• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometric Mean Decomposition Based Hybrid Precoding for Millimeter-Wave Massive MIMO

    2018-06-07 05:22:48TianXieLinglongDaiXinyuGaoMuhammadZeeshanShakirJianjunLi
    China Communications 2018年5期

    Tian Xie, Linglong Dai,*, Xinyu Gao, Muhammad Zeeshan Shakir, Jianjun Li

    1 Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

    2 School of Engineering and Computing, University of the West Scotland (UWS), Glasgow, Scotland

    3 The School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

    I. INTRODUCTION

    Millimeter-wave (mmWave) massive MIMO is considered as a promising technology for the future 5G communications [1-6], since it can substantially increase the system throughput. For the sake of low energy consumption and hardware cost, mmWave massive MIMO usually utilizes the hybrid precoding architecture [7-9], where the conventional high-dimensional fully digital precoder is split into a high-dimensional analog precoder and a low-dimensional digital precoder to reduce the number of required radio frequency (RF)chains.

    How to obtain the optimal analog and digital precoders is the most important issue for hybrid precoding. In the pioneering work[8], the hybrid precoder design problem was reformulated as a sparse signal reconstruction problem, which is solved via a spatially sparse hybrid precoding algorithm. In [10],an alternating hybrid beamforming approach is designed to optimize the achievable rate of system. In [11], the energy-efficiency oriented hybrid precoding is investigated, where an iterative algorithm is designed to maximize the energy-efficiency of the system. All of these works aim to seek a pair of analog and digital precoders that are sufficiently close to the right singular matrix obtained through the singular value decomposition (SVD) of the channel matrix. Such SVD-based hybrid precoding can achieve the capacity-approaching performance with the optimal water-filling power allocation in point to point-MIMO-systems[8]. However, different sub-channels in SVD-based hybrid precoding usually have different signal-to-noise ratios (SNRs). Therefore, complicated bit allocation, i.e., allocating different modulation and coding schemes (MCSs) on different sub-channels, is usually required.Such procedure involves high coding/decoding complexity in practical systems [12].

    In this paper, a GMD-based hybrid precoding is proposed to avoid the complicated bit allocation in the conventional SVD-based hybrid precoding.

    In this paper, a geometric mean decomposition (GMD)-based hybrid precoding is proposed to avoid the complicated bit allocation required in the SVD-based hybrid precoding.Unlike the conventional SVD-based hybrid precoding, the right semi-unitary matrix obtained by GMD is treated as the optimal unconstrained precoder, which can convert the mmWave massive MIMO channel into sub-channels with identical SNRs [19]. Therefore, the proposed GMD-based hybrid precoding is able to naturally avoid the complicated bit allocation. Then, to find a near-optimal solution to the GMD-based hybrid precoder design problem, which is challenging due to the non-convex constraint on the analog precoder, we use a decoupled optimization method to design the analog and digital precoder. Specifically, the analog precoder design problem is solved via the orthogonal matching pursuit (OMP) algorithm, while the digital precoder is obtained by using GMD. Simulation results show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.

    Fig. 1. Comparison of two typical precoding structures. (a) The fully digital precoding; (b) The hybrid precoding.

    The remainder of this paper is organized as follow. The system model is briefly introduced in Section II. In Section III, we propose the GMD-based hybrid precoding. Then, we evaluate the performance of proposed GMD-based hybrid precoding through simulations in Section IV. Finally, we conclude this paper in Section V.

    Notation: a, A, and A denote a vector, a matrix, and a set. E{A}, tr{A}, {A}T, {A}H,{A}?, ||A||F, A(k), and {A}i,jdenote the expectation, trace, transpose, conjugate transpose, pseudo-inverse, Frobenius norm, kth column, and the element in the ith row and the jth column of A, respectively. C is the set of complex numbers. INsis the Ns× Nsidentity matrix. |A| is the cardinality of A. Finally,CN(0, INs) denotes the complex Gaussian distribution with expectation 0 and covariance INs.

    II. SYSTEM MODEL

    In this section, we introduce the concept of hybrid precoding for mmWave massive MIMO and the widely used mmWave channel model as well.

    2.1 Hybrid precoding for mmWave massive MIMO

    We consider a typical mmWave massive MIMO system with hybrid precoding, where the base station (BS) with Nttransmit antennas sends Nsindependent data streams to the user with Nrreceive antennas. We assume that the BS and the user haveandRF chains, respectively, which satisfyand[8]. The received signalat the user can be expressed as

    where ρ is the average receive power,P∈CNt×Ns(W∈CNr×Ns) is the hybrid precoder(combiner), H∈CNr×Ntdenotes the channel matrix, s∈ CNs×1is the source signal vector,and n ∈ CNr×1is the additive white Gaussian noise (AWGN) vector following the distribution CN(0,σ2INr), where σ2is the noise power. In the hybrid precoding structure as illustrated in figure 1, we denoteas the digital precoder (combiner), andas the analog precoder (combiner), respectively[13, 14, 16, 17]. To meet the constraint of transmit power, we have tr{PPH}≤Ns[14]. Note that the analog precoder/combiner is realized through phase shifters [7]. Thus, all elements in PAand WAshould have the same amplitude:

    where |·| denotes the modulus of a complex number.

