• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flocking control of a fleet of unmanned aerial vehicles

    2018-06-04 02:47:34AdelBELKADIZhixiangLIULaurentCIARLETTAYouminZHANGDidierTHEILLIOL
    Control Theory and Technology 2018年2期
    關(guān)鍵詞:高達(dá)游說總計(jì)

    Adel BELKADI,Zhixiang LIU ,Laurent CIARLETTA ,Youmin ZHANG ,Didier THEILLIOL?

    1.CRAN,University of Lorraine,Nancy,France;

    2.Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal,Canada;

    3.Lorraine Research Laboratory in Computer Science and its Applications(LORIA),University of Lorraine,Nancy,France

    1 Introduction

    The last decade has seen an increasing number of unmanned aerial vehicles(UAVs)applied to a variety of applications,such as forest health/fire surveillance[1,2],search and rescue[3],natural resources exploration[4],environmental surveillance[5],and military missions[6].As an important type of UAV,unmanned quadrotor helicopter(UQH)has also been dedicated significant investigations due to their numerous advantages including decreased operation complexity,affordable development cost[7],and improved maneuverability[8].These characteristics have contributed tremendous benefits to avariety of applications demanded by many universities,research institutes,commercial entities,and military[8].

    In order to greatly enhance the capabilities of UQHs against system failures,improve their efficiencies,and extend their coverage of surveillance and measurement applications,current research on UQH has already gone beyond single system.Inspired by the study of biologists on the flocking phenomenon of animals in nature,such as schools of fish,swarms of insects,herds of quadruped,and flocks of birds,Reynolds[9]has introduced the following three heuristic rules for the flocking control of a group of agents[10]:

    1)flock centering(cohesion):stay close to nearby agents;

    2)collision avoidance(separation):avoid collisions with surrounding agents;and

    3)velocity matching(alignment):match velocity with neighboring agents.

    These three rules have been considered as the basic elements of developing the theoretical framework and control strategies for the flocking control of multiple agents systems(including heterogeneous numbers and categories).

    The flocking control of multiple UQHs for a diversity of applications,including environmental surveillance,search and rescue,and natural resources exploration,has likewise attracted much attention from researchers around the world.On the early stage of flocking control development,several distinct flocking models have been developed.The first flocking model is proposed in[9].Then,the Cucker-Smale model is constructed in[11],while[12]develops the Vicsek model.Later on,an improvement to Vicsek model is made in[13].Following these models,numerous relative flocking control methods have also been investigated.Whereas these works solely concentrate on the alignment problem,while other rules of flocking control are not well studied.To improve the performance of flocking,further investigations are conducted.One research in[10]has combined the alignment rule with an additional repulsive/attractive term for keeping all agents within a desired region,whiletheunified velocityhasbeen matched by all agents.In addition to that,numerous studies have also extended the Cucker-Smale model[11]to maneuvre a fleet of unmanned vehicles[14].In[15],a repulsive force is incorporated in the flocking control design to maintain the safety distance among agents,a rigorous proof is provided to guarantee the collision avoidance capabilities of agents.Works in[16]and[17]extend the Cucker-Smale model by introducing additional interaction terms among agents for the purpose of achieving both collision avoidance functions and tighter spatial configurations.Other relative works on this subject are carried out in[18,19]which derive a decoupled control term based on a potential function;this term is devised to achieve the separation and cohesion among agents,together with using the velocity consensus control rule,both formation-keeping and collision avoidancecan be guaranteed.However,the above-mentioned approaches tend to be quite dangerous in the presence of low accurate measurements or actuator and sensor faults.Furthermore,most of the existing flocking control methodologies are designed and validated only on a simple system with double integrator dynamics without consideration of system uncertainties and nonlinear dynamics.These adverse effects may dramatically deteriorate the performance of flocking,as well as cause significant oscillations[20]and even divergence.

    In order to surmount the aforementioned challenging issues,this paper proposes a new flocking control approach which is an extension of authors’previous work summarized in[21].Different from the method adopted in[18,19],the solution proposed by this work is to consider all agents as a group without specifying any distances among them.The proposed method,which is expected to achieve the satisfactory performance(cohesion,separation and alignment)of multiple UQHs,treats the whole system as the following three layers:

    1)guidance system(flocking rule)for the translational control design in kinematics level;

    2)motion control system for rotational control design in kinetics level;and

    3)UQHs systems.

    The contributions of this paper can be highlighted as follows:1)design of a new flocking control method and implementation of it on a group of UQHs with nonlinear dynamics to make the proposed method applicable in practice;and

    2)it is normally difficult to guarantee the fixed neighbouring distance required by some existing works and model uncertainties and disturbances in practice can cause significant oscillations of agents.

    In addition,by using the formation control algorithm with fixed neighbouring distance requirement,it may become quite complicated to satisfy the anticipated formation control performance when the number of agents remarkably increases.However,the proposed flocking control method requires no fixed distance among agents,providing more flexibility to the formation control,especially for the practical implementation.

