• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Outage Performance of Non-Orthogonal Multiple Access Based Unmanned Aerial Vehicles Satellite Networks

    2018-06-07 05:22:12TingQiWeiFengYouzhengWang
    China Communications 2018年5期

    Ting Qi, Wei Feng*, Youzheng Wang

    1 Tsinghua Space Center, Tsinghua University, Beijing 100084, China

    2 Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University,Beijing 100084, China

    I. INTRODUCTION

    Unmanned aerial vehicles (UAVs) have recently gained rapid development and wide applications in photography, videography, cargo delivery, communication etc. It is predicted that the number of commercial UAVs will increase by three fold by 2020. To support reliable remote command and control and enable high-rate mission-related information transmission, it is imperative to integrate UAVs into cellular and satellite networks [1]. For UAVs working at areas out of the coverage of the cellular network, accessing to the satellite networks is a reasonable choice [2].

    To alleviate the shortage of radio spectrum,satellite systems have been moving toward Ku-band and above, which suffers from rain attenuation. Multi-satellite cooperation or satellite diversity is an efficient way to enhance the service capability. Distributed satellite multiple-input multiple-output (MIMO) communication system has advantages in cost, scalability and fault tolerance compared with conventional single-input single-output system [3]. A MIMO channel model and corresponding transmission technique for distributed dual-satellite was studies in [4]. In [5], the authors investigated the spatial multiplexing gain and receive selection diversity gain of the dual-satellite MIMO channel. The potential gain of satellite diversity techniques and the effects of separation angles between satellites were discussed in [6].

    When connecting UAVs to multi-satellite networks, non-orthogonal multiple access(NOMA) can be applied to improve the spectral efficiency [7]. By sharing spectrum resource among users, NOMA can simul-taneously serve more users than traditional orthogonal multiple access (OMA) using the same orthogonal resources. The basic problem of user pairing in NOMA was investigated in [8], which revealed that pairing users with distinctive channel conditions can improve the capacity. Power allocation is crucial to NOMA because it basically influences the performance of successive interference cancellation(SCI) multiuser detection and achievable rate of users due to the existence of mutual interference [9-11]. Besides used in the cellular network, NOMA technique can also be applied to UAV-enabled wireless system [12] and integrated terrestrial-satellite networks [13, 14].

    Different from previous work, we consider the NOMA based UAV satellite networks,where UAVs access the multi-satellite networks by NOMA scheme using Ku-band and above.Taking into account the rain attenuation and its spatial correlation, we analyze the outage performance and obtain the analytic outage probability. On this basis, we address the issue of power allocation and formulate the min-max fairness problem to minimize the maximum outage probability of users. A simple iteration algorithm is proposed to obtain the optimal solution. Simulation results have verified the outage analysis and confirmed the convergence of the proposed algorithm. The impact of rain attenuation correlation and the performance superiority of NOMA are demonstrated.

    Fig. 1. The diagram of integrating UAVs into the satellite networks.

    II. SYSTEM MODEL

    As illustrated in figure 1, consider the UAV satellite networks, where UAVs working on the remote area or on the sea integrate into satellite networks for service. The UAVs may be used for maritime patrol, emergency response, communication assist and so on. Depending on their applications and equipment, UAVs access to satellites in different orbits. In this paper, we focus on a typical scenario therein, where two geosynchronous satellites cooperatively serve UAVs and a maritime ship-load mobile terminal (MT) using the Ku-band and above. The MT is equipped with two co-located antennas with a separation angle θ, which are highly directive to the two satellites respectively. To improve the system capacity, NOMA scheme is deployed for each satellite to serve a UAV and the MT simultaneously without additional spectrum resources. The UAV(denoted as user 1) is elaborately selected in the coverage area of each satellite to pair with the antenna of MT (denoted as user 2) to implement NOMA. The UAVs usually fly several hundred meters high and carry an ordinary antenna which has much lower antenna gain than the MT. The two users of satellite i are supposed to have similar elevation angle, denoted by φi.

    Since the satellites work on Ku-band and above, the channel is line-of-sight (LOS). Besides path loss, the channel is susceptible to various atmospheric fading and rain induced attenuation is the dominant one among them.The rain attenuation of the link between satellite i and its user k (link i-k for short), denoted by Ai,kin dB, is statistically modeled as a lognormal variable, i.e.,where the statistical parameters μ and

    i,kare related to the rainfall rate, the operating frequency, the elevation angle and so on. The channel gain from satellite i to its user k, denoted by gi,k, is model as

    where Gtiand Grkare the antenna gain of satellite i and user k, respectively, Li,kis the coefficient due to the free space loss of the path,which is given by

    where fiis the carrier frequency and c is the speed of light.