    2.2 Channel model

    For the mmWave MIMO channel, we adopt the widely used Saleh-Valenzuela (SV) channel model for mmWave communications[8,15,16], where the channel matrix H is

    whereis the line-of-sight(LoS) component with β0presenting the complex gain,presenting the angle of arrival (AoA) at the user,presenting the angle of departure (AoD) at the BS, anddenotes the ith non-line-ofsight (NLoS) component. In addition, $L$ is the total number of paths,anddenote the array response vectors at the user and the BS, respectively. For the widely used uniform linear line antenna array (ULA) with N elements, the array response vector is [8]

    where λ denotes the wavelength, and d is the antenna spacing. Due to limited scattering characteristics in mmWave propagation, the rank of the channel matrix H is much smaller than the number of antennas, i.e., the number of effective independent data streams Nsthat can be exploited is limited. Therefore, we can leverage only a small number of RF chains to achieve the near-optimal performance in the hybrid precoding structure [9].

    III. PROPOSED GMD-BASED HYBRID PRECODING

    In this section, we first brie fly review the fully digital precoding. Then, we present the proposed GMD-based hybrid precoding in detail.

    3.1 Fully digital SVD- and GMD-based precoding

    The SVD of the channel matrix H can be denoted by

    whereandare semi-unitary matrices containing the left Nscolumns of unitary matrices U∈CNr×Nrand V∈CNt×Nt, respectively, andis an N × N

    ssdiagonal matrix with the largest Nssingular values σ1,…,σNson its diagonal. We assume that the singular values are arranged in the decreasing order. With P=V1and W=U1,the MIMO channel can be converted into Nsparallel sub-channels, where the sub-channel gains are σ1,…,σNs, i.e.,

    In mmWave communications, the gain of LoS component can be about 15 dB higher than that of NLoS component [9]. Consequently, the singular values of channel matrix H vary a lot, which results in significantly different SNRs over different sub-channels as shown in figure 2 (a). It should be pointed out that the water- filling power allocation will further aggravate the variations of the sub-channel gains, since it allocates more power on the sub-channel with higher channel gain. If the same MCS is adopted by all sub-channels, the bit error rate (BER) performance will be primarily determined by the sub-channel with the lowest

    SNR, which is unexpected in practical systems. If the similar BER performance in all sub-channels is expected, careful bit allocation is required (i.e., allocating different MCSs on different sub-channels), which will incur high coding/decoding complexity [12].

    To avoid the complicated bit allocations,unlike SVD as shown in (5), we use GMD to decompose the channel [19]:

    whereandare semi-unitary matrices containing the left Nscolumns of unitary matrices G∈CNr×Nrand Q∈CNt×Nt, respectively, * is an arbitrary matrix, and R1is an Ns× Nsupper triangular matrix with identical diagonal elements presenting the geometric mean of the largest Nssingular valueswhere ri,jdenotes the element of R1in the ith row and jth column for simplicity. Employing Q1as the precoder andas the combiner,we can rewrite (1) as

    Fig. 2. Intuitive illustrations of sub-channel gains: (a) SVD-based precoding; (b)GMD-based precoding.

    Since the equivalent channel after precoding and combining in the GMD-based precoding is an upper triangular matrix R1, we can utilize the successive interference cancellation at the receiver [19] to obtain Nssub-channels with equal sub-channel gain riias shown in figure 2 (b). Thus, we can naturally avoid the complicated bit allocation caused by different SNRs for different sub-channels in the existing SVD-based precoding. However, due to the large number of required RF chains, the energy consumption of fully digital GMD-based precoding is still high. This problem can be resolved by the proposed GMD-based hybrid precoding in the next subsection.

    3.2 GMD-based hybrid precoding

    In this subsection, we propose the GMD-based hybrid precoding avoid the complicated bit allocation required by the conventional SVD-based hybrid precoding. Note that we focus on the design of hybrid precoders, while the design of hybrid combiners can be realized in a similar manner. We use Q1, QA, and QDto denote the unconstrained GMD-based precoder, the GMD-based analog precoder, and the GMD-based digital precoder, respectively.To obtain near-optimal GMD-based hybrid precoders, we should seek a pair of analog and digital precoders that are sufficiently close to the unconstraint GMD precoder. Meanwhile,the constraint on the analog precoder as shown in (2) should be also considered. In addition,the total transmit power can be bounded asTo sum up, the GMD-based hybrid precoder design problem can be formulated as

    It is worth pointing that this norm minimization problem formulation (9) can also be interpreted as a mutual information maximization problem formulation for GMD-based hybrid precoding based on similar approxima-tions in [8].

    However, solving the optimization problem (9) is challenging, since QAand QDare coupled, and the constraintis non-convex [8]. To this end, we fix QDwhile designing QA, and vice versa. Note that the main challenge lies in the design of the analog precoder QAdue to the non-convex constraint. To effectively design the analog precoder QA, we first introduce the following Lemma 1.

    Lemma1.Letis an N ×Ltmatrix containing all L steering vectors at the BS side. Then, the columns of Atis able to span the column space of Q1.