    Therest of this paper is organized as follows:Section 2 introduces the modelling of UQH and some preliminaries of flocking control system design.Section 3 illustrates the design procedure of the presented flocking control system.Section 4 addresses the conducted numerical simulations and their results analyses.The last section summarizes the conclusions and future works.

    2 Preliminaries

    2.1 Nonlinear model of unmanned quadrotor helicopter

    As shown in Fig.1,the UQH is usually operated by four motor-driven propellers which situate at the front,rear,left,and right corners of UQH,respectively,generating their corresponding thrusts u1,u2,u3,and u4.

    Fig.1 Schematic diagram of a typical UQH.

    Generally,the motion of UQH can be illustrated as follows:

    1)identical amount of control signals are distributed to each motor to achieve the vertical translation;and

    2)distinct amount of control signals are assigned to the opposite motors to fulfil the horizontal translation[8,22].

    For a common dynamical model of UQH in regard to the earth-fixed coordinate system,one can obtain that

    Moreover,the following relationship between accelerations and lift/torques can be formulated:

    The propeller force and its corresponding pulse width modulation(PWM)signal has the foll owing relationship:

    To facilitate the control scheme design,borrowing the ideas of existing research works[8,23],the following model simplification can be obtained as

    Therefore,equation(3)can be reduced to

    where Kmand ωmare theoretically assumed to be identical for all motors.

    The definition of above-mentioned symbols are all included in Table 1 for readers’convenience.

    Table 1 Nomenclature(earth-fixed coordinate system).

    2.2 Linearization of the unmanned quadrotor helicopter

    As UQH’s model is highly nonlinear,translational and rotational motions are coupled,in order to match the dynamics of UQH with double integrator model to enable the design of the flocking control algorithm,Assumption 1 is thereby made for linearizing the dynamics of UQH.

    Assumption 1The UQH is assumed to be in a near hovering condition which implies that:1)uz≈m g points toward the vertical direction;2)pitch and roll angles are so small that sinφ≈φand sinθ≈θ;3)there is no yaw angle(ψ=0).

    Based on Assumption 1 and equation(1),the new translational and rotational dynamicsof UQHin the similar formulation of double integrators can be achieved as equations(5)and(6),respectively.

    1)Translational dynamics of UQH:

    2)Rotational dynamics of UQH:

    3 Flocking control scheme design

    As addressed in Fig.2,the system architecture of the proposed method can be divided into three levels:the high level(translational motion control)guidance system,middle level(rotational motion control)control system,and low level(UQH system)[24].First,based on the mission command and states of formation,the high level guidance system produces the rotational reference command,which is then distributed to the middle level control system for maneuvering the low level UQHs to follow the desired references.

    貪污腐敗的形式之一是私相授受,一方是政府官員受賄,游說團(tuán)體的說客們往往就扮演了上門賄賂的腳色。第八、九章的分析對(duì)象就是這些活動(dòng)越趨頻繁、勢(shì)力日漸龐大的游說團(tuán)體。2007年,美國首都華盛頓有經(jīng)注冊(cè)的說客約35 800人。游說這一行,作者稱之為“游說業(yè)” (the lobbying industry),2007年向其客戶收取的費(fèi)用總計(jì)高達(dá)29億美元。游說業(yè)之勢(shì)力由此可見一斑。

    Fig.2 Control architecture of the proposed approach for each agent.

    3.1 Modified Cucker-Smale model design

    As a widely employed model for flocking control design,the Cucker-Smale model introduced by[11]is also used in this study.In this flocking model,each agent updates its velocity in every sampling time by adding to it with a time-varying value,which is the weighted average of the differences of its velocity with those of its neighboring agents.

    Assume a continuous model consists of n agents,xi(t)and vi(t)(i=1,...,n)denote the position and velocity of the i th agent,respectively.The dynamics of flocking model is then defined by

    where the weighting function aij(t),which represents the inter-agents distance between agents i and j,can be obtained by

    where H > 0,σ > 0,and β ≥ 0 are a given set of system parameters.

    The performance of Cucker-Smale model(7)depends on the selection of β,which satisfies the following conditions to guarantee the convergence of flocking:

    with

    It is worth noting that the convergence of the formation towards a flocking behavior(like a common velocity)can be obtained relying solely on the initial state conditions(x(0),v(0))of theflock if any of the conditions in equation(9)have been satisfied.

    In addition to guaranteeing the convergence feature of a flock of agents,it is also critical to ensure the collision avoidance among agents in order to fulfill the desired mission with a safe and satisfactory performance.Reference[15]proposes a flocking control method ensuring all agents converge to an identical velocity,while simultaneously satisfy the demand for collision avoidance.Furthermore,a solid mathematical stability proof is also provided.By borrowing the concept proposed in[15],the flocking model(7)can then be rewritten as follows:

    where

    λ(t)is designed to moderate the repelling force,while λ(t)=0 indicates that all agents in the flock align at a common velocity,r0>0 denotes the safety distance among all agents,and the differentiable function f(r)should be subjected to the following conditions:

    The first condition in equation(11)is used for ensuring collision avoidance,while the second one is devised for guaranteeing the convergence of flock to alignment.

