• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear robust control of a quadrotor helicopter with finite time convergence

    2018-06-04 02:47:54GuozhouZHENGBinXIAN
    Control Theory and Technology 2018年2期

    Guozhou ZHENG,Bin XIAN

    School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

    1 Introduction

    The navigation and control of unmanned aerial vehicles(UAVs),also known as drones,has become an important research area over the past decades[1,2].As a micro helicopter,the quadrotor UAV attracts great attention from military and civil applications due to its special advantages such as simple structure,vertical taking off and landing(VTOL),and rapid maneuvering.It has been widely used in a variety of situations including surveillance,fire flighting,environmental monitoring,etc.[3–5].Comparing to the flapping-wing aircraft and other configurations,quadrotor UAV is simple in mechanism,and its four identical rotors are the only moving parts onboard.The simplicity in mechanism is a trade-off with the dependency of sophisticated flight controller[6,7].However,the quadrotor is a highly nonlinear and time-varying system,and it has an unstable open-loop dynamics[8].Additionally,due to its small size and weight,the quadrotor is very sensitive to external aerodynamic disturbances such as wind gusts and ground effect.Therefore,the design of highperformance nonlinear control mechanisms for quadrotors in the presence of structural uncertainties and unknown external disturbances is still a challenging task.

    To guarantee a safe and steady flight against external disturbances,various control methods have been developed for quadrotors in recent years.In[9],the authors developed an H∞based attitude controller for the quadrotor’s attitude subsystem.In[10],the timevarying disturbance was treated as a new unknown state and estimated by an extended observer.Then,a sliding mode based feedback controller was employed for the attitude stabilization,and numerical simulation results were included.An integral sliding mode based robust controller is proposed for the control of a quadrotor in[11],though the proof of the stability and numerical simulation results were presented,the control gains were not very easy to be tuned.In[12],the authors developed a nonlinear robust attitude control algorithm for a quadrotor with uncertain dynamics by combing a PD controller with a robust compensator,and ultimately bounded attitude tracking result was proven.Based on these works in[12],the authors former extend the control strategy in[13],where both position and attitude controllers were developed,the tracking error were proven to be kept within a known neighborhood of the origin ultimately.A nonlinear robust adaptive was developed in[14]for a quadrotor with linear parameterized(LP)uncertain-ties and bounded disturbances,semiglobally asymptotic tracking of a time-varying position trajectory and yaw angle trajectory was proved via a Lyapunov-based stability analysis.In[15],authors designed an attitude controller by using exponential coordinatesto avoid singuarlities,and trajectory linearization method was employed to facilitate the control design procedure.

    Though a lot of controller have been developed for the control of quadrotors,most of them can not guarantee the convergence time for the quadrotor’s outputs.The super twisting algorithm,which is a second order continuous sliding mode control technique that ensures robustness in the presence of the smooth matched disturbance with bounded gradient,is implemented for attitude control of a quadrotor in[16]with known knowledge of the boundary of the disturbance gradient.

    Motivated by the control methodology presented in[17],we develop a new nonlinear robust controller for the quadrotor with the attitude angles and altitude position selected as the system’s outputs.An adaptive super-twisting algorithm is combined with backstepping method to formulate the controller.The proposed controller does not require the exact knowledge of the boundary of the disturbance or its gradient.By using the super-twisting algorithm,the control inputs to the quadrotor suffers little from the chattering phenomenon,and the adaptive laws ensure that the control gains will be easy to be tuned.Lyapunov based stability analysis is employed to show that the closed-loop operation is stable,and the tracking errors converges to an eighbor hood of the origin with finite convergence time.Moreover,to increase the measurement accuracy for the altitude channel where low-cost on board sensor were very sensitiveto noise,anonlinear complementary filter isdeveloped to fuse the raw data from the onboard accelerometer and barometer.The stability and convergence of the filter is also proven via Lyapunov based analysis.Realtime experimental results are implemented on a selfmade quadrotor helicopter testbed,the results show that the proposed control strategy has achieved good control performance for the quadrotor.

    Therefore,the contribution of the proposed design includes that:1)a nonlinear complementary filter is designed to provide accurate estimation for the quadrotor helicopter’saltitudebased on raw datafrom theonboard low cost sensors;2)the super-twisting based nonlinear controller can achieve finite time convergence of the attitude tracking error under the effects of unknown external disturbances without exact knowledge of the disturbances’upper bound;and 3)real-time flight experimental results have testified the good performance of the proposed methodology.

    This paper is organized as follows:The dynamics model of the quadrotor helicopter and control objective are described in Section 2.Section 3 presents the design of the nonlinear complementary filter design for the altitude channel.Section 4 provides details of the control development and stability analysis.Real-timeexperimental results are included in Section 5 to validate the controller’s performance.Finally,some conclusion remarks are included in Section 6.

    2 Dynamic model of the quadrotor

    The quadrotor UAV can be considered as a rigid body with 6 degree-of-freedom(DOF):three translational motions and three rotational motions As illustrated in Fig.1,two frames are utilized to represent the motion of the quadrotor.Let I={xI,yI,zI}denote the right-hand inertia reference frame,and B={xB,yB,zB}denote the right-hand body-fixed reference frame.The altitude of the UAV with respect to I is denoted by z(t)∈R,and Euler angle vector of the UAV with respect to I is denoted by η(t)=[φ(t) θ(t) ψ(t)]T∈ R3where φ(t),θ(t)and ψ(t)are the quadrotor’s roll angle,pitch angle,and yaw angle,respectively.The rotation matrix from B to I is presented as follows[18]:

    where c(·)is the abbreviation for cos(·),and s(·)is the abbreviation for sin(·).In Fig.1,fifor i=1,...,4,represents the independent thrust force generated by the four rotors of the quadrotor.