    Usually, the flying height of the UAV is very small compared with the GEO satellite so the difference between the path loss of link i-1 and i-2 is negligible. While the antenna gain of the MT is rather larger than the UAV, thus,the channel gain of the MT is much better than the UAV.

    Consider the downlink transmission, in which each satellite transmits the superposed signal of the UAV and the MT and the receivers use the SIC technique to extract their own signal. Specifically, since the MT has better channel gain and is allocated less power, the received signal of the UAV has much better signal noise ratio (SNR) at the receivers. Thus,the UAV decodes its own signal first by recognizing the signal of the MT as noise, while the MT can first decode the signal of the UAV and remove the interference. Assume that two satellites use different frequency and there is no interference between the cells of satellite 1 and 2. Thus, the achievable rates of the two users belong to satellite i are

    where pi,kis the power satellite i allocates to user k, N0denotes the power spectral density of the additive white Gaussian noise. Particularly, the rate of the MT, denoted by RMT, is the sum rate of the two links, given by

    Since rain attenuation introduces slow fading, the appropriate performance metric is the outage probability. Given the target spectral efficiency r0, the outage probability of the UAV served by satellite i and the outage probability of the MT, denoted by P3, are respectively defined as

    III. OUTAGE PROBABILITY ANALYSIS

    Given the statistic rain attenuation distribution and power allocation, we will derive the outage probability of the UAVs and the MT.

    Substituting (1) and (3) into (6), the outage probability of the UAV served by satellite i can be rewritten as

    where variable αiwrites

    Let the normalized normal variable of Ai,kbe

    Leveraging (10), we can derive

    whereis one minus the cumulative distribution function of the standard normal random variable.

    When computing P3, the spatial correlation of the rain attenuations of the two links 1-2 and 2-2 must be considered, since the location of the two antennas of the MT is near.The correlation of rain attenuation of the two links will augment the outage probability of the MT. Denote ρ as the correlation coefficient between the normalized variable t1,2and t2,2. The correlation coefficient ρ lies in the interval (0,1) and is inversely proportional to the separation angle θ given the location,frequency, elevation angles [5]. Given ρ≠1(which is the case in practice), the joint probability density function (PDF) of random variable t1,2and t2,2is written as

    f( t2,2|t1,2)f( t1,2) and the channel model (1),the outage probability of the MT writes

    where f( t2,2|t1,2) is the conditional PDF of t2,2given t1,2and is a normal distribution represented by N(ρ t1,2,1 ? ρ2),f( t1,2) is the standard normal distribution. After some algebraic operations, the lower bounds u1and u2of the integral (13) are obtained

    where variables β1and β2are given as

    Lettingand changing the integral variable t2,2as t in (13), we obtain the analytical form for outage probability of the MT, written as

    IV. POWER ALLOCATION ALGORITHM

    In this section, we investigate the power allocation problem for the NOMA transmission,and then propose an efficient iteration algorithm to solve it.

    The satellites allocate the limited power according to the statistic channel state information (CSI). Considering the fairness issue in NOMA, we formulate the min-max fairness problem, defined as

    where P={pi,k}, constraints (17b) indicate the total power constraint of each satellite.

    Problem (17) is not convex and is hard to solve directly using standard convex optimization tools. In [10], the problem of min-max outage probability with Rayleigh fading channel was proved to be quasi-convex and was solved by the bisection method, where in each iteration, it solves a power allocation solution for a specific outage probability and decide whether it is feasible. However, this method is infeasible for this problem since it is difficult to solve the solution inversely given the outage probability due to the complicated form of(16). In this section, we first analyze the characteristics of problem (17) and then propose an efficient algorithm to obtain the optimal solution. The following proposition sheds light on the optimal condition of the problem.

    Proposition 1: At optimality, the constraints(17b) are tight and the optimal solution of problem (17) can be categorized into the two cases:

    (a) UAV of satellite i (i=1 or 2) undergoes so bad channel that its outage performance is the worst although total power is allocated to it, i.e., pi,1= PT, pi,2=0, so only one link of the MT is available. The optimal power allocation of satellite,(∈ {1,2}i ) is achieved withPi= P3so that fairness is guaranteed.

    (b) Both the two link of the MT are available. The optimal power allocation is achieved with P1= P2= P3.

