• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear robust control of a quadrotor helicopter with finite time convergence

    2018-06-04 02:47:54GuozhouZHENGBinXIAN
    Control Theory and Technology 2018年2期

    Guozhou ZHENG,Bin XIAN

    School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    1 Introduction

    The navigation and control of unmanned aerial vehicles(UAVs),also known as drones,has become an important research area over the past decades[1,2].As a micro helicopter,the quadrotor UAV attracts great attention from military and civil applications due to its special advantages such as simple structure,vertical taking off and landing(VTOL),and rapid maneuvering.It has been widely used in a variety of situations including surveillance,fire flighting,environmental monitoring,etc.[3–5].Comparing to the flapping-wing aircraft and other configurations,quadrotor UAV is simple in mechanism,and its four identical rotors are the only moving parts onboard.The simplicity in mechanism is a trade-off with the dependency of sophisticated flight controller[6,7].However,the quadrotor is a highly nonlinear and time-varying system,and it has an unstable open-loop dynamics[8].Additionally,due to its small size and weight,the quadrotor is very sensitive to external aerodynamic disturbances such as wind gusts and ground effect.Therefore,the design of highperformance nonlinear control mechanisms for quadrotors in the presence of structural uncertainties and unknown external disturbances is still a challenging task.

    To guarantee a safe and steady flight against external disturbances,various control methods have been developed for quadrotors in recent years.In[9],the authors developed an H∞based attitude controller for the quadrotor’s attitude subsystem.In[10],the timevarying disturbance was treated as a new unknown state and estimated by an extended observer.Then,a sliding mode based feedback controller was employed for the attitude stabilization,and numerical simulation results were included.An integral sliding mode based robust controller is proposed for the control of a quadrotor in[11],though the proof of the stability and numerical simulation results were presented,the control gains were not very easy to be tuned.In[12],the authors developed a nonlinear robust attitude control algorithm for a quadrotor with uncertain dynamics by combing a PD controller with a robust compensator,and ultimately bounded attitude tracking result was proven.Based on these works in[12],the authors former extend the control strategy in[13],where both position and attitude controllers were developed,the tracking error were proven to be kept within a known neighborhood of the origin ultimately.A nonlinear robust adaptive was developed in[14]for a quadrotor with linear parameterized(LP)uncertain-ties and bounded disturbances,semiglobally asymptotic tracking of a time-varying position trajectory and yaw angle trajectory was proved via a Lyapunov-based stability analysis.In[15],authors designed an attitude controller by using exponential coordinatesto avoid singuarlities,and trajectory linearization method was employed to facilitate the control design procedure.

    Though a lot of controller have been developed for the control of quadrotors,most of them can not guarantee the convergence time for the quadrotor’s outputs.The super twisting algorithm,which is a second order continuous sliding mode control technique that ensures robustness in the presence of the smooth matched disturbance with bounded gradient,is implemented for attitude control of a quadrotor in[16]with known knowledge of the boundary of the disturbance gradient.

    Motivated by the control methodology presented in[17],we develop a new nonlinear robust controller for the quadrotor with the attitude angles and altitude position selected as the system’s outputs.An adaptive super-twisting algorithm is combined with backstepping method to formulate the controller.The proposed controller does not require the exact knowledge of the boundary of the disturbance or its gradient.By using the super-twisting algorithm,the control inputs to the quadrotor suffers little from the chattering phenomenon,and the adaptive laws ensure that the control gains will be easy to be tuned.Lyapunov based stability analysis is employed to show that the closed-loop operation is stable,and the tracking errors converges to an eighbor hood of the origin with finite convergence time.Moreover,to increase the measurement accuracy for the altitude channel where low-cost on board sensor were very sensitiveto noise,anonlinear complementary filter isdeveloped to fuse the raw data from the onboard accelerometer and barometer.The stability and convergence of the filter is also proven via Lyapunov based analysis.Realtime experimental results are implemented on a selfmade quadrotor helicopter testbed,the results show that the proposed control strategy has achieved good control performance for the quadrotor.

    Therefore,the contribution of the proposed design includes that:1)a nonlinear complementary filter is designed to provide accurate estimation for the quadrotor helicopter’saltitudebased on raw datafrom theonboard low cost sensors;2)the super-twisting based nonlinear controller can achieve finite time convergence of the attitude tracking error under the effects of unknown external disturbances without exact knowledge of the disturbances’upper bound;and 3)real-time flight experimental results have testified the good performance of the proposed methodology.

    This paper is organized as follows:The dynamics model of the quadrotor helicopter and control objective are described in Section 2.Section 3 presents the design of the nonlinear complementary filter design for the altitude channel.Section 4 provides details of the control development and stability analysis.Real-timeexperimental results are included in Section 5 to validate the controller’s performance.Finally,some conclusion remarks are included in Section 6.

    2 Dynamic model of the quadrotor

    The quadrotor UAV can be considered as a rigid body with 6 degree-of-freedom(DOF):three translational motions and three rotational motions As illustrated in Fig.1,two frames are utilized to represent the motion of the quadrotor.Let I={xI,yI,zI}denote the right-hand inertia reference frame,and B={xB,yB,zB}denote the right-hand body-fixed reference frame.The altitude of the UAV with respect to I is denoted by z(t)∈R,and Euler angle vector of the UAV with respect to I is denoted by η(t)=[φ(t) θ(t) ψ(t)]T∈ R3where φ(t),θ(t)and ψ(t)are the quadrotor’s roll angle,pitch angle,and yaw angle,respectively.The rotation matrix from B to I is presented as follows[18]:

    where c(·)is the abbreviation for cos(·),and s(·)is the abbreviation for sin(·).In Fig.1,fifor i=1,...,4,represents the independent thrust force generated by the four rotors of the quadrotor.