    Proof: We observe that the columns of V1form an orthogonal basis of the row space for H, while the columns of Atalso span the row space of H according to (). Consequently, the columns of Atcan span the column space of V1. Additionally, to implement GMD based on SVD, a reduce and conquer method is used in [19], which successively adjusts the diagonal element in Σ tothrough permutations and Givens transformations. Such GMD implementation procedure (which is called“GMD procedure” in this letter) can be expressed as

    where SRand SLare Ns× Nsunitary matrices, which is the product of a series of permutation matrices and Givens matrices [19].From (10), we observe that if the columns of an arbitrary matrix Ω spans the column space of V1, they can also span the column space of Q1, since multiplying by SRdoes not change the column space of V1. Therefore, the columns of Atcan span the column space of Q1.

    Recalling the objective function in (9), we find that the form of hybrid precoderscan also be interpreted as treating the analog precoder QAas a basis and using the digital precoder QDas the combination coefficients.Therefore, based on the Lemma 1, it is natural to match up these two ``basis’, i.e., leveraging the Atto serve as QA. Besides, Atalso satisfies the constant modulus constraints. However, rigorously speaking, Atcannot be directly utilized as the analog precoder QA, since Athas L columns while QAhascolumns.Note that in hybrid precoding structure,is usually assumed to be smaller than L [8,16]. Therefore, we need to select the ``best’columns from Atto form QA. In this way, the analog precoder design problem becomes

    where T is a selecting matrix with onlynon-zero rows. Since the number of RF chains is smaller than the number of paths in hybrid precoding, and we only pick up the steering vectors with the highest correlations to the optimal precoder Q1, T will be a sparse matrix, where only a small number of elements is non-zero. Thus, we can leverage the sparseaware algorithms, such as the orthogonal matching pursuit (OMP) algorithm [8] to solve(11). Note that we remove the power constraint on the precoders in (11), since it can be fulfilled through normalization on the digital precoder.

    After the analog precoder is determined,the digital precoder design problem becomes a Frobenius norm minimization problem:

    and the power constraint in () can be satisfied through normalizing QD.

    The proposed GMD-based hybrid precoding algorithm has been summarized in Algorithm 1, which is mainly composed of two parts. The first part including steps 4-9 corresponds to the construction of the analog precoder QA,

    where QAis the determined analog precoder obtained by solving (11). The optimal solution to (12) has a least square form [16]. So the digital precoder can be designed as

    Algorithm 1. The proposed GMD-based hybrid precoding algorithm.Input: Channel matrix H Output: Precoding matrix QA and QD 1. Construct At, perform GMD of the channel matrix: [ , , ] GMD()1 1 1= ;2. Initialize the residual matrix Q V G R Q H res= 1, and the index set A1=?;3. Repeat:4. j=argmax ( )… A Q QA H H l L l l=1,, t res res t ,;5. A At j A;6. Y=Ξ? Q1;7.1= 1∪ j, and Ξ=a ∈{ ()},t φj 1 Qres=|| ||Q ΞY Q ΞY 1??;1 F 8. Until (|A|==NRF);9. Construct Q Ξ 1 t A= ;10. Construct Q Q Q={ }? ;11. Normalize D A 1 QD= || ||Q QQD ;A D F

    where we use the OMP algorithm to greedily select theBS steering vectors and store them in Ξ. The second part including steps 10-11 is the construction and normalization of the digital precoder QDbased on (13).

    Finally, we analyze the complexity of the proposed GMD-based hybrid precoding, which is composed of three parts in general. The first part is implementing GMD based on SVD,whose complexity is[19],since only an Ns× Nsmatrix SRis multiplied on V1. The second part is the construction of the analog precoder based on the OMP algorithm, whose complexity isThe third part is the computation of the digital precoder, of which the complexity isas we need to compute the pseudo-inverse matrix of Ξ. Hence, the overall complexity of GMD-based hybrid precoding iswhich is comparable to the conventional SVD-based precoding [8, 10].

    IV. SIMULATION RESULTS

    In this section, we evaluate the performance of the proposed GMD-based hybrid precoding through simulations. We consider a typical mmWave massive MIMO system at 28 GHz,where an Nt=256-element ULA with the antenna spacing d=λ/2 is employed at the BS, while an Nr=16-element ULA with also d=λ/2 is employed at the user [8, 15]. Both BS and the user adoptRF chains. For the mmWave channel, there are one LoS path and 4 NLoS paths. Additionally,the LoS path gain β0follows the distribution CN(0,1), while the NLoS path gains βifollow the distribution CN(0,10?μ), where μ is a power normalizing factor to adjust the power distribution between LoS component and NLoS component [8, 15]. The AoA and AoD of each component are uniformly distributed in [?π/2,π/2] [8, 15]. For the modulation scheme, we adopt the 16QAM modulation on all sub-channels after SVD/GMD to guarantee the same complexity and compare the performance of different precoding methods.

    4.1 Performance comparison under perfect CSI

    In this subsection, we evaluate the performance of the proposed GMD-based hybrid precoding with the assumption that perfect channel state information (CSI) is available at both the transmitter and the receiver.

    Firstly, we consider an LoS environment in the mmWave propagations [15]. Figure 3 shows the results of BER performance comparison, where μ=1.5 (the power of LoS component is 15 dB higher that of NLoS component). We can observe that the proposed GMD-based precoding (including the fully digital GMD-based precoding and the GMD-based hybrid precoding) can achieve better BER performance than the conventional SVD-based precoding (including the fully digital SVD-based precoding and the SVD-based hybrid precoding [8]). Since the GMD-based precoding converts the mmWave massive MIMO channel into several sub-channels with identical SNR, we can naturally avoid the severe BER performance degradation in sub-channels with very low SNRs in SVD-based precoding. Furthermore, the perfor-mance gap between the fully digital GMD-based precoding and the proposed GMD-based hybrid precoding is negligible, which implies that the proposed GMD-based hybrid precoding is able to approach the performance of the fully digital GMD-based precoding.