    Proof: Whenthe outage probability for all users can be decreased by increasing the power pi,kby a factor ofThus, the first part of the proposition is proved.We then prove the second part of the proposition. In case (a), the maximum outage probability is minimized with the maximum power and cannot be smaller. Solutions satisfying Pi≥and Pi≥ P3maintain the maximum outage probability minimized, thus they are optimal. For case (b), we prove by contradiction. Suppose that not all Pj, j∈ J={1,2,3}are equal at optimality. Denote J′ as the set of the indices such thatIf {1,3}∈J′, increase p1,1and p2,2, while decrease p2,1and p1,2until all Pjare equal,which leads to a lower.It is can be shown thatcan be further decreased for other user combinations in J′ in a similar way. This contradicts the assumption and the proposition is true.

    Based on these characteristics, a simple iterative algorithm is proposed in Algorithm 1 to obtain the optimal solution stated in proposition 1. In line 4 and 5 of the algorithm, the current outage probability with zth power is used as the penalty coefficient of power update, since Pi,i=1,2 and P3decrease monotonically with pi,1and pi,2, respectively. This leads to the outage probability greater than the optimal to decrease and less to increase in the next iteration. Besides, line 6 guarantees that the updated power always satisfies constraints (17b) with equality and is in the feasible region. Setting reasonable step length by adjusting z, the gaps among outage probabilities gradually reduce and finally equal outage probability is achieved with a tolerable error ∈ between the greatest and smallest one.Then the update of power remains unchanged and according to proposition 1, the algorithm converges to the optimal solution.

    V. SIMULATION RESULTS AND DISCUSSION

    We evaluate the outage performance of the NOMA-based UAV satellite networks with some fixed parameters listed in table 1. We present the outage performance first with a fixed power allocation, and then with the minmax fairness power allocation.

    5.1 Outage performance with fixed power allocation

    This section simulates the outage performance of the system and verifies the analytical analysis, for a fixed power allocation. Define the nominal signal noise ratio (SNR) without rain attenuation of the link 2-1 as

    which is used as the reference SNR for other links since their SNR varies proportionately. Set the fixed power allocation as pi,1=0.9 PT, pi,2= 0.1PT, i =1,2. Assume the correlation coefficient of rain attenuation is ρ=0.6 and the target for transmission is r0=1 bits/s/Hz.

    ?

    Table I. System parameters for simulation.

    Fig. 2. The outage probability versus nominal SNR.

    Fig. 3. The outage probability of the MT versus correlation coefficient of rain attenuation.

    Figure 2 plots the outage probability of the UAVs and the MT versus varying SNR. Together with the analytical results of outage probability in (11) and (16), Monte Carlo simulation results, obtained by calculating the percentage of the outage event based on 105realizations of the rain attenuation, are also plots for verifi-cation. They agree very well in the whole SNR regime. Despite only a small part of power allocated to the MT, the outage performance of the MT largely outperforms the UAV under low SNR for the following reasons: a) good channel condition due to high antenna gain, b) avoiding interference by SIC, c) multiplexing gain from the dual-satellite network. However, the superiority gradually disappears as SNR increases because rain attenuation is statistically stronger at the MT. Fixing SNR=10 dB, the in fluence of the rain attenuation correlation on the outage performance of the MT is illustrated in figure 3 under three configurations of target rate. The outage probability P3increases approximately linearly with the correlation coefficient ρ. In practice, we can improve the outage performance by enlarging the separation angle, which means satellites with large distance are preferred to cooperate.

    5.2 Power allocation for min-max fairness

    We will next provide the numerical results of the fair power allocation and the proposed algorithm. Setting SNR=10 dB, r0=1 bits/s/Hz,the error ∈=10?3and initializing the power allocation pi,1=0.9 PT, pi,2=0.1PT, i=1,2.Figure 4 shows the convergence process of the proposed iteration algorithm with the penalty power configured as z=1, z=2 and z=3, respectively. Comparing figure 4(a) with figure 4(b),it can be seen that with smaller z, the step length is smaller so the outage probabilities converge to the optimal value more smoothly, while the convergence rate slows down and the needed number of iteration is larger.However, when z increases to some extent, the oscillation encumbers the convergence process leading to inferior convergence rate, as observed from figure 4(c).

    The maximum outage probability achieved by the fair power allocation scheme in NOMA and OMA is compared for target spectral efficiency r0=1 bits/s/Hz and r0=0.5 bits/s/Hz in figure 5. In OMA, equal bandwidth-split is used and the fair power allocation is per-formed by a similar algorithm to Algorithm 1.It can be observed that NOMA outperforms OMA in terms of the outage performance under the same power and spectrum resource.For higher target spectral efficiency, the performance superiority is larger. Meanwhile, the performance gap between NOMA and OMA narrows as SNR increases, since all outage probabilities approach 0 as SNR improves.