    Thus,it is possible to summarize the three objectives of equation(10)as follows:

    ·asymptotic velocity convergence of pairwise agents:

    ·asymptotic formation keeping:

    whereand R(n,r0)> r0denote the distance between the i th and j th agents and maximum radius of the formation,respectively;and

    ·collision avoidance among neighboring agents:

    3.2 Translational motion control scheme design

    The translational motion control law is designed using flocking theory based on the modified Cucker-Smale model.From equation(5),solely considering the variables related to the operation of UQHs in X-Y coordinate system,one can then obtain the position and velocity vectors for each UQH asandrespectively.The corresponding control input is selected as ui=[gθ,?gφ]T.

    Thus,the translational dynamics of UQH can be written as follows:

    In order to satisfy the three objectives proposed in equations(12)–(14),in addition to using equation(10)to meet the velocity matching and collision avoidance requirements,additional scheme for keeping the formation within a desired circle to flock centering is still required.Actually,this issue has been widely discussed in the literature,and solid mathematical proof are also provided.To guarantee the cohesion property of fleet with out changing the overall dynamics of flocking model(10)introduced in[15],this study proposes to add abounded attractive force term to equation(10)for constraining all agents within a circle with specific radius.Thus,with this additional term,equation(10)can be rewritten as

    where the bounded attractive force termis obtained by calculating the distance between the ith agent and the average positionandwhile functionsatisfies

    Functionis calculated by

    where Hcis a positive constant.

    Equation(17)indicates that the bounded attracting force affects the agent which is outside the specific circle for keeping the desired formation;while the attracting force vanishes when the agent is within the desired circle.

    Since the proposed flocking control algorithm is designed based on the linearized models(5)of UQH,while the simulation/experiment is conducted on the nonlinear model(1).It is thereby inevitably required to consider the uncertainties from the model linearizati on and external disturbances without causing much unexpected oscillations and serious performance degradation.In this study,the additional tuning gains are added to the three terms in equation(16)in order to compensate the uncertainties of linearized model and disturbances.Based on this design,the further modified flocking control law(16)becomes

    where Kp>0,Kd>0 and Ka>0 represent the user defined tuning gains.

    3.3 Rotational motion control scheme design

    The linear quadratic regulator(LQR)control methodology,which is well-known and widely applied for a variety of industrial,academic,and scientific research applications,can be a suitable solution for the controller design of single UQH[25].Therefore,in this study,the LQR control scheme is adopted to develop the state feedback control strategy.

    Without loss of generality,the linearized UQH model(6)with consideration of merely pitch and roll motion,can be rewritten into the following state-space representation:

    where x(t)∈Rnis the state vector,u(t)∈Rmdenotes the control input,A ∈ Rn×n,and B ∈ Rn×m.ω(t)=[g,ωd(t)]Tincludes acceleration of gravity g and bounded external disturbance ωd(t)∈ Rr.In this study,

    As an effective mechanism for eliminating the steady state error,the integral term is further introduced into the control scheme design[26].After incorporating this integral term,system(20)can then be augmented as follows:

    includes ω(t)and reference signal yref(t).

    Sr∈ Rl×pis used for selecting the required system states.

    Then,the employment of LQR controller is to design an appropriate control input u(t)to operate the augmented system from any initial state xa(t0)to the equivalent state within an infinite time period.This can be achieved by minimizing the following objective function[27]:

    where Q ∈ R(n+l)×(n+l)is a symmetric matrix,and R ∈R(m+l)×(m+l)is a positive symmetric definite matrix.The state feedback gain K is then obtainable by solving algebraic Riccati equations.

    Ultimately,the optimal augmented state feedback control input can be obtained as

    4 Simulation validation

    In order to demonstrate the effectiveness of the proposed flocking control method,numerical simulations on a group of UQH nonlinear models(a total of 12 agents)have been conducted.System parameters of the studied UQH,which are adopted from a real one,are listed in Table 2.

    Table 2 Values of used system parameters.

    Initially,UQHs in the fleet are allocated with different velocities and distributed in distinct positions.The safety distance of pairwise UQHs is set as 1m.The values for the adopted flocking controller parameters are selected as follows:H=1,β=0.4,Hc=0.1,r0=1m,Kp=0.5,Kd=0.7,Ka=1.7.The control gains for the motion controller is computed as

    As shown in Fig.3,the radius of the fleet is first assigned with R(n,r0)=12m,then changed to R(n,r0)=10m and R(n,r0)=8m at the 30th and 60th second,respectively.The result demonstrates that the desired fleet reformation is achieved by the proposed flocking control method.