    We also consider the NLoS environment in the performance comparison [18], whereμ is set to zero to indicate the same power of the LoS paht and the NLoS paths. The result is given in figure 4, where we find that the approximation performance of hybrid precoding to fully digital precoding degrades, since the power of the channel disperses onto several paths which cannot be collected via a limited number of RF chains. In addition, we also observe that the performance gap between the GMD-based precoding and SVD-based precoding becomes smaller, because the gains of sub-channels after precoding and combining tend to be more similar in an NLoS environment. Nevertheless, the proposed GMD-based hybrid precoding can still outperform the conventional precoding schemes.

    4.2 Impacts of low-rank CSI

    In practical mmWave massive MIMO systems,acquiring perfect CSI is very challenging due to the high dimension of the channel matrix.Therefore, it is important to evaluate the performance of the proposed GMD-based hybrid precoding under imperfect CSI. In mmWave MIMO systems, a low-rank channel estimation is usually conducted instead of a fullrank channel estimation to save the signaling overhead [21], where only a limited number of paths are estimated (e.g., estimating the 4 paths with the highest power instead of the whole 10 paths when NRF=4 to enable the hybrid precoding). For the channel estimation schemes, we adopt a hierarchical codebook[21, 22] to estimate the AoA, AoD, and complex gain for a path through analog beam training, and the number of estimated paths is equal to the number of RF chains.

    Fig. 3. BER performance comparison in the LoS environment with μ=1.5.

    Fig. 4. BER performance comparison in the NLoS environment with μ=0.

    Figure 5 presents the BER performance comparison in an LoS environment whereμ=1.5. From the figure, we can observe that using the low-rank CSI to precode the signals will suffer from an obvious performance loss when the channel presents an LoS characteristic. This is because omitting the weak paths in channel estimation will make the singular values corresponding to the weak paths much smaller, which obviously lowers the geometric mean value of these singular values, i.e.,the gain of each sub-channel after GMD. In addition, the performance of the analog beam training also degrades when the estimating the NLoS paths with very small power in the LoS environment, which further aggravates the performance loss.

    Fig. 5. BER performance comparison between precoding with full-rank CSI and precoding with low-rank CSI in the LoS environment.

    Fig. 6. BER performance comparison between full-rank CSI and precoding with low-rank CSI in the NLoS environment.

    We also evaluate the impact of channel estimation in the NLoS environment in figure 6, where μ=0. In this figure, we find that the performance gap between precoding with full-rank CSI and precoding with low-rank CSI becomes smaller. On the one hand, the singular values of the channel matrix are more robust when there are several paths with similar power. On the other hand, the performance of the beam training method becomes better when estimating the paths with relative higher power.

    V. CONCLUSIONS

    In this paper, a GMD-based hybrid precoding is proposed to avoid the complicated bit allocation in the conventional SVD-based hybrid precoding. We have found that with the help of GMD, the mmWave MIMO channel can be converted into several sub-channels with identical SNRs, thus naturally avoiding the complicated bit allocation. Furthermore, we have proposed to decouple the design of the analog and digital precoders, where the analog precoder is designed using the principle of basis pursuit, while the digital precoder is obtained by using GMD. Simulation results verify that the proposed GMD-based hybrid precoding can achieve better performance than the conventional SVD-based hybrid precoding.

    ACKNOWLEDGEMENT

    This work was supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No.61722109), the National Natural Science Foundation of China (Grant No. 61571270),and the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No.UK-CIAPP49).

    [1] S. Mumtaz, J. Rodriquez, and L. Dai, MmWave Massive MIMO: A Paradigm for 5G, Academic Press, Elsevier, 2016.

    [2] W. Feng, Y. Wang, D. Lin, N. Ge, J. Lu, and S. Li,“When mmWave communications meet network densification: A scalable interference coordination perspective,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, Jul. 2017, pp. 1459–1471.

    [3] B. Wang, L. Dai, Z. Wang, N. Ge, and S. Zhou,“Spectrum and energy efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, Oct. 2017, pp. 2370-2382.

    [4] X. Li, T. Jiang, S. Cui, J. An, and Q. Zhang, “Cooperative communications based on rateless network coding in distributed MIMO systems,”IEEE Wireless Commun., vol. 17, no. 3, Jun. 2010,pp. 60–67.

    [5] Z. Xiao, P. Xia, and X.-G. Xia, “Enabling UAV cellular with millimeterWave communication: Potentials and approaches,” IEEE Commun. Mag.,vol. 54, no. 5, May 2016, pp. 66-73.

    [6] J. Zhang, Y. Zhang, Y. Yu, R. Xu, Q. Zheng, P.Zhang, “3D MIMO: How much does it meet our expectation bbserved from channel measurements?” IEEE J. Sel. Areas Commun., vol. 35, no.8, Aug. 2017, pp. 1887–1903.

    [7] S. Han, C.-L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid precoding analog and digital beamforming for millimeter wave 5G,” IEEE Commun. Mag., vol. 53, no. 1, Jan.2015, pp. 186–194.