    Fig. 4. The convergence process of the proposed iteration algorithm.

    Fig. 5. The maximum outage probability achieved by the fair power allocation scheme in NOMA and OMA.

    VI. CONCLUSIONS AND FUTURE WORK

    In this paper, the NOMA based UAV satellite networks, where UAVs integrate the multi-satellite network by NOMA was investigated.Since Ku-band and above is used, we studied the outage performance in rain fading channel.The analytic outage probability was obtained for a fixed power allocation. On this basis, we proposed an efficient power allocation algorithm to address the issue of min-max fairness.Simulation results have verified the outage analysis and confirmed the convergence of the proposed algorithm. It showed that the outage performance deteriorates with rain attenuation correlation and NOMA outperforms OMA with the same fair power allocation.

    This paper assumed the two satellites transmit on the same frequency. An important future work is considering spectrum sharing between satellites, which leads to inter-cell interference. Precoding at the transmitters and interference cancellation at the receivers are the key technologies to be researched.

    ACKNOWLEDGEMENT

    This work was supported in part by the National Natural Science Foundation of China (No.91638205, 91438206, 61771286, 61621091).

    [1] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles:opportunities and challenges,” IEEE Commun.Mag., vol. 54, no. 5, May 2016, pp. 36–42.

    [2] Y. Chen, W. Feng, and G. Zheng, “Optimum Placement of UAV as Relays,” IEEE Communications Letters, vol. 22, no. 2, Feb. 2018, pp. 248-251

    [3] R. J. Barton, “Distributed MIMO communication using small satellite constellations,” in Proc. IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Oct. 2014, pp. 1–7.

    [4] A. I. Pérez-Neira, C. Ibars, J. Serra, A. Del Coso,J. Gómez-Vilardebó, M. Caus, and K. P. Liolis,“MIMO channel modeling and transmission techniques for multi-satellite and hybrid satellite–terrestrial mobile networks,” Physical Communication, vol. 4, no. 2, 2011, pp. 127–139.

    [5] K. P. Liolis, A. D. Panagopoulos, and P. G. Cottis, “Multi-satellite MIMO communications at ku-band and above: Investigations on spatial multiplexing for capacity improvement and selection diversity for interference mitigation,”EURASIP J. Wireless Commun. and Networking,vol. 2007, no. 2, 2007, pp. 16–16.

    [6] A. Mohammed and T. Hult, “Performance evaluation of a MIMO satellite diversity system,”in Proc. 10th International Workshop on Signal Processing for Space Communications, Oct.2008, pp. 1–5.

    [7] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C. L.I, and H. V. Poor, “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Commun. Mag., vol. 55, no. 2, Feb. 2017, pp. 185–191.

    [8] Z. Ding, P. Fan, and H. V. Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Veh. Technol., vol. 65, no. 8, Aug. 2016, pp. 6010–6023.

    [9] C. Liu, W. Feng, T. Wei, and N. Ge, “Fairness-oriented hybrid precoding for massive MIMO maritime downlink systems with large-scale CSIT,” China Communications, vol. 15, no. 1, Jan.2018, pp. 52-61.

    [10] S. Shi, L. Yang, and H. Zhu, “Outage balancing in downlink nonorthogonal multiple access with statistical channel state information,” IEEE Trans.Wireless Commun., vol. 15, no. 7, Jul. 2016, pp.4718–4731.

    [11] H. Wei, W. Feng, Y. Li, and S. Zhou, “Energy-effi-cient resource allocation for small-cell networks:a stable queue perspective,” China Communications, vol. 14, no. 10, Oct. 2017, pp. 142-150.

    [12] P. K. Sharma and D. I. Kim, “UAV-enabled downlink wireless system with non-orthogonal multiple access,” in Proc. IEEE Globecom Work-shops,Dec. 2017, pp. 1–6.

    [13] X. Zhu, C. Jiang, L. Kuang, N. Ge, and J. Lu,“Non-orthogonal multiple access based integrated terrestrial-satellite networks,” IEEE J. Sel.Areas Commun., vol. 35, no. 10, Oct. 2017, pp.2253–2267.

    [14] W. Feng, N. Ge, and J. Lu, “Coordinated satellite-terrestrial networks: a robust spectrum sharing perspective,” in Proc. IEEE WOCC’2017,Newark, New Jersey, USA, Apr. 2017.