    Fig.3 The flocking movement of the fleet.(a)t=0s,Radius=12m.(b)t=25s,Radius=12m.(c)t=50s,Radius=10m.(d)t=100s,Radius=8m.

    Fig.4 displays the velocity histories of all UQHs along the x and y coordinates.It can be observed from Fig.4 that the fleet can converge to the common velocity within around 20 seconds.

    To investigate the performance of the fleet of UQHs in a clearer fashion,Fig.5 shows the minimum and the maximum distances between each two agents,these distances are calculated by

    From Fig.5,the safety distance 1m between neighbouring agents can always be guaranteed,while the maximum distance for keeping the desired formation is satisfied as well.

    Fig.6 shows the average distance difference Φ(t)and average velocity difference Ψ(t)of pairwise UQHs.It clearly shows that the desired formation keeping and velocity matching performance are achieved.The Φ(t)and Ψ(t)are calculated by

    Fig.4 The velocities of all agents.

    Fig.5 The distances of the fleet.(a)Distances between agents and flocking center.(b)Minimum&maximum distances between pairwise agents.

    Fig.6 The average distance and velocity differences of pairwise UQHs.

    5 Conclusions

    This paper presents the development and application of a new flocking control algorithm on a fleet of unmanned quadrotor helicopters(UQHs)with nonlinear dynamics.The three critical characteristics of flocking,the cohesion,separation and alignment have been guaranteed in this work.First,the linearized model of unmanned quadrotor helicopter is demonstrated to be effective for designing both flocking control and motion control algorithms.Then,the satisfactory performance of the proposed method on multiple UQH nonlinear models is achieved in the numerical simulation.

    In the future,it is expected to extend the proposed work to considering both sensor and actuator faults in the scheme design to enhance the reliability and safety of the system.Further experimental tests on a group of real UQHs in the authors’lab have also been planned to further validate the proposed method.

    [1]C.Yuan,Y.Zhang,Z.Liu.A survey on technologies for automatic forest fire monitoring,detection,and fighting using unmanned aerial vehicles and remote sensing techniques.Canadian Journal of Forest Research,2015,45(7):783–792.

    [2]C.Yuan,Z.Liu,Y.Zhang.Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles.Journal of Intelligent&Robotic Systems,2017,88(2/4):635–654.

    [3]D.Kingston,R.W.Beard,R.S.Holt.Decentralized perimeter surveillance using a team of UAVs.IEEE Transactions on Robotics,2008,24(6):1394–1404.

    [4]A.Rango,A.Laliberte,J.E.Herrick,et al.Unmanned aerial vehicle-based remote sensing for rangeland assessment,monitoring,and management.Journal of Applied Remote Sensing,2009,3(1):DOI 10.1117/1.3216822.

    [5]J.E.Gomez-Balderas,G.Flores,L.G.Carrillo,et al.Tracking a ground moving target with a quadrotor using switching control.Journal of Intelligent&Robotic Systems,2013,70(1/4):65–78.

    [6]J.Escareno,S.Salazar,H.Romero,et al.Trajectory control of a quadrotor subject to 2D wind disturbances.Journal of Intelligent&Robotic Systems,2013,70(1/4):51–63.

    [7]Z.Liu,C.Yuan,X.Yu,et al.Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics.International Journal of Robust and Nonlinear Control,2017:DOI https://doi.org/10.1002/rnc.3889.

    [8]Z.Liu,C.Yuan,Y.Zhang,et al.A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter.Journal of Intelligent&Robotic Systems,2015,84(1/4):145–162.

    [9]C.W.Reynolds.Flocks,herds and schools:A distributed behavioral model.ACM SIGGRAPH Computer Graphics,1987,21(4):25–34.

    [10]R.Olfati-Saber.Flocking for multi-agent dynamic systems:Algorithms and theory.IEEE Transactions on Automatic Control,2006,51(3):401–420.

    [11]F.Cucker,S.Smale.On the mathematics of emergence.Japanese Journal of Mathematics,2007,2(1):197–227.

    [12]T.Vicsek,A.Czir′ok,E.Ben-Jacob,et al.Novel type of phase transition in a system of self-driven particles.Physical Review Letters,1995,75(6):1226–1229.

    [13]Z.Liu,L.Guo.Connectivity and synchronization of Vicsek model.Science in China Series F:Information Sciences,2008,51(7):848–858.

    [14]L.Perea,E.Pedro,G.Gerard.Extension of the Cucker-Smale control law to space flight formations.Journal of Guidance,Control,and Dynamics,2009,32(2):527–537.

    [15]F.Cucker,J.G.Dong.Avoiding collisions in flocks.IEEE Transactions on Automatic Control,2010,55(5):1238–1243.

    [16]J.Park,H.J.Kim,S.Y.Ha.Cucker-Smale flocking with inter particle bonding forces.IEEE Transactions on Automatic Control,2010,55(11):2617–2623.