    Fig.1 Schematic of a quadrotor UAV.

    The attitude dynamics of the quadrotor considered in this paper can be modeled via the following differential equations[18]:

    where Ω(t)=[p(t)q(t)r(t)]Trepresents the angular velocity vector of the quadrotor with respect to B,τ(t)=[τφ(t) τθ(t) τψ(t)]T∈ R3denotes the control torque input vector,d(t)=[dφ(t)dθ(t)dψ(t)]T∈ R3is the unknown external disturbance moment vector.In(2),J=diag{[JφJ(rèn)θJψ]}∈ R3×3denotes the inertia matrix with Jφ,Jθ,and Jψbeing some positive constants,the matrix Φ(η)∈ R3×3represents the rotational velocity transfer matrix from B to I which has the following form[4]

    The following assumption will be employed in the subsequent control development.

    Assumption 1The disturbance term d and its time derivative˙d are bounded such thatwhere δ1and δ2are some unknown positive constants.

    The dynamic model for the altitude channel of the quadrotor is shown as follows[18]:

    where m∈R represents the mass of the quadrotor,ut∈R is the total thrust in the z-direction,g is the acceleration of gravity,and dt(t)∈R denotes the unknown external disturbance force in the z-direction.The following assumption will be utilized in the subsequent control development.

    Assumption 2The disturbance item dtand its time derivativeare bounded such thatδz2where δz1and δz2are some unknown positive constants.

    Assumption 3Therollangleφ(t)and the pitch angle θ(t)satisfy the following inequalities:

    This assumption has also been employed in[13].

    The relationship between the control inputs[τφτθτψut]Tand the rotor thrusts force[f1f2f3f]Tis given by

    where lfis the distance from each rotor to the center of the quadrotor,and pfis the force-to-moment scaling factor.

    The main control objective is to design control inputs(τ,ut)to drive the quadrotor’soutputs(η(t),z(t))to track some pre-defined reference trajectory(ηd(t),zd(t)).

    3 Nonlinear complementary filter for the altitude measurement

    In this paper,two low cost and light weight onboard sensors are employed to provide altitude measurements for the quadrotor,the first one is the barometer,and the other one is the accelerometer.The onboard barometer can provide a rough relative altitude measurement with an accuracy of about±0.5m which is not good enough for accurate hovering control of the quadrotor,and the onboard accelerometer returns an acceleration measurement in the altitude direction which is characterized with high noise levels and biases.A nonlinear complementary filter is introduced to deal with the misalignment of the accelerometer axes and factitious placement failure as well as some other nonlinearities,thus good altitude estimation can be obtained via the raw outputs from the barometer and the accelerometer.

    To implement the nonlinear altitude fusion algorithm,an altitude measurement dynamics model with consideration of the proposed nonlinearities is introduced as follows:

    where z(t)is defined in(4)and denotes the real altitude value of the quadrotor,P ∈ R3×3denote a matrix relevant to the misalignment of the sensor axes and measuring sensitivity differences among each axis,3denotes the transpose of the third column of the rotation matrix R defined in(1),Q∈R3denote the bias vector,and Am∈R3denotes the outputs from the accelerometer.

    Remark 1In an ideal circumstance where the accelerometer’s outputs reflect the real acceleration value of the quadrotor,P will equal to an identity matrix I3,and Q will be a zero vector.

    Assumption 4The matrix P and Q in(7)are unknown constant terms such thatAnd the altitude channel is assumed to be measurable for low frequency such that zm(t)≈z(t)where zm(t)denotes a reconstructed altitude measurement[22].

    Let the auxiliary estimation errors em(t),σm(t)∈ R be defined as follows:

    whereis the output of the following nonlinear complementary filter,and λzis a positive constant.The nonlinear complementary filter for the altitude channel is designed as follows:

    where αzis a positive constant,?v(t)denotes the estimation for the vertical speed.The adaptive laws ofand ?Q(t)are designed as

    Let the auxiliary error signals ez(t)∈ R,σz∈ R,,andbe defined as follows:

    Taking Assumption 2 into account,(9)and(10)can be rewritten as

    and

    Theorem 1The proposed filter in(9)and(10)ensures an accurate estimation for the altitude and vertical speed such that

    ProofAfter taking the time derivative of(12)and substituting(13)into the result,the following dynamics forcan be obtained

    Let the Lyapunov function candidate Vez(t)∈R be defined as

    By taking the time derivative of Vez(t)and substituting(8),(11)and(14)into the result,it can be obtained that

    considering that P,Amand Y in(15)can be denoted by,and Am={aj}3×1.By substituting(13)into(16),it can be obtained that

    From(17)and(15),it is not difficult to show that σz(t)converges to zero asymptotically.Recalling thatwith λzbeing a positive constant,then it can be shown that.Thus,it can be shown thatvia(11).Finally,since ez(t)→ 0 as t→ 0,we know thatbased on the first entry of(12).□

    4 Control development

    This section presents the control design procedure for attitude angles and altitude position of the quadrotor under modeling uncertainties and unknown external disturbances.