    [8] El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans.Wireless Commun., vol. 13, no. 3, Mar. 2014, pp.1499–1513.

    [9] Z. Gao, L. Dai, D. Mi, Z. Wang, M. A. Imran, and M. Z. Shakir, “Mmwave massive-MIMO-based wireless backhaul for the 5G ultra-dense network,” IEEE Wireless Commun., vol. 22, no. 5,Oct. 2015, pp. 13–21.

    [10] Z. Xu, S. Han, Z. Pan, and C.-L. I, “Alternating beamforming methods for hybrid analog and digital MIMO transmission,” Proc. IEEE Int. Conf.Commun. (ICC), Jun. 2015, pp. 1595–1600.

    [11] R. Zi, X. Ge, J. Thompson, C.-X. Wang, H. Wang,and T. Han, “Energy efficiency optimization of 5G radio frequency chain systems,” IEEE J. Sel.Areas Commun., vol. 34, no. 4, Apr. 2016, pp.758–771.

    [12] C.-L. Chao, S.-H. Tsai, and T.-Y. Hsu, “Bit allocation schemes for MIMO equal gain precoding,”IEEE Trans. Wireless Commun., vol. 10, no. 5,Mar. 2011, pp. 1345–1350.

    [13] Z. Xiao, X.-G. Xia, D. Jin, and N. Ge, “Iterative eigenvalue decomposition and multipath-grouping Tx/Rx joint beamformings for millimeterwave communications,” IEEE Tran.Wireless Commun., vol. 14, no. 3, Mar. 2015, pp.1595–1607.

    [14] X. Xue, Y. Wang, X. Wang, and T. E. Bogale, “Joint source and relay precoding in multi-antenna millimeter-wave systems,” IEEE Trans. Veh. Technol., vol. 66, no. 6, Oct. 2016, pp. 4924–4937.

    [15] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath,“Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays,” IEEE J. Sel. Areas Commun., vol.34, no. 4, Apr. 2016, pp. 998–1009.

    [16] S. He, C. Qi, Y. Wu, and Y. Huang, “Energy-efficient transceiver design for hybrid sub-array architecture MIMO systems,” IEEE Access, vol. 4,Jan. 2017, pp. 9895–9905.

    [17] S. Han, C.-L. I, Z. Xu, and S. Wang, “Reference Signals Design for Hybrid Analog and Digital Beamforming,” IEEE Commun. Lett., vol. 18, no.7, Jul. 2014, pp. 1191–1193.

    [18] Z. Xiao, P. Xia, X.-G. Xia, “Channel estimation and hybrid precoding for millimeter-wave MIMO systems: A low-complexity overall solution”, IEEE Access, vol. 5, Jul. 2017, pp. 16100–16110.

    [19] C.-E. Chen, Y.-C. Tsai, and C.-H. Yang, “An iterative geometric mean decomposition algorithm for MIMO communications systems,” IEEE Tran.Wireless Commun., vol. 14, no. 1, Jan. 2015, pp.343–352.

    [20] S. He, J. Wang, Y. Huang, B. Otterste, W. Hong,“Codebook-based hybrid precoding for millimeter wave multiuser systems,” IEEE Trans.Signal Process., vol. 64, no. 20, Oct. 2017, pp.5289–5304.

    [21] Z. Xiao, P. Xia, and X.-G. Xia, “Codebook design for millimeterwave channel estimation with hybrid precoding structure”, IEEE Trans. Wireless Commun., vol. 16, no. 1, Jan. 2017, pp. 141–153.

    [22] Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans.Wireless Commun., vol. 15, no. 5, May 2016, pp.3380–3392.