    Fig.1 Schematic of a quadrotor UAV.

    The attitude dynamics of the quadrotor considered in this paper can be modeled via the following differential equations[18]:

    where Ω(t)=[p(t)q(t)r(t)]Trepresents the angular velocity vector of the quadrotor with respect to B,τ(t)=[τφ(t) τθ(t) τψ(t)]T∈ R3denotes the control torque input vector,d(t)=[dφ(t)dθ(t)dψ(t)]T∈ R3is the unknown external disturbance moment vector.In(2),J=diag{[JφJ(rèn)θJψ]}∈ R3×3denotes the inertia matrix with Jφ,Jθ,and Jψbeing some positive constants,the matrix Φ(η)∈ R3×3represents the rotational velocity transfer matrix from B to I which has the following form[4]

    The following assumption will be employed in the subsequent control development.

    Assumption 1The disturbance term d and its time derivative˙d are bounded such thatwhere δ1and δ2are some unknown positive constants.

    The dynamic model for the altitude channel of the quadrotor is shown as follows[18]:

    where m∈R represents the mass of the quadrotor,ut∈R is the total thrust in the z-direction,g is the acceleration of gravity,and dt(t)∈R denotes the unknown external disturbance force in the z-direction.The following assumption will be utilized in the subsequent control development.

    Assumption 2The disturbance item dtand its time derivativeare bounded such thatδz2where δz1and δz2are some unknown positive constants.

    Assumption 3Therollangleφ(t)and the pitch angle θ(t)satisfy the following inequalities:

    This assumption has also been employed in[13].

    The relationship between the control inputs[τφτθτψut]Tand the rotor thrusts force[f1f2f3f]Tis given by

    where lfis the distance from each rotor to the center of the quadrotor,and pfis the force-to-moment scaling factor.

    The main control objective is to design control inputs(τ,ut)to drive the quadrotor’soutputs(η(t),z(t))to track some pre-defined reference trajectory(ηd(t),zd(t)).

    3 Nonlinear complementary filter for the altitude measurement

    In this paper,two low cost and light weight onboard sensors are employed to provide altitude measurements for the quadrotor,the first one is the barometer,and the other one is the accelerometer.The onboard barometer can provide a rough relative altitude measurement with an accuracy of about±0.5m which is not good enough for accurate hovering control of the quadrotor,and the onboard accelerometer returns an acceleration measurement in the altitude direction which is characterized with high noise levels and biases.A nonlinear complementary filter is introduced to deal with the misalignment of the accelerometer axes and factitious placement failure as well as some other nonlinearities,thus good altitude estimation can be obtained via the raw outputs from the barometer and the accelerometer.

    To implement the nonlinear altitude fusion algorithm,an altitude measurement dynamics model with consideration of the proposed nonlinearities is introduced as follows:

    where z(t)is defined in(4)and denotes the real altitude value of the quadrotor,P ∈ R3×3denote a matrix relevant to the misalignment of the sensor axes and measuring sensitivity differences among each axis,3denotes the transpose of the third column of the rotation matrix R defined in(1),Q∈R3denote the bias vector,and Am∈R3denotes the outputs from the accelerometer.

    Remark 1In an ideal circumstance where the accelerometer’s outputs reflect the real acceleration value of the quadrotor,P will equal to an identity matrix I3,and Q will be a zero vector.

    Assumption 4The matrix P and Q in(7)are unknown constant terms such thatAnd the altitude channel is assumed to be measurable for low frequency such that zm(t)≈z(t)where zm(t)denotes a reconstructed altitude measurement[22].

    Let the auxiliary estimation errors em(t),σm(t)∈ R be defined as follows:

    whereis the output of the following nonlinear complementary filter,and λzis a positive constant.The nonlinear complementary filter for the altitude channel is designed as follows:

    where αzis a positive constant,?v(t)denotes the estimation for the vertical speed.The adaptive laws ofand ?Q(t)are designed as

    Let the auxiliary error signals ez(t)∈ R,σz∈ R,,andbe defined as follows:

    Taking Assumption 2 into account,(9)and(10)can be rewritten as

    and

    Theorem 1The proposed filter in(9)and(10)ensures an accurate estimation for the altitude and vertical speed such that

    ProofAfter taking the time derivative of(12)and substituting(13)into the result,the following dynamics forcan be obtained

    Let the Lyapunov function candidate Vez(t)∈R be defined as

    By taking the time derivative of Vez(t)and substituting(8),(11)and(14)into the result,it can be obtained that

    considering that P,Amand Y in(15)can be denoted by,and Am={aj}3×1.By substituting(13)into(16),it can be obtained that

    From(17)and(15),it is not difficult to show that σz(t)converges to zero asymptotically.Recalling thatwith λzbeing a positive constant,then it can be shown that.Thus,it can be shown thatvia(11).Finally,since ez(t)→ 0 as t→ 0,we know thatbased on the first entry of(12).□

    4 Control development

    This section presents the control design procedure for attitude angles and altitude position of the quadrotor under modeling uncertainties and unknown external disturbances.