    4.1 Design of the attitude controller

    A modified backstepping method is combined with the adaptive super-twisting algorithm to formulate the proposed control strategy.Before presenting the control laws,we introduce the following error signals:

    where ηd(t) ∈ R3denotes the desired attitude trajectory vector.The stabilization of e1can be obtained by introducing a virtual control input for e2as follows:

    where K=diag{ki}∈ R3×3with ki> 0,i= φ,θ,ψrepresent a gain matrix.By defining σ =e2d?e2,the time derivative of(18)can be obtained as

    It is worth noting that if σ=0,then e1converges asymptotically to zero.Our control objective is to force σ to stay in a bounded domain,and,therefore,e1is also bounded in a domain.

    The attitude controller is designed as follows:

    where α and β denote some diagonal positive-definite adaptive gain matrixes such that α =diag{αi}and β =diag{βi}for(i= φ,θ,ψ),sgn(·)denotes the standard signum function.The gains αiand βihave the following adaptive laws

    where εi, γi1, μiand piare some positive constants.The parameter αimrepresents an arbitrary small positive constant which is used as the switching threshold value.In(21),the auxiliary function vectors Π ∈ R3×1and H ∈ R3×1are defined as follows:

    where the defined function K(x)=0 for x≥0 and K(x)=x for x<0,e1idenotes the i th element of e1and Φi(η)represents the i th row of Φ(η).

    The main stability result of the adaptive attitude controller proposed in(21)is stated by the following theorem.

    Theorem 2The proposed attitude controller in(21)can drive e1(t)and its time derivativeto the domain W in finite time where W is defined as

    with ζ1and ζ2being some positive constants.

    ProofBy substituting from(21)and defining ω=ν +J?1d={ωi}3×1,the closed-loop system dynamics(20)can be rewritten as follows:

    To facilitate Lyapunov based stability analysis,we will present the dynamics listed in(27)into a state-space form.To this end,the following state vector is introduced

    where σiand ωidenote the i th element of σ and ω,respectively.Taking the time derivative of xi,it can be obtained that

    where ρiis some bounded functions that 0 ≤ |ρi|≤ 2δ3.Substituting from(30),(29)can be rewritten in a vector matrix format

    where

    and

    Note that ifthen(for i= φ,θ,ψ),since Φi(η)is bounded(due to Assumption 3),thenIn view of(27),the convergence of e1iis guaranteed as well.Thus,the Lyapunov’s direct method is employed for the convergence of xi.After that,the stability analysis for e1iis presented.The Lyapunov function candidate Viis defined as

    withbeing some positive constants.The nonnegative function Vioin(35)is defined aswhere

    is positive definite if λi> 0 and εiare real number.Substituting from(31),the time derivative of Viocan be obtained as

    By substituting from(25),(33),(36),in(37)can be rewritten as

    where

    with

    Substituting from(23),The matrix Qiwill be positive definite with a minimal eigenvalue λmin(Qi)≥ εiif

    where(see proof in[17]).

    Taking the time derivative of Vi1and substituting from(27)yields

    By substituting from(35),(42),(43),can be rewritten as follows:

    The following two cases will be considered to obtained the result listed in Theorem 2.

    Case 1Suppose that|σi| > μiand αi(t) > αim,?t≥ 0.Then,in view of(22),we have

    Selectingand differentiating(23),we obtain

    Substituting from(24),Fiis computed such that Fi≤0.Substituting from(45),(46),the first two terms on the right hand side of(44)are can celled.Thus,it is easy to have χi≤ 0 and

    As soon as(41)is satisfied,σiconverges to the domain|σi| ≤ μiin finite time tFi(see Lemma 1 in the appendix).

    Case 2Suppose that|σi|< μi,then the control gain αi(t)is reducing in accordance with(22)such that

    Note the term Fiincluded in χibecomes?e1iΦi(η)σ,and in view of the structure of χiwhen substituting from(48),χibecomes sign indefinite as well as˙Viwhich comprises χi.

    Thus,the above two cases forensure that after a finite time tFi,σiwill always stay in a domain|σi|≤ ρiwith ρi> μi(See the discussion presented in[17]).

    In other words,σconvergesto the domain Wσin finite time tF=max{tFi}(for i= φ,θ,ψ)where

    with||·||∞denoting infinity norm,ρ being defined as ρ =max{ρi}(for i= φ,θ,ψ).

    Notice that Φ(η)={?i}3×3is bounded due to Assumption 3 such that|?i|≤ ξ,ξ > 0,we have the second term on the right side of(27)bounded such that|Φi(η)σ|≤ 3ξρ.Then,according to(27),we can conclude that e1iconverges to the domain|e1i|≤ 6ξρ/kias well as its time derivativeto the domainin finite time tHi(see Lemma 2 in the appendix).In other words,the finite time convergence of e1and its time derivativeto the domain W is guaranteed where

    where ζ1=6ξρ/k,k=min{ki}for i= φ,θ,ψ,and ζ2=9ξρ.

    4.2 Design of the altitude controller

    To facilitate the control objective for the altitude channel of the quad rotor,the altitude tracking error signal ez(t)and its sliding mode manifold σz(t)are introduced as follows:

    where λ is a positive gain.

    By taking the time derivative of σz(t)and substituting(4)into the result,it can be obtained that

    whereSimilar as the control development for the attitude controller τ(t),the altitude controller is designed as follows:

    whereαzandβzare the adaptive gains with the following updating laws:

    with εz,γz1,μzand pzbeing some positive constants.The parameter αzmdenotes an arbitrary small positive constant which is employed as the switching threshold value.