    久久久久久久午夜电影| xxxwww97欧美| av超薄肉色丝袜交足视频| 国产av不卡久久| 中文字幕人成人乱码亚洲影| 自线自在国产av| 婷婷精品国产亚洲av| 成人18禁高潮啪啪吃奶动态图| 欧美色视频一区免费| 狠狠狠狠99中文字幕| 宅男免费午夜| 国产高清视频在线播放一区| 欧美日本视频| 日韩欧美国产在线观看| 国内精品久久久久久久电影| 久久久久国内视频| 成人亚洲精品一区在线观看| 一区福利在线观看| 久久人人精品亚洲av| 黑人巨大精品欧美一区二区mp4| 色综合婷婷激情| 99热这里只有精品一区 | 丝袜人妻中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 国产91精品成人一区二区三区| 亚洲专区字幕在线| 久久久精品国产亚洲av高清涩受| 制服诱惑二区| 2021天堂中文幕一二区在线观 | 男人操女人黄网站| 久久草成人影院| www国产在线视频色| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久久久人妻精品电影| 国产精品一区二区三区四区久久 | 国产一区二区激情短视频| av欧美777| 国产高清激情床上av| 婷婷精品国产亚洲av在线| 欧美亚洲日本最大视频资源| 婷婷亚洲欧美| 搞女人的毛片| 又黄又粗又硬又大视频| 亚洲国产日韩欧美精品在线观看 | 91老司机精品| 精品久久蜜臀av无| 成年免费大片在线观看| 亚洲色图 男人天堂 中文字幕| 黄片大片在线免费观看| 在线观看免费日韩欧美大片| 午夜免费激情av| 后天国语完整版免费观看| 国内毛片毛片毛片毛片毛片| 欧美黄色片欧美黄色片| 丰满的人妻完整版| 天天躁狠狠躁夜夜躁狠狠躁| 男人舔奶头视频| 久久精品91蜜桃| 精品不卡国产一区二区三区| 色老头精品视频在线观看| 国产亚洲精品一区二区www| 亚洲男人的天堂狠狠| 热99re8久久精品国产| 99久久国产精品久久久| 非洲黑人性xxxx精品又粗又长| 久9热在线精品视频| 一级作爱视频免费观看| 亚洲人成电影免费在线| av福利片在线| 18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美精品济南到| 国产av又大| 人人妻人人澡人人看| bbb黄色大片| 女警被强在线播放| 99久久国产精品久久久| 中文字幕精品亚洲无线码一区 | 成人18禁高潮啪啪吃奶动态图| 黄色丝袜av网址大全| 久久国产精品人妻蜜桃| 日韩大尺度精品在线看网址| 脱女人内裤的视频| 欧美大码av| 人人澡人人妻人| 日日摸夜夜添夜夜添小说| 国产精品电影一区二区三区| 久久久久久久久中文| 国产伦一二天堂av在线观看| 国产伦在线观看视频一区| 欧美日韩精品网址| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 男女下面进入的视频免费午夜 | 美女高潮到喷水免费观看| 国产一区二区在线av高清观看| 欧美黑人欧美精品刺激| 在线永久观看黄色视频| 日韩欧美一区二区三区在线观看| 美女高潮喷水抽搐中文字幕| 88av欧美| 欧美黑人欧美精品刺激| 亚洲成人国产一区在线观看| 久久精品国产亚洲av香蕉五月| 免费看a级黄色片| 美女免费视频网站| 国产主播在线观看一区二区| 久久99热这里只有精品18| 亚洲第一青青草原| 男女做爰动态图高潮gif福利片| 黄色女人牲交| 国产欧美日韩一区二区三| 99re在线观看精品视频| 91麻豆av在线| 精品日产1卡2卡| 级片在线观看| 日日夜夜操网爽| 成人精品一区二区免费| av电影中文网址| 国语自产精品视频在线第100页| 777久久人妻少妇嫩草av网站| 夜夜看夜夜爽夜夜摸| 欧美亚洲日本最大视频资源| 日本免费一区二区三区高清不卡| www.自偷自拍.com| 亚洲第一av免费看| avwww免费| 亚洲第一av免费看| 亚洲久久久国产精品| 日本精品一区二区三区蜜桃| 国产免费av片在线观看野外av| 久久精品国产清高在天天线| 亚洲精品美女久久久久99蜜臀| 国产高清激情床上av| 一二三四社区在线视频社区8| 国产一区二区在线av高清观看| 亚洲人成77777在线视频| 亚洲性夜色夜夜综合| 国产成人精品无人区| 精品久久久久久久末码| 两性夫妻黄色片| av福利片在线| 97超级碰碰碰精品色视频在线观看| 欧美中文日本在线观看视频| 亚洲国产精品久久男人天堂| 中文在线观看免费www的网站 | 九色国产91popny在线| 99国产精品99久久久久| 亚洲va日本ⅴa欧美va伊人久久| 手机成人av网站| 亚洲精品国产区一区二| 国产男靠女视频免费网站| 亚洲精品一区av在线观看| 精华霜和精华液先用哪个| 久久精品aⅴ一区二区三区四区| 久久久久久久久久黄片| 国产精品av久久久久免费| 久久久水蜜桃国产精品网| 黄色视频,在线免费观看| 欧美在线一区亚洲| 在线观看午夜福利视频| 99久久国产精品久久久| av片东京热男人的天堂| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 日日摸夜夜添夜夜添小说| 亚洲一区中文字幕在线| 国产精品亚洲一级av第二区| 伊人久久大香线蕉亚洲五| 午夜福利一区二区在线看| 十八禁网站免费在线| 免费观看人在逋| 黄片大片在线免费观看| 欧美日韩一级在线毛片| 中出人妻视频一区二区| 国产又黄又爽又无遮挡在线| 校园春色视频在线观看| 精品久久久久久久久久免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色视频不卡| 国产精品久久久久久人妻精品电影| 亚洲成人久久爱视频| svipshipincom国产片| 精品高清国产在线一区| 黄色成人免费大全| 午夜福利在线在线| 国产1区2区3区精品| 国产成人精品久久二区二区免费| 国产乱人伦免费视频| 免费看a级黄色片| 国产欧美日韩精品亚洲av| 精品免费久久久久久久清纯| 香蕉国产在线看| 欧美中文日本在线观看视频| 成人一区二区视频在线观看| 又黄又粗又硬又大视频| 免费在线观看影片大全网站| 波多野结衣高清无吗| 男女做爰动态图高潮gif福利片| 免费高清在线观看日韩| 男人操女人黄网站| 精品久久久久久成人av| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 久久久国产欧美日韩av| 99在线人妻在线中文字幕| 久久精品91无色码中文字幕| 热99re8久久精品国产| 在线播放国产精品三级| 欧美绝顶高潮抽搐喷水| 999久久久国产精品视频| 99热只有精品国产| 亚洲aⅴ乱码一区二区在线播放 | 日韩有码中文字幕| 成人18禁高潮啪啪吃奶动态图| 波多野结衣巨乳人妻| 美国免费a级毛片| 一进一出抽搐gif免费好疼| 亚洲,欧美精品.