    4.1 Design of the attitude controller

    A modified backstepping method is combined with the adaptive super-twisting algorithm to formulate the proposed control strategy.Before presenting the control laws,we introduce the following error signals:

    where ηd(t) ∈ R3denotes the desired attitude trajectory vector.The stabilization of e1can be obtained by introducing a virtual control input for e2as follows:

    where K=diag{ki}∈ R3×3with ki> 0,i= φ,θ,ψrepresent a gain matrix.By defining σ =e2d?e2,the time derivative of(18)can be obtained as

    It is worth noting that if σ=0,then e1converges asymptotically to zero.Our control objective is to force σ to stay in a bounded domain,and,therefore,e1is also bounded in a domain.

    The attitude controller is designed as follows:

    where α and β denote some diagonal positive-definite adaptive gain matrixes such that α =diag{αi}and β =diag{βi}for(i= φ,θ,ψ),sgn(·)denotes the standard signum function.The gains αiand βihave the following adaptive laws

    where εi, γi1, μiand piare some positive constants.The parameter αimrepresents an arbitrary small positive constant which is used as the switching threshold value.In(21),the auxiliary function vectors Π ∈ R3×1and H ∈ R3×1are defined as follows:

    where the defined function K(x)=0 for x≥0 and K(x)=x for x<0,e1idenotes the i th element of e1and Φi(η)represents the i th row of Φ(η).

    The main stability result of the adaptive attitude controller proposed in(21)is stated by the following theorem.

    Theorem 2The proposed attitude controller in(21)can drive e1(t)and its time derivativeto the domain W in finite time where W is defined as

    with ζ1and ζ2being some positive constants.

    ProofBy substituting from(21)and defining ω=ν +J?1d={ωi}3×1,the closed-loop system dynamics(20)can be rewritten as follows:

    To facilitate Lyapunov based stability analysis,we will present the dynamics listed in(27)into a state-space form.To this end,the following state vector is introduced

    where σiand ωidenote the i th element of σ and ω,respectively.Taking the time derivative of xi,it can be obtained that

    where ρiis some bounded functions that 0 ≤ |ρi|≤ 2δ3.Substituting from(30),(29)can be rewritten in a vector matrix format

    where

    and

    Note that ifthen(for i= φ,θ,ψ),since Φi(η)is bounded(due to Assumption 3),thenIn view of(27),the convergence of e1iis guaranteed as well.Thus,the Lyapunov’s direct method is employed for the convergence of xi.After that,the stability analysis for e1iis presented.The Lyapunov function candidate Viis defined as

    withbeing some positive constants.The nonnegative function Vioin(35)is defined aswhere

    is positive definite if λi> 0 and εiare real number.Substituting from(31),the time derivative of Viocan be obtained as

    By substituting from(25),(33),(36),in(37)can be rewritten as

    where

    with

    Substituting from(23),The matrix Qiwill be positive definite with a minimal eigenvalue λmin(Qi)≥ εiif

    where(see proof in[17]).

    Taking the time derivative of Vi1and substituting from(27)yields

    By substituting from(35),(42),(43),can be rewritten as follows:

    The following two cases will be considered to obtained the result listed in Theorem 2.

    Case 1Suppose that|σi| > μiand αi(t) > αim,?t≥ 0.Then,in view of(22),we have

    Selectingand differentiating(23),we obtain

    Substituting from(24),Fiis computed such that Fi≤0.Substituting from(45),(46),the first two terms on the right hand side of(44)are can celled.Thus,it is easy to have χi≤ 0 and

    As soon as(41)is satisfied,σiconverges to the domain|σi| ≤ μiin finite time tFi(see Lemma 1 in the appendix).

    Case 2Suppose that|σi|< μi,then the control gain αi(t)is reducing in accordance with(22)such that

    Note the term Fiincluded in χibecomes?e1iΦi(η)σ,and in view of the structure of χiwhen substituting from(48),χibecomes sign indefinite as well as˙Viwhich comprises χi.

    Thus,the above two cases forensure that after a finite time tFi,σiwill always stay in a domain|σi|≤ ρiwith ρi> μi(See the discussion presented in[17]).

    In other words,σconvergesto the domain Wσin finite time tF=max{tFi}(for i= φ,θ,ψ)where

    with||·||∞denoting infinity norm,ρ being defined as ρ =max{ρi}(for i= φ,θ,ψ).

    Notice that Φ(η)={?i}3×3is bounded due to Assumption 3 such that|?i|≤ ξ,ξ > 0,we have the second term on the right side of(27)bounded such that|Φi(η)σ|≤ 3ξρ.Then,according to(27),we can conclude that e1iconverges to the domain|e1i|≤ 6ξρ/kias well as its time derivativeto the domainin finite time tHi(see Lemma 2 in the appendix).In other words,the finite time convergence of e1and its time derivativeto the domain W is guaranteed where

    where ζ1=6ξρ/k,k=min{ki}for i= φ,θ,ψ,and ζ2=9ξρ.

    4.2 Design of the altitude controller

    To facilitate the control objective for the altitude channel of the quad rotor,the altitude tracking error signal ez(t)and its sliding mode manifold σz(t)are introduced as follows:

    where λ is a positive gain.

    By taking the time derivative of σz(t)and substituting(4)into the result,it can be obtained that

    whereSimilar as the control development for the attitude controller τ(t),the altitude controller is designed as follows:

    whereαzandβzare the adaptive gains with the following updating laws:

    with εz,γz1,μzand pzbeing some positive constants.The parameter αzmdenotes an arbitrary small positive constant which is employed as the switching threshold value.