    [17]S.M.Ahn,H.Choi,S.Y.Ha,et al.On collision-avoiding initial configurations to Cucker-Smale type flocking models.Communications in Mathematical Sciences,2012,10(2):625–643.

    [18]R.Olfati-Saber,R.M.Murray.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520–1533.

    [19]N.Moshtagh,N.Michael,A.Jadbabaie,et al.Visionbased,distributed control laws for motion coordination of nonholonomic robots.IEEE Transactions on Robotics,2009,25(4):851–860.

    [20]O.Saif,F.Isabelle,Z.R.Arturo.Real-time flocking of multiple quadrotor system of systems.IEEE Conference on System of Systems Engineering(SoSE),San Antonio:IEEE,2015:286–291.

    [21]A.Belkadi,D.Theilliol,L.Ciarletta,et al.Robust flocking control design for a fleet of autonomous agents.IEEE Conference on Control and Fault-Tolerant Systems(SysTol),Barcelona:IEEE,2016:1–6.

    [22]Z.Liu,C.Yuan,Y.Zhang.Active fault-tolerant control of unmanned quadrotor helicopter using linear parameter varying technique.Journal of Intelligent&Robotic Systems,2017,88(2/4):415–436.

    [23]Y.Zhang,A.Chamseddine,C.A.Rabbath,et al.Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed.Journal of Franklin Institute,2013,350(9):2396–2422.

    [24]Z.Liu,Y.Zhang,X.Yu,et al.Unmanned surface vehicles:An overview of developments and challenges.Annual Reviews in Control,2016,41:71–93.

    [25]K.J.?str¨om,B.Wittenmark.Computer-Controlled Systems:Theory and Design.Englewood Cliffs:Prentice-Hall,1984.

    [26]Y.Zhang,J.Jiang.Integrated design of reconfigurable faulttolerant control systems.Journal of Guidance,Control,and Dynamics,2001,24(1):133–136.

    [27]B.Kedjar,A.H.Kamal.DSP-based implementation of an LQR with integral action for a three-phase three-wire shunt active power filter.IEEE Transactions on Industrial Electronics,2009,56(8):2821–2828.