| 两个人视频免费观看高清| 可以在线观看的亚洲视频| 欧洲精品卡2卡3卡4卡5卡区| 免费一级毛片在线播放高清视频| 亚洲精品在线美女| 91成人精品电影| 女生性感内裤真人,穿戴方法视频| 亚洲五月天丁香| 免费在线观看成人毛片| 啦啦啦韩国在线观看视频| 在线观看免费视频日本深夜| 美女午夜性视频免费| 久久久精品欧美日韩精品| 好男人在线观看高清免费视频 | 国产精品影院久久| 国产私拍福利视频在线观看| 久久久精品欧美日韩精品| 桃红色精品国产亚洲av| 午夜成年电影在线免费观看| 精品国产国语对白av| 日本成人三级电影网站| 久久国产乱子伦精品免费另类| 一个人免费在线观看的高清视频| 国产成人影院久久av| 中出人妻视频一区二区| 精品卡一卡二卡四卡免费| 91字幕亚洲| 国产私拍福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一本一本综合久久| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久中文| 久久香蕉精品热| 亚洲国产精品999在线| 成在线人永久免费视频| 99精品久久久久人妻精品| 免费观看精品视频网站| 国产精品99久久99久久久不卡| 丁香欧美五月| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆| 国产精品野战在线观看| 日韩欧美 国产精品| 99热只有精品国产| 亚洲精品久久国产高清桃花| 在线播放国产精品三级| 国产精品免费视频内射| 国产主播在线观看一区二区| 国产黄色小视频在线观看| 在线观看日韩欧美| 国产久久久一区二区三区| 人妻丰满熟妇av一区二区三区| 久久久久免费精品人妻一区二区 | 成人特级黄色片久久久久久久| avwww免费| 欧美在线一区亚洲| 亚洲男人的天堂狠狠| 手机成人av网站| avwww免费| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| 久久欧美精品欧美久久欧美| 90打野战视频偷拍视频| 国产视频内射| 看片在线看免费视频| 国产99白浆流出| 1024香蕉在线观看| 在线观看午夜福利视频| 午夜成年电影在线免费观看| 手机成人av网站| www日本黄色视频网| 日本免费a在线| 久久精品国产99精品国产亚洲性色| 热re99久久国产66热| 日本成人三级电影网站| 国产高清激情床上av| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久中文| 最好的美女福利视频网| 久久久精品欧美日韩精品| 老司机午夜福利在线观看视频| 久久久久免费精品人妻一区二区 | 岛国视频午夜一区免费看| 久久久久国内视频| 国产成人啪精品午夜网站| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| 亚洲人成77777在线视频| 热99re8久久精品国产| 黄色毛片三级朝国网站| 18禁观看日本| 美女高潮到喷水免费观看| 午夜精品久久久久久毛片777| 日日爽夜夜爽网站| 久久久久久九九精品二区国产 | 亚洲熟妇熟女久久| 真人一进一出gif抽搐免费| 日韩大尺度精品在线看网址| 免费在线观看影片大全网站| 国产精品二区激情视频| 后天国语完整版免费观看| 国产在线精品亚洲第一网站| 成年版毛片免费区| 精品国产一区二区三区四区第35| 露出奶头的视频| aaaaa片日本免费| 99国产精品一区二区三区| 国产野战对白在线观看| 国产精品一区二区三区四区久久 | 中文字幕久久专区| 亚洲成人久久性| 欧美黄色片欧美黄色片| 亚洲成av人片免费观看| 欧美大码av| 国产午夜福利久久久久久| 久久人人精品亚洲av| 国产亚洲欧美在线一区二区| 一本久久中文字幕| 亚洲天堂国产精品一区在线| 国产亚洲av高清不卡| 午夜免费观看网址| 丝袜人妻中文字幕| 法律面前人人平等表现在哪些方面| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 人妻久久中文字幕网| 少妇熟女aⅴ在线视频| 香蕉av资源在线| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 亚洲精品国产区一区二| 日韩三级视频一区二区三区| 国产亚洲欧美98| 黄色成人免费大全| 欧美黑人欧美精品刺激| 最近在线观看免费完整版| 看片在线看免费视频| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产 | 亚洲av电影在线进入| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 99热只有精品国产| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 一a级毛片在线观看| 亚洲五月婷婷丁香| 看免费av毛片| 久久久久久免费高清国产稀缺| 国产一区二区三区在线臀色熟女| 久久久国产成人精品二区| 亚洲午夜精品一区,二区,三区| 男女做爰动态图高潮gif福利片| 国产亚洲av嫩草精品影院| netflix在线观看网站| 村上凉子中文字幕在线| 久久久久国内视频| 成人欧美大片| 精品久久久久久,| 大型av网站在线播放| 99精品在免费线老司机午夜| 久久人人精品亚洲av| av视频在线观看入口| 免费一级毛片在线播放高清视频| 亚洲国产欧美日韩在线播放| 一个人免费在线观看的高清视频| 成人三级做爰电影| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 在线观看日韩欧美| 亚洲最大成人中文| 天堂动漫精品| 老司机午夜福利在线观看视频| 激情在线观看视频在线高清| 在线天堂中文资源库| 国产视频内射| 成人欧美大片| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 可以在线观看毛片的网站| 久久人人精品亚洲av| 久久精品成人免费网站| 我的亚洲天堂| 韩国精品一区二区三区| 满18在线观看网站| 亚洲精品国产一区二区精华液| 亚洲精品在线美女| 嫩草影院精品99| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 欧美日韩乱码在线| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 久久精品91蜜桃| 精品久久久久久久毛片微露脸| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 久久久水蜜桃国产精品网| 