    The main stability result of the adaptive altitude controller proposed in(53)is stated by the following theorem.

    Theorem 3The proposed controller can drive ez(t)and its time derivativeto the domain Wzin finite time where Wzis defined as follows:

    with ζz1and ζz2being some positive constants.

    ProofThe proof of Theorem 3 can be completed by the following the similar steps for the proof of Theorem 2.

    5 Experimental results

    In this section,the proposed control strategy in Sections 3 and 4 is implemented on a self-built quadrotor helicopter flying testbed in an indoor environment to validate its performance as shown in Fig.2.The physical parameters of the quadrotor helicopter are listed in Table 1.The control loop runs at a frequency of 1kHz to ensure high performance of real-time response.

    The nonlinear complementary filter proposed in Section 3 provides the altitude estimation information for the closed-loop operation.Its reliability is validated by a comparison between the estimated value and true value as shown in Fig.3.A OptiTrack motion capture system is employed to provide ground truth values for the quadrotor helicopter during the flighting test,these ground truth information is used only for the purpose of comparison,but not utilized in the closed-loop control.In Fig.3,?z(t)and?v(t)represent the altitude estimation and vertical velocity estimation valuesobtained from the nonlinear complementary filter in(12),zr(t)and vr(t)represent the real altitude and vertical velocity values obtained from the motion capture system.From Fig.3,it can be seen that the maximum estimation error for the quadrotor’s altitude position is less than ±0.2m,and the maximum estimation error for the quadrotor’s vertical velocity is less than±0.18m/s.Considering about the fact that the accuracy for the direct altitude measurement from the onboard barometer is about±0.5m,the nonlinear complementary filter proposed in(12)has achieved a good accuracy for the altitude position and vertical velocity measurement.

    Fig.2 Quadrotor helicopter flight testbed.

    Table 1 Parameters for the quadrotor helicopter testbed.

    Fig.3 Comparision between the estimation values(z(t),v(t))and real values(z r(t),v r(t)).

    To validate the performance for the attitude and altitude controllers proposed in Section 4,a stabilization flight test is implemented on the quadrotor helicopter testbed.The control objective is to stabilize the quadrotor’s attitude angle(φ(t), θ(t), ψ(t))to be[φdθdψd]T=[0 0 0]T,and the quadrotor’s altitude z(t)to be some desired value as zd=1.94m.The quadrotor is first taken off manually to a proper position,and then the pilot flips the switcher on the RC controller to turn the quadrotor into automatic stabilizing control procedure,and the automatic control period lasts about 60 seconds.The control gains for attitude and altitude controllers are selected as follows for the best control performance:

    Fig.4 shows the actual attitude response and its desired value.It can be seen that maximum stabilization error for the roll channel is about±1.1°,the maximum stabilization error for the pitch channel is about±0.8°,the maximum stabilization error for the yaw channel is about±1.2°,thus the proposed control strategy has shown good attitude control performance.The stabilization performance for the altitude channel is shown in Fig.5 where?z(t)is used as the closed-loop response for the quadrotor’s altitude position.It can be seen that the maximum altitude stabilization error is about±0.12m,and the maximum vertical velocity stabilization error is less than±0.12m/s,thus the proposed control strategy has achieve good altitude control performance for the quadrotor.From both Fig.4 and Fig.5,it can be seen that the quadrotor’s outputs(φ(t),θ(t),ψ(t),z(t))converge to their desired values very quickly.The adaptive control gains(αφ,αθ,αψ,αz)designed in(22)and(54)are depicted in Fig.6,they are all bounded.The control inputs(τφ,τθ,τψ,ut)are illustrated in Fig.7,they all stay with some reasonable values.

    Fig.4 Actual attitude angles(φ(t),θ(t),ψ(t))and their desired values.

    Fig.5 Actural altitude?z(t),vertical velocity?v(t)and their desired value(z d,v d).

    Fig.6 Adaptive gains(αφ,αθ,αψ,αz).

    Fig.7 Control inputs(τφ,τθ,τψ,u t).

    6 Conclusions

    This paper considers the control problem for a quadrotor helicopter which is subjected to modeling uncertainties and unknown non vanishing external disturbances.The quadrotor’s roll angle,pitch angle,yaw angle,and altitude are selected as the system’s outputs.To improve the measurement accuracy for the altitude channel,a nonlinear complementary is developed and its convergence is proven.Based on the adaptive supert wisting scheme,a nonlinear adaptive controller for the quadrotor is developed and its finite time convergence is proven via the Lyapunov-based stability analysis.Realtime flight experimental results are presented to validate the performance of the proposed control strategy.Future work will focus on developing position controller together with the attitude controller for the quadrotor helicopter to achieve finite time convergence of the position tracking error under effects of parametric uncertainties and external disturbances.

    [1]Y.Du,J.Fang,C.Miao.Frequency domain system identification of an unmanned helicopter based on adaptive genetic algorithm.IEEE Transactions on Industrial Electronics,2014,61(2):870–881.

    [2]M.D.Hua,T.Hamel,P.Morin,et al.Introduction to feedback control of under actuated VTOL vehicles:a review of basic control design ideas and principles.IEEE Control System Magzine,2013,33(1):61–75.

    [3]K.Alexis,G.Nikolakopoulos,A.Tzes.Model predictive quadrotor control:attitude,altitude and position experimental studies.IET Control Theory and Applications,2012,6(12):1812–1827.