    [15] Feng W, Wang Y, Lin D, et al. When mmWave communications meet network densification:A scalable interference coordination perspective[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1459-1471.

    [16] J. Zhao, W. Feng, M. Zhao, and J. Wang, “Coordinated multi-user spectrum sharing in distributed antenna-based cognitive radio systems,”China Communications, vol. 13, no. 1, Jan. 2016,pp. 57-67.

    欧美极品一区二区三区四区| 老司机午夜十八禁免费视频| 日本黄色片子视频| 老汉色av国产亚洲站长工具| 亚洲片人在线观看| 亚洲电影在线观看av| 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 在线观看66精品国产| 久久精品国产亚洲av涩爱 | 天天添夜夜摸| 欧美日韩综合久久久久久 | 三级国产精品欧美在线观看| 美女高潮的动态| or卡值多少钱| 最好的美女福利视频网| 国产免费男女视频| 亚洲一区高清亚洲精品| 51午夜福利影视在线观看| 搡老岳熟女国产| 五月伊人婷婷丁香| 国产亚洲精品久久久久久毛片| 亚洲五月婷婷丁香| 国产精品一区二区三区四区久久| 欧美区成人在线视频| 高潮久久久久久久久久久不卡| 一级黄片播放器| 久久天躁狠狠躁夜夜2o2o| 亚洲,欧美精品.| av福利片在线观看| 国产av麻豆久久久久久久| 色综合欧美亚洲国产小说| 毛片女人毛片| 亚洲av一区综合| 岛国视频午夜一区免费看| 男女午夜视频在线观看| 国产亚洲精品久久久久久毛片| 午夜日韩欧美国产| www.熟女人妻精品国产| 国产中年淑女户外野战色| 亚洲五月天丁香| 国产精品爽爽va在线观看网站| 黄色女人牲交| 神马国产精品三级电影在线观看| 小说图片视频综合网站| 亚洲一区二区三区不卡视频| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区久久| 一二三四社区在线视频社区8| 亚洲精品亚洲一区二区| 动漫黄色视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲无线观看免费| 国产亚洲精品综合一区在线观看| 91在线观看av| 黄色日韩在线| 亚洲精品亚洲一区二区| 国产主播在线观看一区二区| 成年女人永久免费观看视频| 日本a在线网址| 成年人黄色毛片网站| 最新在线观看一区二区三区| 久久国产精品人妻蜜桃| 亚洲一区二区三区不卡视频| 亚洲中文字幕日韩| 亚洲美女黄片视频| 亚洲精品美女久久久久99蜜臀| 岛国在线免费视频观看| 亚洲人成电影免费在线| 国产av麻豆久久久久久久| 精品人妻偷拍中文字幕| 成年女人永久免费观看视频| 美女 人体艺术 gogo| 小蜜桃在线观看免费完整版高清| 午夜影院日韩av| 香蕉丝袜av| 成年女人毛片免费观看观看9| 欧美绝顶高潮抽搐喷水| 亚洲国产精品sss在线观看| 观看美女的网站| 老司机午夜福利在线观看视频| 国产精品乱码一区二三区的特点| 久久久久久久久大av| 黄片大片在线免费观看| 可以在线观看毛片的网站| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 精品99又大又爽又粗少妇毛片 | 久久久久免费精品人妻一区二区| 亚洲国产精品999在线| 日本a在线网址| 99热这里只有精品一区| 精品一区二区三区人妻视频| 黄色视频,在线免费观看| 国产成人欧美在线观看| 黄色成人免费大全| 99在线人妻在线中文字幕| 操出白浆在线播放| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 女人十人毛片免费观看3o分钟| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 国产成年人精品一区二区| 1024手机看黄色片| 一本综合久久免费| 91麻豆精品激情在线观看国产| 国产亚洲av嫩草精品影院| 日日夜夜操网爽| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| svipshipincom国产片| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 欧美日韩精品网址| 一区福利在线观看| 麻豆成人午夜福利视频| 99国产精品一区二区三区| 搡女人真爽免费视频火全软件 | 白带黄色成豆腐渣| 中文字幕人妻丝袜一区二区| 夜夜夜夜夜久久久久| www日本在线高清视频| 国产精品久久久人人做人人爽| 欧美乱妇无乱码| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 成人无遮挡网站| 精品一区二区三区av网在线观看| 国产三级在线视频| 