    The main stability result of the adaptive altitude controller proposed in(53)is stated by the following theorem.

    Theorem 3The proposed controller can drive ez(t)and its time derivativeto the domain Wzin finite time where Wzis defined as follows:

    with ζz1and ζz2being some positive constants.

    ProofThe proof of Theorem 3 can be completed by the following the similar steps for the proof of Theorem 2.

    5 Experimental results

    In this section,the proposed control strategy in Sections 3 and 4 is implemented on a self-built quadrotor helicopter flying testbed in an indoor environment to validate its performance as shown in Fig.2.The physical parameters of the quadrotor helicopter are listed in Table 1.The control loop runs at a frequency of 1kHz to ensure high performance of real-time response.

    The nonlinear complementary filter proposed in Section 3 provides the altitude estimation information for the closed-loop operation.Its reliability is validated by a comparison between the estimated value and true value as shown in Fig.3.A OptiTrack motion capture system is employed to provide ground truth values for the quadrotor helicopter during the flighting test,these ground truth information is used only for the purpose of comparison,but not utilized in the closed-loop control.In Fig.3,?z(t)and?v(t)represent the altitude estimation and vertical velocity estimation valuesobtained from the nonlinear complementary filter in(12),zr(t)and vr(t)represent the real altitude and vertical velocity values obtained from the motion capture system.From Fig.3,it can be seen that the maximum estimation error for the quadrotor’s altitude position is less than ±0.2m,and the maximum estimation error for the quadrotor’s vertical velocity is less than±0.18m/s.Considering about the fact that the accuracy for the direct altitude measurement from the onboard barometer is about±0.5m,the nonlinear complementary filter proposed in(12)has achieved a good accuracy for the altitude position and vertical velocity measurement.

    Fig.2 Quadrotor helicopter flight testbed.

    Table 1 Parameters for the quadrotor helicopter testbed.

    Fig.3 Comparision between the estimation values(z(t),v(t))and real values(z r(t),v r(t)).

    To validate the performance for the attitude and altitude controllers proposed in Section 4,a stabilization flight test is implemented on the quadrotor helicopter testbed.The control objective is to stabilize the quadrotor’s attitude angle(φ(t), θ(t), ψ(t))to be[φdθdψd]T=[0 0 0]T,and the quadrotor’s altitude z(t)to be some desired value as zd=1.94m.The quadrotor is first taken off manually to a proper position,and then the pilot flips the switcher on the RC controller to turn the quadrotor into automatic stabilizing control procedure,and the automatic control period lasts about 60 seconds.The control gains for attitude and altitude controllers are selected as follows for the best control performance:

    Fig.4 shows the actual attitude response and its desired value.It can be seen that maximum stabilization error for the roll channel is about±1.1°,the maximum stabilization error for the pitch channel is about±0.8°,the maximum stabilization error for the yaw channel is about±1.2°,thus the proposed control strategy has shown good attitude control performance.The stabilization performance for the altitude channel is shown in Fig.5 where?z(t)is used as the closed-loop response for the quadrotor’s altitude position.It can be seen that the maximum altitude stabilization error is about±0.12m,and the maximum vertical velocity stabilization error is less than±0.12m/s,thus the proposed control strategy has achieve good altitude control performance for the quadrotor.From both Fig.4 and Fig.5,it can be seen that the quadrotor’s outputs(φ(t),θ(t),ψ(t),z(t))converge to their desired values very quickly.The adaptive control gains(αφ,αθ,αψ,αz)designed in(22)and(54)are depicted in Fig.6,they are all bounded.The control inputs(τφ,τθ,τψ,ut)are illustrated in Fig.7,they all stay with some reasonable values.

    Fig.4 Actual attitude angles(φ(t),θ(t),ψ(t))and their desired values.

    Fig.5 Actural altitude?z(t),vertical velocity?v(t)and their desired value(z d,v d).

    Fig.6 Adaptive gains(αφ,αθ,αψ,αz).

    Fig.7 Control inputs(τφ,τθ,τψ,u t).

    6 Conclusions

    This paper considers the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown non vanishing external disturbances.The quadrotor’s roll angle,pitch angle,yaw angle,and altitude are selected as the system’s outputs.To improve the measurement accuracy for the altitude channel,a nonlinear complementary is developed and its convergence is proven.Based on the adaptive supert wisting scheme,a nonlinear adaptive controller for the quadrotor is developed and its finite time convergence is proven via the Lyapunov-based stability analysis.Realtime flight experimental results are presented to validate the performance of the proposed control strategy.Future work will focus on developing position controller together with the attitude controller for the quadrotor helicopter to achieve finite time convergence of the position tracking error under effects of parametric uncertainties and external disturbances.

    [1]Y.Du,J.Fang,C.Miao.Frequency domain system identification of an unmanned helicopter based on adaptive genetic algorithm.IEEE Transactions on Industrial Electronics,2014,61(2):870–881.

    [2]M.D.Hua,T.Hamel,P.Morin,et al.Introduction to feedback control of under actuated VTOL vehicles:a review of basic control design ideas and principles.IEEE Control System Magzine,2013,33(1):61–75.

    [3]K.Alexis,G.Nikolakopoulos,A.Tzes.Model predictive quadrotor control:attitude,altitude and position experimental studies.IET Control Theory and Applications,2012,6(12):1812–1827.