    [4]B.Zhao,B.Xian,Y.Zhang,et al.Nonlinear robust adaptive tracking control of aqua drotor UAVvia immersion and invariance methodology.IEEE Transactions on Industrial Electronics,2015,62(5):2891–2902.

    [5]B.Xian,X.Zhang,S.Yang.Nonlinear controller design for an unmanned aerical vehicle with a slung-load.Control Theory&Applications,2016,33(3):273–279(in Chinese).

    [6]W.Hao,B.Xian.Nonlinear fault tolerant control design for quadrotor unmanned aerial vehicle attitude system.Control Theory&Applications,2015,32(11):1457–1463(in Chinese).

    [7]X.Zhang,B.Xian,B.Zhao,et al.Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision.IEEE Transactions on Industrial Electronics,2015,62(10):6392–6403.

    [8]J.Toledo,L.Acosta,D.Perea,et al.Stability and performance analysis of unmanned aerial vehicles:quadrotor against hexrotor.IET Control Theory and Applications,2015,9(8):1190–1196.

    [9]G.V.Raffo,M.G.Ortega,F.R.Rubio.An integral predictive/nonlinear H∞control structure for a quadrotor helicopter.Automatica,2010,46(1):29–39.

    [10]R.Zhang,Q.Quan,K.Y.Cai.Attitude control of a quad rotor aircraft subject to a class of time-varying disturbances.IETControl Theory and Applications,2011,5(1):1140–1146.

    [11]H.Ramirez-Rodriguez,V.Parra-Vega,A.Sanchez-Orta,et al.Robust backstepping control based on integral sliding modes for tracking of quadrotors.Journal of Intelligent and Robotic Systems,2014,73(1/4):51–66.

    [12]H.Liu,Y.Bai,G.Lu,et al.Robust motion control of uncertain quadrotors.Journal of the Franklin Institute,2014,351(12):5494–5510.

    [13]H.Liu,Y.Bai,G.Lu,et al.Robust tracking control of a quadrotor helicopter.Journal of Intelligent and Robotic Systems,2014,75(3/4):595–608.

    [14]B.J.Bialy,J.Klotz,K.Brink,et al.Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties.Proceedings of the American Control Conference,Washington:IEEE,2013:13–18.

    [15]Y.Yu,X.Ding,J.Zhu.Attitudetracking control of aquadrotor UAV in the exponential coordinates.Journal of the Franklin Institute,2013,350(8):2044–2068.

    [16]L.Derafaa,A.Benallegueb,L.Fridman.Super twisting controlal gorithm for the attitude tracking of a four rotors UAV.Journal of the Franklin Institute,2012,349(2):658–699.

    [17]Y.Shtesse,M.Taleb,F.Plestan.A novel adaptive-gain supertwisting sliding mode controller:methodology and application.Automatica,2012,48(5):759–769.

    [18]F.Kendoul,Z.Yu,K.Nonami.Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles.Journal of Field Robotics,2010,27(3):311–334.

    [19]B.Xian,C.Diao,B.Zhao,et al.Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation.Nonlinear Dynamics,2015,79(4):2735–2752.

    [20]I.Gonzalez,S.Salazar,R.Lozano,et al.Real-time altitude robust controller for a quad-rotor aircraft using sliding-mode control technique.Proceeding of the International Conference on Unmanned Aircraft Systems,Atlanta:IEEE,2013:650–659.

    [21]J.Hu,H.Zhang.Immersion and invariance based command filtered adaptive back stepping control of VTOL vehicles.Automatica,2013,49(7):2160–2167.

    [22]R.Mahony,T.Hamel,J.M.Pflimlin.Nonlinear complementary filters on the special orthogonal group.IEEE Transactions on Automatic Control,2008,53(5):1203–1218.