亚洲精品影视一区二区三区av| 国产色爽女视频免费观看| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久毛片微露脸| 成年人黄色毛片网站| 国产亚洲av嫩草精品影院| bbb黄色大片| 又爽又黄无遮挡网站| 观看免费一级毛片| 成人国产综合亚洲| 此物有八面人人有两片| 国产精品香港三级国产av潘金莲| 亚洲国产欧洲综合997久久,| 国产精品久久久久久人妻精品电影| 热99re8久久精品国产| 亚洲av成人精品一区久久| 亚洲av二区三区四区| 91av网一区二区| 中文字幕熟女人妻在线| 国产欧美日韩一区二区精品| 高清在线国产一区| 国内精品一区二区在线观看| 女人高潮潮喷娇喘18禁视频| 黄片小视频在线播放| 午夜福利在线观看吧| 免费看日本二区| 日本成人三级电影网站| 亚洲无线在线观看| 婷婷丁香在线五月| 每晚都被弄得嗷嗷叫到高潮| 亚洲av熟女| 真实男女啪啪啪动态图| 亚洲成人精品中文字幕电影| 亚洲最大成人手机在线| 国内精品一区二区在线观看| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女| 香蕉av资源在线| 天天躁日日操中文字幕| 成人av在线播放网站| 国产单亲对白刺激| 亚洲五月婷婷丁香| 国产麻豆成人av免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 少妇熟女aⅴ在线视频| 九色国产91popny在线| 色尼玛亚洲综合影院| 国产69精品久久久久777片| 毛片女人毛片| 中出人妻视频一区二区| 日日摸夜夜添夜夜添小说| 国产老妇女一区| 草草在线视频免费看| 日日干狠狠操夜夜爽| 夜夜夜夜夜久久久久| 亚洲成av人片在线播放无| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 一本久久中文字幕| 国产精品 欧美亚洲| 又黄又爽又免费观看的视频| 日韩欧美精品v在线| 我要搜黄色片| 免费看日本二区| 成人高潮视频无遮挡免费网站| 在线视频色国产色| 国产淫片久久久久久久久 | 老熟妇乱子伦视频在线观看| 哪里可以看免费的av片| 国产成人aa在线观看| 99热这里只有是精品50| 欧美精品啪啪一区二区三区| 特级一级黄色大片| 好看av亚洲va欧美ⅴa在| 在线国产一区二区在线| 成人国产综合亚洲| 99久久99久久久精品蜜桃| 成人欧美大片| 精品福利观看| 亚洲美女黄片视频| or卡值多少钱| 在线看三级毛片| 国产亚洲精品综合一区在线观看| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 99精品久久久久人妻精品| 免费在线观看日本一区| 欧美一区二区精品小视频在线| 九色成人免费人妻av| 成人性生交大片免费视频hd| 国产精品电影一区二区三区| 日韩免费av在线播放| 久久香蕉国产精品| 无人区码免费观看不卡| 国产亚洲精品综合一区在线观看| 日韩成人在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 国产综合懂色| 午夜福利在线观看免费完整高清在 | 欧美日韩国产亚洲二区| 精品一区二区三区人妻视频| www.999成人在线观看| 亚洲国产精品成人综合色| 亚洲欧美激情综合另类| 18+在线观看网站| 色哟哟哟哟哟哟| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 亚洲 欧美 日韩 在线 免费| 欧美一区二区国产精品久久精品| 女警被强在线播放| 欧美乱色亚洲激情| 九九久久精品国产亚洲av麻豆| 俺也久久电影网| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 69人妻影院| 高清在线国产一区| 麻豆久久精品国产亚洲av| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 成人永久免费在线观看视频| av欧美777| 亚洲欧美日韩高清专用| 成人精品一区二区免费| 美女大奶头视频| 高清毛片免费观看视频网站| 真人做人爱边吃奶动态| 最好的美女福利视频网| 久久久久久久精品吃奶| 国产又黄又爽又无遮挡在线| 两个人的视频大全免费| 最近视频中文字幕2019在线8| 成年女人毛片免费观看观看9| 欧美最新免费一区二区三区 | 日本 av在线| 久久九九热精品免费| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看 | av专区在线播放| 村上凉子中文字幕在线| 精品久久久久久久末码| 免费观看精品视频网站| 国产男靠女视频免费网站| 欧美激情在线99| 精品久久久久久久久久免费视频| 97碰自拍视频| 丝袜美腿在线中文| 国产精品一区二区免费欧美| 91字幕亚洲| 日日干狠狠操夜夜爽| 观看免费一级毛片| 国产精品久久久久久亚洲av鲁大| 久久6这里有精品| 亚洲在线观看片| 日韩精品青青久久久久久| 岛国在线免费视频观看| 男女那种视频在线观看| 嫩草影视91久久| 欧美激情在线99| 高潮久久久久久久久久久不卡| 国产男靠女视频免费网站| 日本 欧美在线| 99热精品在线国产| 