午夜激情福利司机影院| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 大香蕉久久成人网| 亚洲av中文字字幕乱码综合 | 亚洲一卡2卡3卡4卡5卡精品中文| 91大片在线观看| 免费在线观看影片大全网站| 久久香蕉国产精品| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 日韩视频一区二区在线观看| 伦理电影免费视频| 婷婷精品国产亚洲av在线| 麻豆av在线久日| 少妇 在线观看| 国产亚洲精品综合一区在线观看 | 少妇被粗大的猛进出69影院| 麻豆成人午夜福利视频| 欧美精品啪啪一区二区三区| 亚洲第一青青草原| 久久久精品国产亚洲av高清涩受| 欧美精品亚洲一区二区| 成人免费观看视频高清| 成人18禁在线播放| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 男女那种视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产乱子伦精品免费另类| 国产高清有码在线观看视频 | 欧美成人一区二区免费高清观看 | 成人亚洲精品一区在线观看| 午夜福利成人在线免费观看| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 90打野战视频偷拍视频| 青草久久国产| 国产亚洲欧美精品永久| 婷婷丁香在线五月| 国产激情偷乱视频一区二区| 精品人妻1区二区| av有码第一页| 夜夜夜夜夜久久久久| 男女那种视频在线观看| 人人妻人人澡欧美一区二区| 在线观看免费日韩欧美大片| 美国免费a级毛片| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区精品小视频在线| 91国产中文字幕| 女性被躁到高潮视频| 成人免费观看视频高清| 久久人妻av系列| 97人妻精品一区二区三区麻豆 | 九色国产91popny在线| 国产又爽黄色视频| 久久久精品国产亚洲av高清涩受| 欧美成人午夜精品| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 男女做爰动态图高潮gif福利片| 国产97色在线日韩免费| 悠悠久久av| 国产精品久久视频播放| 91九色精品人成在线观看| 欧美激情极品国产一区二区三区| 黄色丝袜av网址大全| 在线视频色国产色| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 日韩欧美免费精品| 国产成人精品久久二区二区免费| 99热只有精品国产| www国产在线视频色| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 欧美精品啪啪一区二区三区| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 在线免费观看的www视频| 成人三级做爰电影| 一进一出抽搐gif免费好疼| 两个人视频免费观看高清| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av在线| 久久久国产成人免费| 黑人巨大精品欧美一区二区mp4| 亚洲一码二码三码区别大吗| 国产免费男女视频| 露出奶头的视频| 国产精品电影一区二区三区| 黄片小视频在线播放| √禁漫天堂资源中文www| 午夜a级毛片| 久久久久国产一级毛片高清牌| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 国产亚洲av嫩草精品影院| 成年版毛片免费区| 欧美激情高清一区二区三区| 欧美乱码精品一区二区三区| av有码第一页| 黄色毛片三级朝国网站| 国产成年人精品一区二区| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 久久精品成人免费网站| 午夜激情av网站| 免费人成视频x8x8入口观看| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 中文字幕高清在线视频| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 午夜福利一区二区在线看| 成熟少妇高潮喷水视频| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 老汉色∧v一级毛片| 1024手机看黄色片| 夜夜看夜夜爽夜夜摸| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女| 视频在线观看一区二区三区| 国产精品免费视频内射| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 国内毛片毛片毛片毛片毛片| 成人永久免费在线观看视频| 亚洲九九香蕉| 国产成+人综合+亚洲专区| 免费看美女性在线毛片视频| 国产免费男女视频| 免费观看人在逋| 一本大道久久a久久精品| 90打野战视频偷拍视频| 中文资源天堂在线| 91成年电影在线观看| 亚洲国产欧美网| 香蕉丝袜av| 一本大道久久a久久精品| 亚洲精品中文字幕一二三四区| 国产熟女xx| 欧美性猛交╳xxx乱大交人| 国产精品亚洲美女久久久| 满18在线观看网站| 欧美日韩精品网址| av超薄肉色丝袜交足视频| 欧美不卡视频在线免费观看 | 51午夜福利影视在线观看| 国产精品乱码一区二三区的特点| 日本a在线网址| 免费无遮挡裸体视频| 1024视频免费在线观看| 一二三四在线观看免费中文在| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 这个男人来自地球电影免费观看| 欧美成人午夜精品| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区| 国产色视频综合| 亚洲国产欧美日韩在线播放| 精品欧美国产一区二区三| 亚洲精品在线美女| 91国产中文字幕| 999精品在线视频| 亚洲人成电影免费在线| 999久久久精品免费观看国产| 午夜精品在线福利| 亚洲国产欧美日韩在线播放| x7x7x7水蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| 亚洲第一av免费看| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 欧美中文综合在线视频| 两个人免费观看高清视频| 人人澡人人妻人| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品粉嫩美女一区|