    日韩大码丰满熟妇| 妹子高潮喷水视频| 国产免费av片在线观看野外av| 中文字幕熟女人妻在线| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 亚洲午夜理论影院| 18禁观看日本| 19禁男女啪啪无遮挡网站| 中国美女看黄片| 国产日本99.免费观看| 看免费av毛片| 大型黄色视频在线免费观看| 亚洲国产看品久久| 午夜福利欧美成人| 国产99久久九九免费精品| 国产探花在线观看一区二区| 中文字幕最新亚洲高清| 国产熟女午夜一区二区三区| 国产麻豆成人av免费视频| 久久久久久亚洲精品国产蜜桃av| 可以免费在线观看a视频的电影网站| 亚洲男人的天堂狠狠| 最近最新中文字幕大全电影3| 久99久视频精品免费| 身体一侧抽搐| 亚洲国产高清在线一区二区三| 全区人妻精品视频| 999久久久精品免费观看国产| 欧美激情久久久久久爽电影| 久久香蕉精品热| 成人国产一区最新在线观看| 巨乳人妻的诱惑在线观看| 国产精品一及| 欧美性猛交黑人性爽| 两个人视频免费观看高清| 日本一二三区视频观看| 狂野欧美白嫩少妇大欣赏| 特大巨黑吊av在线直播| 一本精品99久久精品77| 亚洲中文日韩欧美视频| 欧美最黄视频在线播放免费| 婷婷丁香在线五月| av中文乱码字幕在线| 国产视频一区二区在线看| 麻豆成人av在线观看| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 我要搜黄色片| 欧美黑人巨大hd| 免费看十八禁软件| 亚洲欧美日韩高清专用| 精品一区二区三区四区五区乱码| 色av中文字幕| 久久久久精品国产欧美久久久| av福利片在线观看| 亚洲国产精品合色在线| 夜夜看夜夜爽夜夜摸| 国产精品影院久久| 一级a爱片免费观看的视频| 极品教师在线免费播放| 女人被狂操c到高潮| 欧美乱色亚洲激情| 一级a爱片免费观看的视频| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 99re在线观看精品视频| 亚洲国产欧美一区二区综合| 91大片在线观看| 亚洲 欧美 日韩 在线 免费| 久久久久久久午夜电影| 欧美色欧美亚洲另类二区| 亚洲av成人一区二区三| 日韩欧美精品v在线| 我要搜黄色片| 精品久久久久久久久久久久久| 亚洲专区国产一区二区| 亚洲,欧美精品.| 日本一二三区视频观看| 成人欧美大片| 村上凉子中文字幕在线| 两个人视频免费观看高清| 亚洲精品国产一区二区精华液| 中文资源天堂在线| 身体一侧抽搐| 国产av一区二区精品久久| 精品久久久久久久毛片微露脸| 亚洲一码二码三码区别大吗| 麻豆成人午夜福利视频| 久久久久国产一级毛片高清牌| 国产探花在线观看一区二区| 国产精品免费视频内射| 亚洲 国产 在线| 日韩 欧美 亚洲 中文字幕| 波多野结衣高清作品| 夜夜爽天天搞| 成人手机av| 亚洲人成77777在线视频| 国产精品 国内视频| 18禁黄网站禁片午夜丰满| 三级国产精品欧美在线观看 | 国产高清videossex| 成人高潮视频无遮挡免费网站| 国产亚洲精品第一综合不卡| 舔av片在线| 后天国语完整版免费观看| 国产成人啪精品午夜网站| 中文字幕av在线有码专区| 亚洲人成网站在线播放欧美日韩| 丁香欧美五月| 90打野战视频偷拍视频| 免费在线观看黄色视频的| 中文在线观看免费www的网站 | 69av精品久久久久久| 免费在线观看亚洲国产| 精品国内亚洲2022精品成人| 三级国产精品欧美在线观看 | 亚洲av成人av| 午夜福利视频1000在线观看| 亚洲av电影不卡..在线观看| 久久久久免费精品人妻一区二区| 久久久久亚洲av毛片大全| 国产精品一区二区三区四区久久| 麻豆av在线久日| 特大巨黑吊av在线直播| 欧美日本视频| 午夜视频精品福利| 国产91精品成人一区二区三区| 大型av网站在线播放| 成年免费大片在线观看| 日日爽夜夜爽网站| 日本免费一区二区三区高清不卡| 国产亚洲欧美在线一区二区| 后天国语完整版免费观看| 久久久精品大字幕| 亚洲 欧美 日韩 在线 免费| 黄色女人牲交| 免费人成视频x8x8入口观看| 美女 人体艺术 gogo| 日日爽夜夜爽网站| 黄色成人免费大全| 国产精品久久久人人做人人爽| 岛国在线免费视频观看| 国产v大片淫在线免费观看| 成人一区二区视频在线观看| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久人妻精品电影| 久久久精品国产亚洲av高清涩受| 啦啦啦观看免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 亚洲乱码一区二区免费版| 黄色视频不卡| 成年人黄色毛片网站| 国产精品永久免费网站| 欧美精品亚洲一区二区| 国产不卡一卡二| av视频在线观看入口| 三级毛片av免费| 成人欧美大片| 欧美在线黄色| 欧美性猛交╳xxx乱大交人| 国产真实乱freesex| 久久久久久久久免费视频了| 久久国产精品影院| 亚洲美女黄片视频| 日韩三级视频一区二区三区| 1024视频免费在线观看| 精品久久久久久成人av| 国产伦一二天堂av在线观看| www.自偷自拍.com| 99在线人妻在线中文字幕| 日韩高清综合在线| 国内久久婷婷六月综合欲色啪| www日本在线高清视频| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 制服诱惑二区| 久久热在线av| 小说图片视频综合网站| 国产主播在线观看一区二区| 午夜免费激情av| 看片在线看免费视频| 美女大奶头视频| 男女视频在线观看网站免费 | av国产免费在线观看| 亚洲av熟女| 成年免费大片在线观看| 亚洲午夜理论影院| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| a级毛片在线看网站| 狂野欧美激情性xxxx| 亚洲一区二区三区不卡视频| 波多野结衣高清无吗| 美女黄网站色视频| 一边摸一边抽搐一进一小说| 人妻久久中文字幕网| 欧美乱色亚洲激情| 亚洲美女黄片视频| 一个人免费在线观看电影 | 国产v大片淫在线免费观看| 看黄色毛片网站| 国产爱豆传媒在线观看 | 脱女人内裤的视频| 亚洲一区二区三区色噜噜| 五月玫瑰六月丁香| 这个男人来自地球电影免费观看| 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 欧美黑人精品巨大| 亚洲aⅴ乱码一区二区在线播放 | 18禁黄网站禁片免费观看直播| 亚洲九九香蕉| 99热6这里只有精品| 欧美乱码精品一区二区三区| 国产在线观看jvid| 国内毛片毛片毛片毛片毛片| 高潮久久久久久久久久久不卡| 色在线成人网| 久久香蕉激情| 中文亚洲av片在线观看爽| 久久中文字幕人妻熟女| 一本精品99久久精品77| 亚洲乱码一区二区免费版| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 亚洲,欧美精品.