    猜你喜歡
    高達(dá)游說總計(jì)
    美國科技巨頭游說政府費(fèi)用大增
    損耗率高達(dá)30%,保命就是保收益!這條70萬噸的魚要如何破存活率困局?
    2017公路交通管理十大熱詞
    中國公路(2018年1期)2018-01-27 21:54:10
    萬代FW GUNDAM CONVERGE《機(jī)動(dòng)武斗傳G高達(dá)》惡魔高達(dá)最終型態(tài)
    玩具世界(2017年10期)2018-01-22 02:52:45
    進(jìn)擊的磊編
    印度應(yīng)該使政治游說合法化嗎
    動(dòng)漫名人大聯(lián)歡
    Vishay推出開關(guān)頻率高達(dá)1.5MHz的同步降壓穩(wěn)壓器
    全國各地區(qū)、各類期刊出版的種數(shù)、印數(shù)、總印張、總金額
    游說公共關(guān)系對(duì)我國立法制度的影響
    亚洲国产最新在线播放| 在线看a的网站| 国产一区二区在线观看日韩| 免费观看性生交大片5| 在线观看免费高清a一片| av国产久精品久网站免费入址| 性色av一级| 80岁老熟妇乱子伦牲交| 两个人的视频大全免费| 久久女婷五月综合色啪小说 | 男插女下体视频免费在线播放| 国产高清有码在线观看视频| 国产av国产精品国产| av一本久久久久| 欧美少妇被猛烈插入视频| 国产亚洲午夜精品一区二区久久 | 极品教师在线视频| 国产爽快片一区二区三区| 亚洲精品乱码久久久v下载方式| 老师上课跳d突然被开到最大视频| 亚洲人成网站高清观看| 成年女人在线观看亚洲视频 | 国产高清国产精品国产三级 | 18禁裸乳无遮挡免费网站照片| 黄色视频在线播放观看不卡| 成人亚洲精品av一区二区| 欧美高清性xxxxhd video| 亚洲精华国产精华液的使用体验| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 91精品一卡2卡3卡4卡| 久久久亚洲精品成人影院| 亚洲av免费在线观看| 一本久久精品| 国产探花在线观看一区二区| 国产乱人视频| 18禁在线播放成人免费| 国产精品久久久久久精品古装| 日韩成人伦理影院| 男人舔奶头视频| 久久久久久久午夜电影| 国产69精品久久久久777片| 在线播放无遮挡| 国产黄色免费在线视频| 国产成人福利小说| 免费黄色在线免费观看| 成人欧美大片| 亚洲真实伦在线观看| 成人特级av手机在线观看| 欧美日韩一区二区视频在线观看视频在线 | 高清日韩中文字幕在线| 好男人视频免费观看在线| 国产91av在线免费观看| 久久久久久久久久久免费av| 国产精品一及| 亚洲欧美清纯卡通| 精品视频人人做人人爽| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 熟妇人妻不卡中文字幕| 插逼视频在线观看| 七月丁香在线播放| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 少妇的逼水好多| 国产乱人视频| av在线播放精品| 特大巨黑吊av在线直播| 美女脱内裤让男人舔精品视频| 神马国产精品三级电影在线观看| av国产免费在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲,一卡二卡三卡| 舔av片在线| 亚洲国产精品成人综合色| 狂野欧美激情性bbbbbb| 亚洲图色成人| 亚洲性久久影院| 日本黄大片高清| 国产 一区精品| 免费av毛片视频| 日韩精品有码人妻一区| 七月丁香在线播放| 七月丁香在线播放| 国产一区二区亚洲精品在线观看| 卡戴珊不雅视频在线播放| 少妇熟女欧美另类| 高清在线视频一区二区三区| 免费看不卡的av| 亚洲国产日韩一区二区| 亚洲av日韩在线播放| 深夜a级毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近中文字幕高清免费大全6| 国产成人aa在线观看| 男人狂女人下面高潮的视频| 网址你懂的国产日韩在线| 亚洲伊人久久精品综合| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 2022亚洲国产成人精品| 国产免费视频播放在线视频| 成人美女网站在线观看视频| 国产爱豆传媒在线观看| 一区二区三区四区激情视频| 黄色欧美视频在线观看| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 免费黄网站久久成人精品| 成人亚洲欧美一区二区av| av免费在线看不卡| 国产黄色视频一区二区在线观看| 人妻制服诱惑在线中文字幕| 在线观看三级黄色| 熟女人妻精品中文字幕| 欧美+日韩+精品| 精品久久久久久久久亚洲| 毛片一级片免费看久久久久| 欧美潮喷喷水| av免费观看日本| 好男人视频免费观看在线| 免费少妇av软件| 男的添女的下面高潮视频| 搡老乐熟女国产| 国产一级毛片在线| 在线天堂最新版资源| 免费不卡的大黄色大毛片视频在线观看| 一本一本综合久久| 在线精品无人区一区二区三 | 亚洲精品影视一区二区三区av| 国产高清三级在线| 亚洲真实伦在线观看| 欧美zozozo另类| 中文在线观看免费www的网站| 国产精品一区二区性色av| 欧美另类一区| 亚洲不卡免费看| 欧美日韩综合久久久久久| 久久人人爽人人爽人人片va| 一级av片app| 国产精品一区二区在线观看99| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 伦精品一区二区三区| 精品国产乱码久久久久久小说| 亚洲综合精品二区| 日韩成人伦理影院| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 亚洲av二区三区四区| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 久久久久久久久久人人人人人人| 97在线视频观看| 亚洲精品中文字幕在线视频 | 又黄又爽又刺激的免费视频.