    [4]B.Zhao,B.Xian,Y.Zhang,et al.Nonlinear robust adaptive tracking control of aqua drotor UAVvia immersion and invariance methodology.IEEE Transactions on Industrial Electronics,2015,62(5):2891–2902.

    [5]B.Xian,X.Zhang,S.Yang.Nonlinear controller design for an unmanned aerical vehicle with a slung-load.Control Theory&Applications,2016,33(3):273–279(in Chinese).

    [6]W.Hao,B.Xian.Nonlinear fault tolerant control design for quadrotor unmanned aerial vehicle attitude system.Control Theory&Applications,2015,32(11):1457–1463(in Chinese).

    [7]X.Zhang,B.Xian,B.Zhao,et al.Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision.IEEE Transactions on Industrial Electronics,2015,62(10):6392–6403.

    [8]J.Toledo,L.Acosta,D.Perea,et al.Stability and performance analysis of unmanned aerial vehicles:quadrotor against hexrotor.IET Control Theory and Applications,2015,9(8):1190–1196.

    [9]G.V.Raffo,M.G.Ortega,F.R.Rubio.An integral predictive/nonlinear H∞control structure for a quadrotor helicopter.Automatica,2010,46(1):29–39.

    [10]R.Zhang,Q.Quan,K.Y.Cai.Attitude control of a quad rotor aircraft subject to a class of time-varying disturbances.IETControl Theory and Applications,2011,5(1):1140–1146.

    [11]H.Ramirez-Rodriguez,V.Parra-Vega,A.Sanchez-Orta,et al.Robust backstepping control based on integral sliding modes for tracking of quadrotors.Journal of Intelligent and Robotic Systems,2014,73(1/4):51–66.

    [12]H.Liu,Y.Bai,G.Lu,et al.Robust motion control of uncertain quadrotors.Journal of the Franklin Institute,2014,351(12):5494–5510.

    [13]H.Liu,Y.Bai,G.Lu,et al.Robust tracking control of a quadrotor helicopter.Journal of Intelligent and Robotic Systems,2014,75(3/4):595–608.

    [14]B.J.Bialy,J.Klotz,K.Brink,et al.Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties.Proceedings of the American Control Conference,Washington:IEEE,2013:13–18.

    [15]Y.Yu,X.Ding,J.Zhu.Attitudetracking control of aquadrotor UAV in the exponential coordinates.Journal of the Franklin Institute,2013,350(8):2044–2068.

    [16]L.Derafaa,A.Benallegueb,L.Fridman.Super twisting controlal gorithm for the attitude tracking of a four rotors UAV.Journal of the Franklin Institute,2012,349(2):658–699.

    [17]Y.Shtesse,M.Taleb,F.Plestan.A novel adaptive-gain supertwisting sliding mode controller:methodology and application.Automatica,2012,48(5):759–769.

    [18]F.Kendoul,Z.Yu,K.Nonami.Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles.Journal of Field Robotics,2010,27(3):311–334.

    [19]B.Xian,C.Diao,B.Zhao,et al.Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation.Nonlinear Dynamics,2015,79(4):2735–2752.

    [20]I.Gonzalez,S.Salazar,R.Lozano,et al.Real-time altitude robust controller for a quad-rotor aircraft using sliding-mode control technique.Proceeding of the International Conference on Unmanned Aircraft Systems,Atlanta:IEEE,2013:650–659.

    [21]J.Hu,H.Zhang.Immersion and invariance based command filtered adaptive back stepping control of VTOL vehicles.Automatica,2013,49(7):2160–2167.

    [22]R.Mahony,T.Hamel,J.M.Pflimlin.Nonlinear complementary filters on the special orthogonal group.IEEE Transactions on Automatic Control,2008,53(5):1203–1218.