日韩欧美精品v在线| 性色avwww在线观看| 波多野结衣巨乳人妻| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 亚洲精华国产精华精| 亚洲不卡免费看| 麻豆久久精品国产亚洲av| 亚洲性夜色夜夜综合| 精品久久久久久成人av| 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| svipshipincom国产片| 久久久久亚洲av毛片大全| 91久久精品国产一区二区成人 | 老熟妇仑乱视频hdxx| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 精品一区二区三区人妻视频| 免费观看人在逋| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 亚洲七黄色美女视频| 国产av一区在线观看免费| 1000部很黄的大片| 偷拍熟女少妇极品色| 日本三级黄在线观看| 国产高潮美女av| 18禁美女被吸乳视频| 男女那种视频在线观看| av天堂在线播放| 精品久久久久久久末码| 精品久久久久久久人妻蜜臀av| 精华霜和精华液先用哪个| 欧美乱妇无乱码| 无限看片的www在线观看| 国产精品免费一区二区三区在线| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 99精品欧美一区二区三区四区| 在线看三级毛片| 午夜两性在线视频| 在线观看美女被高潮喷水网站 | 日本撒尿小便嘘嘘汇集6| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 国产精品亚洲av一区麻豆| 在线a可以看的网站| 长腿黑丝高跟| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 成人高潮视频无遮挡免费网站| 国产精品一区二区三区四区久久| e午夜精品久久久久久久| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 黄色丝袜av网址大全| 日韩精品青青久久久久久| 男女视频在线观看网站免费| 99久久99久久久精品蜜桃| 91麻豆精品激情在线观看国产| 在线看三级毛片| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 无限看片的www在线观看| 我要搜黄色片| 国产毛片a区久久久久| 日日干狠狠操夜夜爽| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| www日本在线高清视频| 国产高清有码在线观看视频| 亚洲色图av天堂| 欧美在线一区亚洲| 变态另类成人亚洲欧美熟女| 午夜福利视频1000在线观看| 99久久久亚洲精品蜜臀av| 最近在线观看免费完整版| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 99久久精品国产亚洲精品| 欧美日本亚洲视频在线播放| 国产精品久久久久久久久免 | 国产成年人精品一区二区| 亚洲在线观看片| 亚洲精品美女久久久久99蜜臀| 免费在线观看日本一区| 综合色av麻豆| 日韩国内少妇激情av| 久久6这里有精品| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 99视频精品全部免费 在线| 最后的刺客免费高清国语| 久久香蕉精品热| 男人和女人高潮做爰伦理| 精品一区二区三区人妻视频| 午夜精品在线福利| 精品福利观看| 99国产综合亚洲精品| 国产单亲对白刺激| 欧美三级亚洲精品| 色综合站精品国产| svipshipincom国产片| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 中文资源天堂在线| 久久精品影院6| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 午夜两性在线视频| 香蕉丝袜av| 午夜视频国产福利| 美女高潮喷水抽搐中文字幕| 尤物成人国产欧美一区二区三区| 免费看a级黄色片| 色播亚洲综合网| netflix在线观看网站| 久久99热这里只有精品18| 一级黄片播放器| 成年女人看的毛片在线观看| 在线观看美女被高潮喷水网站 | 18禁黄网站禁片午夜丰满| 手机成人av网站| 亚洲狠狠婷婷综合久久图片| 国产激情欧美一区二区| 午夜免费观看网址| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 18禁美女被吸乳视频| av专区在线播放| 88av欧美| 日韩欧美在线二视频| 每晚都被弄得嗷嗷叫到高潮| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 热99在线观看视频| tocl精华| 中文资源天堂在线| 久久中文看片网| 亚洲男人的天堂狠狠| 国产真实伦视频高清在线观看 | 国产成年人精品一区二区| 高清在线国产一区| av欧美777| 51国产日韩欧美| 身体一侧抽搐| 免费看十八禁软件| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 