| 男的添女的下面高潮视频| 色视频在线一区二区三区| av在线app专区| 边亲边吃奶的免费视频| 色视频在线一区二区三区| 国产乱人偷精品视频| 久久久久久九九精品二区国产| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 91aial.com中文字幕在线观看| 欧美成人a在线观看| 国产色婷婷99| 精品人妻视频免费看| 亚洲精品国产av成人精品| 99久久精品一区二区三区| 国产 一区精品| 最近手机中文字幕大全| 欧美人与善性xxx| av免费在线看不卡| 久热久热在线精品观看| 欧美xxⅹ黑人| 午夜老司机福利剧场| 青春草视频在线免费观看| 午夜日本视频在线| 69av精品久久久久久| 国产日韩欧美在线精品| 22中文网久久字幕| 日日撸夜夜添| 国产黄色视频一区二区在线观看| 午夜免费男女啪啪视频观看| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 91精品一卡2卡3卡4卡| 精品久久久久久电影网| 欧美丝袜亚洲另类| .国产精品久久| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 亚洲精品视频女| 毛片一级片免费看久久久久| 国产毛片在线视频| 大片电影免费在线观看免费| 国产久久久一区二区三区| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 亚洲精品456在线播放app| 亚洲电影在线观看av| 18禁在线播放成人免费| 一级毛片aaaaaa免费看小| 黄片wwwwww| 麻豆成人午夜福利视频| 九九在线视频观看精品| 日本爱情动作片www.在线观看| 免费少妇av软件| av免费观看日本| 男人爽女人下面视频在线观看| 日韩,欧美,国产一区二区三区| 亚州av有码| 男人狂女人下面高潮的视频| 久久精品人妻少妇| 亚洲国产最新在线播放| 亚洲在久久综合| av又黄又爽大尺度在线免费看| 国产精品伦人一区二区| 亚洲一区二区三区欧美精品 | 国产爱豆传媒在线观看| 日韩欧美精品免费久久| 久久久久久久久久成人| 国产一区亚洲一区在线观看| 干丝袜人妻中文字幕| 精品熟女少妇av免费看| 嫩草影院入口| 看免费成人av毛片| 搡老乐熟女国产| 国产高清三级在线| 久久久成人免费电影| 日韩一区二区三区影片| 人体艺术视频欧美日本| 99九九线精品视频在线观看视频| 久久久a久久爽久久v久久| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 中文天堂在线官网| 亚洲综合精品二区| 国产成人freesex在线| 国产av不卡久久| 精品99又大又爽又粗少妇毛片| 中文字幕av成人在线电影| 男男h啪啪无遮挡| 欧美高清成人免费视频www| 国产成人免费观看mmmm| 成年av动漫网址| 2022亚洲国产成人精品| 下体分泌物呈黄色| 寂寞人妻少妇视频99o| 久久6这里有精品| 久久这里有精品视频免费| 亚洲av成人精品一二三区| 秋霞在线观看毛片| 身体一侧抽搐| 高清欧美精品videossex| 免费大片黄手机在线观看| 激情五月婷婷亚洲| 联通29元200g的流量卡| 一本色道久久久久久精品综合| 极品教师在线视频| 国产精品无大码| av女优亚洲男人天堂| 黄色日韩在线| 一二三四中文在线观看免费高清| 特级一级黄色大片| 搡老乐熟女国产| 成人综合一区亚洲| 97超视频在线观看视频| 日日啪夜夜爽| 久久久成人免费电影| 免费看日本二区| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片| 天天一区二区日本电影三级| 青青草视频在线视频观看| 日韩电影二区| 亚洲国产欧美在线一区| 欧美 日韩 精品 国产| 欧美区成人在线视频| 一区二区三区精品91| 久热这里只有精品99| 少妇高潮的动态图| 国产极品天堂在线| 精品久久久久久久久av| 亚洲成人久久爱视频| 国产又色又爽无遮挡免| 免费高清在线观看视频在线观看| 国产高清有码在线观看视频| 高清在线视频一区二区三区| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 欧美xxⅹ黑人| av在线天堂中文字幕| 精品99又大又爽又粗少妇毛片| 日本免费在线观看一区| 男女边吃奶边做爰视频| 超碰97精品在线观看| 老司机影院毛片| 国产成人福利小说| 欧美 日韩 精品 国产| 国产精品国产三级专区第一集| 亚洲国产色片| 永久免费av网站大全| 97热精品久久久久久| 国产毛片a区久久久久| 一级二级三级毛片免费看| 国产成人精品一,二区| 日韩制服骚丝袜av| 午夜精品国产一区二区电影 | 69人妻影院| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 成人欧美大片| 久久久久久久午夜电影| 看黄色毛片网站| 国产亚洲午夜精品一区二区久久 | 久久人人爽av亚洲精品天堂 | 亚洲欧美精品专区久久| 天堂俺去俺来也www色官网| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 成年人午夜在线观看视频| 你懂的网址亚洲精品在线观看| av国产久精品久网站免费入址| 国产精品.久久久| 亚洲色图综合在线观看| 白带黄色成豆腐渣| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看 | 日本黄色片子视频| 国产女主播在线喷水免费视频网站| 午夜福利视频1000在线观看| 大话2 男鬼变身卡| 久久久久网色| 五月开心婷婷网| 国产国拍精品亚洲av在线观看| 国产成人精品一,二区| 亚洲天堂av无毛| 毛片女人毛片| 身体一侧抽搐| 日韩 亚洲 欧美在线| 交换朋友夫妻互换小说| 午夜爱爱视频在线播放| 在线看a的网站| 国产精品熟女久久久久浪| 免费观看av网站的网址| 好男人在线观看高清免费视频| 一级毛片黄色毛片免费观看视频| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 狂野欧美激情性bbbbbb| 一区二区三区精品91| 青春草国产在线视频| 亚洲真实伦在线观看| a级毛色黄片| 亚洲av中文av极速乱| 久久久久国产精品人妻一区二区| 国产黄色免费在线视频| 婷婷色av中文字幕| 