    亚洲电影在线观看av| 国产精品三级大全| 有码 亚洲区| videossex国产| 大香蕉97超碰在线| 蜜桃久久精品国产亚洲av| 午夜免费男女啪啪视频观看| 成年女人看的毛片在线观看| 三级国产精品欧美在线观看| 久久久亚洲精品成人影院| 亚洲精品aⅴ在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久久大av| 欧美一区二区国产精品久久精品| 欧美激情在线99| 能在线免费看毛片的网站| 成人av在线播放网站| 久热久热在线精品观看| 久久精品熟女亚洲av麻豆精品 | 日本av手机在线免费观看| 一级毛片久久久久久久久女| 男人和女人高潮做爰伦理| 少妇人妻精品综合一区二区| 亚洲国产成人一精品久久久| 国产一区有黄有色的免费视频 | 最后的刺客免费高清国语| 性色avwww在线观看| 国产中年淑女户外野战色| 中文字幕免费在线视频6| 欧美一级a爱片免费观看看| 亚洲成av人片在线播放无| 人人妻人人澡人人爽人人夜夜 | 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久久久按摩| 欧美日韩精品成人综合77777| 免费不卡的大黄色大毛片视频在线观看 | 在线播放国产精品三级| 熟妇人妻久久中文字幕3abv| ponron亚洲| 亚洲精品成人久久久久久| 国产一区亚洲一区在线观看| 一二三四中文在线观看免费高清| 人妻系列 视频| 久久久久久久久久久丰满| 久久久久久久久中文| 亚洲成人av在线免费| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片我不卡| 久久99热6这里只有精品| 99久久成人亚洲精品观看| 亚洲国产日韩欧美精品在线观看| 91午夜精品亚洲一区二区三区| 久久99热这里只有精品18| 91久久精品国产一区二区三区| 丰满少妇做爰视频| 中文字幕制服av| 久久人妻av系列| 青春草视频在线免费观看| 国语自产精品视频在线第100页| 日本免费一区二区三区高清不卡| 五月玫瑰六月丁香| 日本一二三区视频观看| 国产乱人偷精品视频| 亚洲无线观看免费| 汤姆久久久久久久影院中文字幕 | 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 美女cb高潮喷水在线观看| 99久久无色码亚洲精品果冻| a级毛色黄片| 亚洲人成网站在线播| 天堂av国产一区二区熟女人妻| av天堂中文字幕网| 男女下面进入的视频免费午夜| 亚洲精品国产成人久久av| 好男人在线观看高清免费视频| 蜜桃久久精品国产亚洲av| 亚洲,欧美,日韩| 大话2 男鬼变身卡| www.色视频.com| 久久久精品欧美日韩精品| 亚洲四区av| 欧美成人免费av一区二区三区| 久久精品熟女亚洲av麻豆精品 | 免费av观看视频| 国产午夜福利久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 丰满乱子伦码专区| 少妇熟女欧美另类| 青春草视频在线免费观看| 插逼视频在线观看| av免费在线看不卡| 97热精品久久久久久| 久久草成人影院| 久久草成人影院| 国产成人午夜福利电影在线观看| 午夜日本视频在线| 国产视频首页在线观看| 99热6这里只有精品| 天堂网av新在线| 国产精品.久久久| av播播在线观看一区| 色哟哟·www| 国产精华一区二区三区| 久久久精品大字幕| 免费无遮挡裸体视频| 精华霜和精华液先用哪个| 观看美女的网站| 亚洲va在线va天堂va国产| 久久久久久久国产电影| 免费av不卡在线播放| 人人妻人人澡欧美一区二区| АⅤ资源中文在线天堂| a级毛色黄片| 赤兔流量卡办理| 成人毛片60女人毛片免费| 免费不卡的大黄色大毛片视频在线观看 | 爱豆传媒免费全集在线观看| 一区二区三区乱码不卡18| 国产精品久久电影中文字幕| 成年版毛片免费区| 免费av毛片视频| 日日摸夜夜添夜夜爱| 国产精品伦人一区二区| 欧美日本视频| 91午夜精品亚洲一区二区三区| 高清av免费在线| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| 最近中文字幕2019免费版| 成人国产麻豆网| 中文字幕熟女人妻在线| 午夜激情福利司机影院| 亚洲精华国产精华液的使用体验| 中文欧美无线码| 国产精品精品国产色婷婷| 午夜激情欧美在线| 中文字幕av在线有码专区| 成年女人看的毛片在线观看| 一边亲一边摸免费视频| 国产淫片久久久久久久久| 国产精品麻豆人妻色哟哟久久 | 晚上一个人看的免费电影| 久久久欧美国产精品| 午夜福利高清视频| 男女边吃奶边做爰视频| 51国产日韩欧美| 十八禁国产超污无遮挡网站| 全区人妻精品视频| 精品久久国产蜜桃| 国产视频内射| 不卡视频在线观看欧美| 亚洲伊人久久精品综合 | 亚洲不卡免费看| 99热这里只有是精品50| 我的老师免费观看完整版| 日日撸夜夜添| 99久国产av精品国产电影| 亚洲av成人精品一区久久| 国产成人精品久久久久久| 日韩三级伦理在线观看| 亚洲国产精品成人久久小说| 久久草成人影院| 精品久久久久久久人妻蜜臀av| 亚洲av一区综合| 国国产精品蜜臀av免费| 久久人人爽人人爽人人片va| 日韩高清综合在线| 晚上一个人看的免费电影| 91精品一卡2卡3卡4卡| 你懂的网址亚洲精品在线观看 | 成人特级av手机在线观看| 亚洲精品色激情综合| 国产精品,欧美在线| 黄色日韩在线| 欧美日韩综合久久久久久| 亚洲欧美日韩东京热| 人体艺术视频欧美日本| 黄色日韩在线| 成人毛片a级毛片在线播放| 我的老师免费观看完整版| 自拍偷自拍亚洲精品老妇| 国产精品一及| 国产精品女同一区二区软件| 久久精品国产99精品国产亚洲性色| 久久久久久久久中文| 女人久久www免费人成看片 | 国产精品一二三区在线看| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 日韩高清综合在线| 一级毛片aaaaaa免费看小| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 久久久久性生活片| 国产探花极品一区二区| 亚洲精品,欧美精品| 国产高清视频在线观看网站| 乱系列少妇在线播放| 日韩一区二区视频免费看| 日本免费一区二区三区高清不卡| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 国语自产精品视频在线第100页| 亚洲欧洲国产日韩| 久久国内精品自在自线图片| 看片在线看免费视频| 午夜福利在线在线| 18禁在线无遮挡免费观看视频| 久久久久久久国产电影| 