| 久久精品国产99精品国产亚洲性色| 国产精品一区二区三区四区免费观看 | 精品少妇一区二区三区视频日本电影| 国产蜜桃级精品一区二区三区| 精品久久久久久久末码| www.熟女人妻精品国产| 日本成人三级电影网站| 国产精品一及| tocl精华| 啦啦啦韩国在线观看视频| 少妇粗大呻吟视频| 久久久久久大精品| 老司机午夜十八禁免费视频| 91在线观看av| 日韩欧美精品v在线| 日韩av在线大香蕉| 91大片在线观看| 国产精品1区2区在线观看.| 成人三级黄色视频| cao死你这个sao货| 色尼玛亚洲综合影院| 日本成人三级电影网站| 99精品欧美一区二区三区四区| 后天国语完整版免费观看| 免费在线观看日本一区| 一区二区三区高清视频在线| 九色成人免费人妻av| 欧美日韩福利视频一区二区| 男男h啪啪无遮挡| 国产野战对白在线观看| 亚洲av熟女| 一本精品99久久精品77| 色哟哟哟哟哟哟| 久久精品综合一区二区三区| aaaaa片日本免费| 欧美乱色亚洲激情| av欧美777| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| ponron亚洲| 一个人免费在线观看电影 | 国产av一区在线观看免费| 国产午夜福利久久久久久| 日韩三级视频一区二区三区| 免费在线观看亚洲国产| 久久这里只有精品19| 亚洲欧美日韩高清专用| 成人精品一区二区免费| 亚洲精品在线美女| 日韩三级视频一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲美女久久久| 日本五十路高清| 母亲3免费完整高清在线观看| 成人18禁高潮啪啪吃奶动态图| 精品不卡国产一区二区三区| 国产高清视频在线观看网站| 亚洲欧美激情综合另类| 少妇的丰满在线观看| 在线十欧美十亚洲十日本专区| 国产精品免费一区二区三区在线| 久久久久性生活片| 国产精品99久久99久久久不卡| 国产一区二区激情短视频| 最近在线观看免费完整版| 男男h啪啪无遮挡| 免费看a级黄色片| 欧美性猛交╳xxx乱大交人| www国产在线视频色| 国产精品免费视频内射| 中文字幕人妻丝袜一区二区| 操出白浆在线播放| netflix在线观看网站| 国产一区二区在线观看日韩 | 一本精品99久久精品77| 日韩欧美 国产精品| 最近视频中文字幕2019在线8| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 女人被狂操c到高潮| 国产精品一区二区精品视频观看| 长腿黑丝高跟| 国产精品亚洲av一区麻豆| 婷婷精品国产亚洲av| 十八禁网站免费在线| 狂野欧美激情性xxxx| 熟女电影av网| 最近视频中文字幕2019在线8| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 最近视频中文字幕2019在线8| 亚洲第一电影网av| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 中亚洲国语对白在线视频| 亚洲 欧美一区二区三区| 日本五十路高清| 日日干狠狠操夜夜爽| www.熟女人妻精品国产| 两个人的视频大全免费| 床上黄色一级片| 亚洲一区高清亚洲精品| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 国产精品久久电影中文字幕| 999精品在线视频| 免费观看人在逋| xxx96com| 欧美日本亚洲视频在线播放| 国产精品久久视频播放| 色综合婷婷激情| 国产免费av片在线观看野外av| x7x7x7水蜜桃| 一二三四在线观看免费中文在| or卡值多少钱| 亚洲国产欧美网| videosex国产| 亚洲国产日韩欧美精品在线观看 | 国产免费av片在线观看野外av| 亚洲精品国产一区二区精华液| ponron亚洲| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 一区福利在线观看| 91国产中文字幕| 亚洲中文日韩欧美视频| 美女大奶头视频| 欧美成狂野欧美在线观看| 91九色精品人成在线观看| 一a级毛片在线观看| 欧美色视频一区免费| 国产精品乱码一区二三区的特点| 亚洲国产欧洲综合997久久,| 国产成人欧美在线观看| 国产精品1区2区在线观看.| 视频区欧美日本亚洲| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费| 大型av网站在线播放| 免费一级毛片在线播放高清视频| 中文字幕人成人乱码亚洲影| 久久香蕉激情| 一级黄色大片毛片| 久久精品国产亚洲av高清一级| 丁香六月欧美| 亚洲av电影在线进入| 看黄色毛片网站| 90打野战视频偷拍视频| 国产午夜精品论理片| 在线观看美女被高潮喷水网站 | 亚洲精品美女久久av网站| 天堂影院成人在线观看| 国产高清视频在线观看网站| 国产1区2区3区精品| 女生性感内裤真人,穿戴方法视频| 国产av麻豆久久久久久久| 女生性感内裤真人,穿戴方法视频| 黄色毛片三级朝国网站| 国产精品自产拍在线观看55亚洲| 亚洲一区二区三区不卡视频| 成人午夜高清在线视频| 久久国产精品影院| 亚洲色图 男人天堂 中文字幕| 两个人的视频大全免费| 亚洲人成伊人成综合网2020| 国产在线观看jvid| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 人妻丰满熟妇av一区二区三区| 国产精品一及| 成人三级做爰电影| 99国产极品粉嫩在线观看| 免费看十八禁软件| 亚洲最大成人中文| 视频区欧美日本亚洲| 日本三级黄在线观看| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 久久精品亚洲精品国产色婷小说| 免费高清视频大片| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 99在线视频只有这里精品首页| 精品福利观看| 午夜a级毛片| 国产av一区二区精品久久| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 