线观看| av不卡在线播放| 国产国语露脸激情在线看| 18禁国产床啪视频网站| 色婷婷久久久亚洲欧美| 亚洲国产av新网站| 欧美人与善性xxx| 国产 精品1| 女人精品久久久久毛片| 亚洲精品美女久久av网站| 97精品久久久久久久久久精品| 亚洲一级一片aⅴ在线观看| www.av在线官网国产| 欧美成人午夜精品| 啦啦啦在线观看免费高清www| 午夜福利免费观看在线| 另类精品久久| 国产精品欧美亚洲77777| 欧美激情高清一区二区三区 | 亚洲av在线观看美女高潮| 黄片播放在线免费| 国产精品 国内视频| 波多野结衣av一区二区av| 国产成人免费无遮挡视频| 婷婷色麻豆天堂久久|