寂寞人妻少妇视频99o| 一边亲一边摸免费视频| 日韩一区二区三区影片| 黄色配什么色好看| 色综合亚洲欧美另类图片| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 成人三级黄色视频| 欧美zozozo另类| 亚洲不卡免费看| 日本-黄色视频高清免费观看| 亚洲av免费在线观看| 日韩亚洲欧美综合| 亚洲丝袜综合中文字幕| 亚洲乱码一区二区免费版| 观看美女的网站| 极品教师在线视频| h日本视频在线播放| 久久久久久久久大av| 国内精品宾馆在线| 久久亚洲国产成人精品v| 97人妻精品一区二区三区麻豆| 99国产精品一区二区蜜桃av| 99久久人妻综合| 寂寞人妻少妇视频99o| 九色成人免费人妻av| 久久精品国产亚洲网站| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 日韩亚洲欧美综合| 欧美人与善性xxx| 热99在线观看视频| 国产亚洲av嫩草精品影院| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 国产黄色小视频在线观看| 精品久久久久久成人av| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 欧美色视频一区免费| 最近最新中文字幕大全电影3| 国产精品一区二区性色av| 激情 狠狠 欧美| 又爽又黄无遮挡网站| 国内精品一区二区在线观看| 国产男人的电影天堂91| 最近的中文字幕免费完整| 国产成人a区在线观看| 国产精品综合久久久久久久免费| 欧美一区二区亚洲| 日韩欧美国产在线观看| 婷婷色麻豆天堂久久 | 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 男人的好看免费观看在线视频| 特大巨黑吊av在线直播| 国产伦精品一区二区三区四那| 91午夜精品亚洲一区二区三区| 日韩欧美精品v在线| 久久久久久久午夜电影| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 欧美区成人在线视频| 亚洲伊人久久精品综合 | 亚洲国产精品国产精品| 亚洲精品亚洲一区二区| 日本爱情动作片www.在线观看| 国产久久久一区二区三区| 国产熟女欧美一区二区| 天堂√8在线中文| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花 | 国产女主播在线喷水免费视频网站 | 国内少妇人妻偷人精品xxx网站| 青春草亚洲视频在线观看| 亚洲在线观看片| 成人三级黄色视频| 久久精品久久久久久久性| 夫妻性生交免费视频一级片| 男女国产视频网站| 久久精品国产鲁丝片午夜精品| 日本免费一区二区三区高清不卡| 91久久精品国产一区二区成人| 国产一区有黄有色的免费视频 | 特级一级黄色大片| 最近最新中文字幕免费大全7| 99热6这里只有精品| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 午夜福利成人在线免费观看| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| av女优亚洲男人天堂| 久久久久久久久中文| www日本黄色视频网| 国产精品,欧美在线| 日韩成人av中文字幕在线观看| 天堂影院成人在线观看| 日韩中字成人| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 变态另类丝袜制服| 精品久久久久久成人av| 欧美日本亚洲视频在线播放| 一本一本综合久久| 老司机影院毛片| 欧美性猛交黑人性爽| 久久精品国产亚洲av天美| 在线a可以看的网站| 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 又粗又爽又猛毛片免费看| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 国产高清视频在线观看网站| 九九爱精品视频在线观看| 亚洲真实伦在线观看| 简卡轻食公司| 天天躁夜夜躁狠狠久久av| 99在线视频只有这里精品首页| 亚洲中文字幕日韩| 亚洲精品国产av成人精品| 国产黄片美女视频| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6| 麻豆成人av视频| 淫秽高清视频在线观看| 国产午夜精品一二区理论片| 舔av片在线| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久av| 国产成人a区在线观看| 美女黄网站色视频| 99热这里只有是精品50| 高清av免费在线| 免费观看精品视频网站| 日韩三级伦理在线观看| 99在线视频只有这里精品首页| h日本视频在线播放| 欧美一区二区亚洲| 国产淫语在线视频| 国产成人免费观看mmmm| 晚上一个人看的免费电影| 国产精品综合久久久久久久免费| 午夜免费激情av| 国内精品一区二区在线观看| 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 国内揄拍国产精品人妻在线| 91精品国产九色| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 国产毛片a区久久久久| 九九热线精品视视频播放| 亚洲天堂国产精品一区在线| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 色网站视频免费| 免费观看人在逋| 秋霞伦理黄片| 长腿黑丝高跟| 丝袜喷水一区| 亚洲伊人久久精品综合 | 久久鲁丝午夜福利片| 亚洲内射少妇av| 亚洲av电影不卡..