国产精品99久久久久久久久| or卡值多少钱| 日日夜夜操网爽| 国产精品久久久久久精品电影| 蜜桃亚洲精品一区二区三区| 伊人久久大香线蕉亚洲五| 久久午夜亚洲精品久久| 日本成人三级电影网站| 日韩av在线大香蕉| 无限看片的www在线观看| 亚洲性夜色夜夜综合| 久久久久久久久中文| 国产精品三级大全| 亚洲在线观看片| 宅男免费午夜| 国产精品永久免费网站| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 欧美av亚洲av综合av国产av| 亚洲人与动物交配视频| 99视频精品全部免费 在线| 母亲3免费完整高清在线观看| 内射极品少妇av片p| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 国产成人a区在线观看| 18禁国产床啪视频网站| 级片在线观看| 他把我摸到了高潮在线观看| 日本在线视频免费播放| 99久久精品热视频| 久久人妻av系列| 午夜福利免费观看在线| 老熟妇乱子伦视频在线观看| 国产淫片久久久久久久久 | 男女做爰动态图高潮gif福利片| 日本一本二区三区精品| 俄罗斯特黄特色一大片| 在线a可以看的网站| 女警被强在线播放| 亚洲乱码一区二区免费版| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人av| 在线十欧美十亚洲十日本专区| 日本一二三区视频观看| 日本与韩国留学比较| 在线播放国产精品三级| 久久久国产精品麻豆| 手机成人av网站| av女优亚洲男人天堂| 久久国产乱子伦精品免费另类| 天堂影院成人在线观看| 免费看日本二区| 2021天堂中文幕一二区在线观| 国产日本99.免费观看| 亚洲美女黄片视频| 欧美中文日本在线观看视频| 亚洲国产精品999在线| 最新在线观看一区二区三区| 少妇人妻一区二区三区视频| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| xxxwww97欧美| 免费看a级黄色片| 成人鲁丝片一二三区免费| 亚洲自拍偷在线| 99久久综合精品五月天人人| 男女下面进入的视频免费午夜| 国产久久久一区二区三区| 免费av毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 亚洲国产精品久久男人天堂| www.色视频.com| 日本三级黄在线观看| 国产伦精品一区二区三区视频9 | 波野结衣二区三区在线 | 亚洲人成网站高清观看| 亚洲,欧美精品.| 亚洲在线观看片| 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 国产亚洲精品综合一区在线观看| 嫩草影院精品99| 成人永久免费在线观看视频| 精品免费久久久久久久清纯| 欧美日韩瑟瑟在线播放| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 免费观看的影片在线观看| 亚洲中文字幕一区二区三区有码在线看| 黄片大片在线免费观看| 免费在线观看影片大全网站| 在线观看免费午夜福利视频| 神马国产精品三级电影在线观看| 久久久久性生活片| 宅男免费午夜| 熟妇人妻久久中文字幕3abv| 1024手机看黄色片| avwww免费| 一区二区三区国产精品乱码| 国产精品久久视频播放| av中文乱码字幕在线| 最新美女视频免费是黄的| 超碰av人人做人人爽久久 | 亚洲精华国产精华精| 日韩欧美国产一区二区入口| 中文在线观看免费www的网站| 国产精品女同一区二区软件 | 国产精品1区2区在线观看.| 午夜精品在线福利| 日韩精品青青久久久久久| 欧美黄色淫秽网站| 亚洲成人精品中文字幕电影| 午夜福利成人在线免费观看| 久久婷婷人人爽人人干人人爱| 制服人妻中文乱码| 国产av不卡久久| 在线国产一区二区在线| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 免费搜索国产男女视频| 国产亚洲精品久久久久久毛片| 1024手机看黄色片| 波多野结衣高清无吗| 夜夜夜夜夜久久久久| 一a级毛片在线观看| 欧美大码av| 国产精品三级大全| 国产精品亚洲美女久久久| 久久亚洲真实| 亚洲国产高清在线一区二区三| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 特大巨黑吊av在线直播| 高清日韩中文字幕在线| 国产激情欧美一区二区| 日韩欧美免费精品| 免费av不卡在线播放| 国产欧美日韩一区二区精品| av天堂在线播放| 欧美中文综合在线视频| 亚洲av美国av| 国产精品国产高清国产av| 一级黄片播放器| 中文字幕人妻丝袜一区二区| 国产乱人伦免费视频| 夜夜夜夜夜久久久久| 九色成人免费人妻av| 麻豆成人av在线观看| 国产精品久久久久久久久免 | 亚洲黑人精品在线| 女人高潮潮喷娇喘18禁视频| 日韩大尺度精品在线看网址| 啪啪无遮挡十八禁网站| 午夜影院日韩av| av专区在线播放| 高清毛片免费观看视频网站| 国产一区二区在线观看日韩 | 国产黄a三级三级三级人| 日本成人三级电影网站| 国产v大片淫在线免费观看| 国产精品爽爽va在线观看网站| 国产一区二区三区视频了|