亚洲人成网站高清观看| 久久精品国产亚洲av香蕉五月| 老司机午夜十八禁免费视频| 国产亚洲精品久久久久久毛片| 国内毛片毛片毛片毛片毛片| 欧美中文综合在线视频| 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕| av片东京热男人的天堂| 亚洲色图av天堂| 亚洲18禁久久av| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 日韩欧美三级三区| 99热6这里只有精品| 亚洲激情在线av| a级毛片在线看网站| 91老司机精品| 日本五十路高清| 99国产精品一区二区蜜桃av| xxx96com| 国产av在哪里看| av超薄肉色丝袜交足视频| 国产探花在线观看一区二区| 色在线成人网| 日韩大码丰满熟妇| 中文字幕av在线有码专区| 国产真人三级小视频在线观看| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 婷婷精品国产亚洲av在线| or卡值多少钱| 中出人妻视频一区二区| 麻豆成人av在线观看| 黄色视频不卡| 婷婷丁香在线五月| 久热爱精品视频在线9| 国产高清视频在线观看网站| 午夜激情福利司机影院| 欧美乱色亚洲激情| 久久亚洲精品不卡| 一本一本综合久久| 丁香六月欧美| 97碰自拍视频| 性色av乱码一区二区三区2| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 哪里可以看免费的av片| 久久精品国产99精品国产亚洲性色| 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看| www国产在线视频色| 精品国产亚洲在线| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 我要搜黄色片| 久久热在线av| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 麻豆一二三区av精品| av在线播放免费不卡| 午夜精品久久久久久毛片777| 一本综合久久免费| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 国产精品免费视频内射| 亚洲国产欧美人成| 免费看日本二区| 不卡一级毛片| 亚洲精品中文字幕一二三四区| 国内精品久久久久精免费| 免费高清视频大片| 精品一区二区三区av网在线观看| 国产精品影院久久| 国产麻豆成人av免费视频| 国产精品国产高清国产av| 国产伦人伦偷精品视频| 欧美乱码精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 高潮久久久久久久久久久不卡| 免费在线观看完整版高清| √禁漫天堂资源中文www| 久久这里只有精品中国| 久久草成人影院| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| www.自偷自拍.com| 三级毛片av免费| 好男人电影高清在线观看| 欧美人与性动交α欧美精品济南到| 999久久久精品免费观看国产| 毛片女人毛片| 一区二区三区激情视频| 在线观看午夜福利视频| 午夜两性在线视频| 91国产中文字幕| 久久久久久免费高清国产稀缺| 毛片女人毛片| 三级国产精品欧美在线观看 | 老汉色av国产亚洲站长工具| 欧美一级a爱片免费观看看 | 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 国产午夜精品论理片| 最近最新中文字幕大全免费视频| 国产乱人伦免费视频| a在线观看视频网站| 久久婷婷成人综合色麻豆| 黄色片一级片一级黄色片| 人人妻人人澡欧美一区二区| 欧美一级毛片孕妇| 国产av一区二区精品久久| 久久久久久久久免费视频了| 国产欧美日韩精品亚洲av| 色综合婷婷激情| 18禁美女被吸乳视频| 亚洲欧美精品综合一区二区三区| 男插女下体视频免费在线播放| 两个人的视频大全免费| 精品一区二区三区四区五区乱码| 日韩欧美精品v在线| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 成人欧美大片| 亚洲九九香蕉| 777久久人妻少妇嫩草av网站| 亚洲五月婷婷丁香| ponron亚洲| 桃色一区二区三区在线观看| av在线播放免费不卡| 九色国产91popny在线| 国产精品九九99| 国产精品亚洲美女久久久| 99久久无色码亚洲精品果冻| 欧美三级亚洲精品| 99久久国产精品久久久| 国产精品久久久av美女十八| 成人18禁在线播放| 亚洲熟妇熟女久久| 国产午夜精品论理片| 99久久无色码亚洲精品果冻| 国产视频一区二区在线看| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 中文字幕精品亚洲无线码一区| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 亚洲av美国av| 亚洲av片天天在线观看| 大型av网站在线播放| 夜夜看夜夜爽夜夜摸| 热99re8久久精品国产| 日韩欧美精品v在线| 高清在线国产一区| 国产一区二区在线av高清观看| 香蕉久久夜色| 午夜福利在线观看吧| 老熟妇仑乱视频hdxx| 欧美中文日本在线观看视频| 国产精品久久久久久精品电影| 成人欧美大片| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 99久久精品国产亚洲精品| 国产高清激情床上av| 国产精品野战在线观看| 精品免费久久久久久久清纯| 国产精品亚洲一级av第二区| 午夜老司机福利片| 一区福利在线观看| 精品一区二区三区av网在线观看| 听说在线观看完整版免费高清| 午夜激情av网站| 亚洲成人久久爱视频| av欧美777| 黄色毛片三级朝国网站| 狠狠狠狠99中文字幕| 亚洲精品中文字幕在线视频| 国内精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 久久 成人 亚洲| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| 性欧美人与动物交配| 午夜影院日韩av| 久久午夜综合久久蜜桃| 亚洲人成77777在线视频| av免费在线观看网站| 一本一本综合久久| 人人妻,人人澡人人爽秒播| 熟女少妇亚洲综合色aaa.| 91麻豆精品激情在线观看国产| 啦啦啦观看免费观看视频高清|