在线观看| 国产精品福利在线免费观看| 亚洲精品国产av成人精品| 伦理电影大哥的女人| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 午夜日本视频在线| 亚洲国产精品成人久久小说| 国产熟女欧美一区二区| 日韩欧美精品免费久久| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 久久人妻av系列| 精品国产三级普通话版| 中国国产av一级| 直男gayav资源| 亚洲精品,欧美精品| 久久午夜福利片| 特级一级黄色大片| 深爱激情五月婷婷| 国产精品野战在线观看| 亚洲国产欧美在线一区| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲一区高清亚洲精品| 亚洲精品乱码久久久久久按摩| 精品欧美国产一区二区三| 三级经典国产精品| 最近中文字幕高清免费大全6| 在线播放无遮挡| 麻豆国产97在线/欧美| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄 | 国产av一区在线观看免费| 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 亚洲人成网站高清观看| 国产av在哪里看| 69人妻影院| 97超碰精品成人国产| 哪个播放器可以免费观看大片| 一级毛片我不卡| 欧美不卡视频在线免费观看| 亚洲av熟女| 高清视频免费观看一区二区 | 男人舔女人下体高潮全视频| 国产亚洲一区二区精品| 在线观看66精品国产| 天美传媒精品一区二区| 欧美激情国产日韩精品一区| 波多野结衣高清无吗| 成人av在线播放网站| 国产精品不卡视频一区二区| 日本wwww免费看| 欧美成人免费av一区二区三区| 中文天堂在线官网| 日韩av在线大香蕉| 亚洲综合色惰| 最近中文字幕2019免费版| 国产精品女同一区二区软件| videos熟女内射| 国产精品福利在线免费观看| 能在线免费观看的黄片| 亚洲电影在线观看av| 女人十人毛片免费观看3o分钟| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 韩国av在线不卡| 成人毛片60女人毛片免费| 一级毛片我不卡| 看免费成人av毛片| 最近视频中文字幕2019在线8| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| av线在线观看网站| 看非洲黑人一级黄片| 免费看av在线观看网站| 波多野结衣高清无吗| 精品人妻熟女av久视频| 日韩欧美 国产精品| 在现免费观看毛片| 精品国产露脸久久av麻豆 | 国产精品国产三级专区第一集| 欧美色视频一区免费| 日本黄色视频三级网站网址| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 丝袜美腿在线中文| 女人久久www免费人成看片 | 一个人看的www免费观看视频| 搡老妇女老女人老熟妇| 精品国产露脸久久av麻豆 | 中文字幕免费在线视频6| 黑人高潮一二区| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩卡通动漫| 国产免费一级a男人的天堂| 韩国av在线不卡| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 日韩成人av中文字幕在线观看| 精品国产一区二区三区久久久樱花 | 国产成人精品一,二区| 国产亚洲最大av| 看十八女毛片水多多多| 国产老妇伦熟女老妇高清| 国产精品国产三级专区第一集| 免费黄网站久久成人精品| 国产精品一区二区三区四区久久| 伦精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲激情五月婷婷啪啪| 亚洲不卡免费看| 国产成人福利小说| 大香蕉久久网| 国产淫片久久久久久久久| 少妇人妻一区二区三区视频| 又黄又爽又刺激的免费视频.| 欧美性猛交黑人性爽| 成年版毛片免费区| 水蜜桃什么品种好| 亚洲欧美成人综合另类久久久 | av视频在线观看入口| 国产精品久久久久久久电影| 国产精品一二三区在线看| 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| 99久久无色码亚洲精品果冻| 精品人妻偷拍中文字幕| 内地一区二区视频在线| 国产黄a三级三级三级人| 熟妇人妻久久中文字幕3abv| 午夜精品在线福利| 亚洲成人中文字幕在线播放| 日韩视频在线欧美| av视频在线观看入口| 国产女主播在线喷水免费视频网站 | av黄色大香蕉| 最近视频中文字幕2019在线8| av天堂中文字幕网| 人妻系列 视频| 美女国产视频在线观看| 欧美日本视频| 男插女下体视频免费在线播放| 亚洲真实伦在线观看| 乱码一卡2卡4卡精品| 淫秽高清视频在线观看| 国产老妇女一区| 99热全是精品| 美女黄网站色视频| 国产免费男女视频| 久久久色成人| 97人妻精品一区二区三区麻豆| 欧美一级a爱片免费观看看| 搡老妇女老女人老熟妇| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 床上黄色一级片| 亚洲国产精品合色在线| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 精品久久久久久久人妻蜜臀av| 美女内射精品一级片tv| 亚洲精品乱码久久久久久按摩| 直男gayav资源| 舔av片在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美成人综合另类久久久 | 嫩草影院入口| 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 久久久久久大精品| 插逼视频在线观看| 久久精品国产99精品国产亚洲性色| 亚洲18禁久久av| 精品少妇黑人巨大在线播放 | 亚洲国产精品sss在线观看| 中文字幕人妻熟人妻熟丝袜美| 一级毛片电影观看 | 一级毛片久久久久久久久女| 寂寞人妻少妇视频99o| 韩国av在线不卡| eeuss影院久久| 99久久成人亚洲精品观看| 美女xxoo啪啪120秒动态图| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说 | 色播亚洲综合网| 精品人妻偷拍中文字幕| 又爽又黄a免费视频| 免费观看人在逋| 欧美精品一区二区大全| 久久久久久久久久久丰满| 偷拍熟女少妇极品色| 成人毛片60女人毛片免费| 亚洲国产精品久久男人天堂| 成人漫画全彩无遮挡| 大话2 男鬼变身卡| 欧美成人午夜免费资源| 一级二级三级毛片免费看| 身体一侧抽搐| 午夜福利成人在线免费观看| 综合色av麻豆| 在线天堂最新版资源| 久久精品国产99精品国产亚洲性色| 高清av免费在线| 一级黄色大片毛片| 国产精品伦人一区二区| 久久久久久久午夜电影| 夜夜看夜夜爽夜夜摸| 如何舔出高潮| 国产精品爽爽va在线观看网站| 九九在线视频观看精品| 亚洲欧美精品综合久久99| 综合色av麻豆| 国产一级毛片七仙女欲春2| 成人亚洲精品av一区二区| 噜噜噜噜噜久久久久久91| 亚洲精华国产精华液的使用体验| 亚洲国产精品成人综合色| 亚洲中文字幕一区二区三区有码在线看| 汤姆久久久久久久影院中文字幕 | 久久久久久伊人网av| 久久人妻av系列| 乱人视频在线观看| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说|