欧美bdsm另类| av线在线观看网站| 搡女人真爽免费视频火全软件| 欧美高清性xxxxhd video| 视频区图区小说| 日本三级黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 黑人高潮一二区| 午夜精品一区二区三区免费看| 精品午夜福利在线看| 国产成人精品一,二区| 啦啦啦在线观看免费高清www| 天堂网av新在线| 自拍欧美九色日韩亚洲蝌蚪91 | 涩涩av久久男人的天堂| 国产男人的电影天堂91| 国产欧美日韩精品一区二区| 综合色av麻豆| 国产探花极品一区二区| 国产成人免费无遮挡视频| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 午夜福利在线观看免费完整高清在| 国产亚洲av嫩草精品影院| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 天堂俺去俺来也www色官网| 亚洲精品日韩av片在线观看| 亚洲人成网站在线播| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 亚洲精品乱久久久久久| 久热这里只有精品99| 搡老乐熟女国产| 特级一级黄色大片| 欧美激情在线99| 欧美日本视频| 自拍欧美九色日韩亚洲蝌蚪91 | 性色av一级| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站 | 看黄色毛片网站| 青春草亚洲视频在线观看| 国产伦在线观看视频一区| 一区二区三区四区激情视频| 美女脱内裤让男人舔精品视频| 国内精品宾馆在线| 男女啪啪激烈高潮av片| 热re99久久精品国产66热6| 哪个播放器可以免费观看大片| 亚洲人成网站在线播| 亚洲av男天堂| 成人一区二区视频在线观看| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| 亚洲精品影视一区二区三区av| 肉色欧美久久久久久久蜜桃 | 少妇人妻一区二区三区视频| 亚洲不卡免费看| 亚洲精品乱久久久久久| 小蜜桃在线观看免费完整版高清| 免费观看性生交大片5| av福利片在线观看| 国产淫片久久久久久久久| 亚洲精品日韩在线中文字幕| 香蕉精品网在线| 亚洲国产av新网站| 精品视频人人做人人爽| 在线观看美女被高潮喷水网站| 大香蕉久久网| 国产亚洲精品久久久com| 久久久久久国产a免费观看| 久久久精品免费免费高清| 深爱激情五月婷婷| .国产精品久久| 老司机影院成人| 亚洲精品久久久久久婷婷小说| 亚洲精品中文字幕在线视频 | 高清午夜精品一区二区三区| 下体分泌物呈黄色| 欧美日韩视频精品一区| 日日啪夜夜爽| 97在线视频观看| 99re6热这里在线精品视频| av卡一久久| 国产午夜福利久久久久久| 97精品久久久久久久久久精品| 国产一区二区三区av在线| 国产在线一区二区三区精| 亚洲国产欧美在线一区| 中国美白少妇内射xxxbb| 国产免费视频播放在线视频| 国产精品一区二区性色av| a级毛色黄片| 亚洲欧洲国产日韩| 成人美女网站在线观看视频| av在线天堂中文字幕| 三级经典国产精品| av女优亚洲男人天堂| 亚洲欧美精品专区久久| 极品少妇高潮喷水抽搐| 日本猛色少妇xxxxx猛交久久| 国产精品不卡视频一区二区| 天天躁日日操中文字幕| 午夜福利网站1000一区二区三区| 女人被狂操c到高潮| 日韩制服骚丝袜av| 久久久精品免费免费高清| 久久精品久久精品一区二区三区| 亚洲国产高清在线一区二区三| 国产黄色视频一区二区在线观看| 看非洲黑人一级黄片| 一级爰片在线观看| 久久综合国产亚洲精品| 欧美日韩综合久久久久久| 国产美女午夜福利| 最新中文字幕久久久久| 成人一区二区视频在线观看| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区黑人 | 久久精品久久精品一区二区三区| 天天一区二区日本电影三级| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 久久久欧美国产精品| 亚洲精品色激情综合| 久久精品国产亚洲av天美| 精华霜和精华液先用哪个| 成年免费大片在线观看| 只有这里有精品99| 色视频www国产| 亚洲欧美精品专区久久| 国产69精品久久久久777片| 国产一区二区三区av在线| 免费看av在线观看网站| 精品人妻视频免费看| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 国产精品伦人一区二区| 亚洲精品成人久久久久久| 香蕉精品网在线| 精品国产乱码久久久久久小说| 成年av动漫网址| 国产伦精品一区二区三区视频9| 亚洲久久久久久中文字幕| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 我的女老师完整版在线观看| 亚洲人成网站高清观看| 日本一二三区视频观看| 大陆偷拍与自拍| 精品久久久精品久久久| 午夜日本视频在线| 尤物成人国产欧美一区二区三区| 噜噜噜噜噜久久久久久91| av天堂中文字幕网| 久久久久性生活片| 成人国产av品久久久| 2021天堂中文幕一二区在线观| 国产精品99久久99久久久不卡 | 少妇人妻一区二区三区视频| 性色av一级| 美女主播在线视频| 欧美高清性xxxxhd video| 免费电影在线观看免费观看| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| 免费人成在线观看视频色| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 久久久精品94久久精品| 国产精品人妻久久久久久| 久久ye,这里只有精品| 日韩电影二区| 免费电影在线观看免费观看| 精品视频人人做人人爽| 激情五月婷婷亚洲| 可以在线观看毛片的网站| 亚洲欧洲日产国产| 亚洲精品一二三| 国产精品女同一区二区软件| 日韩国内少妇激情av| 美女xxoo啪啪120秒动态图| 伦理电影大哥的女人| 热99国产精品久久久久久7| 2022亚洲国产成人精品| 亚洲成人一二三区av| 3wmmmm亚洲av在线观看| 亚洲美女搞黄在线观看| 亚州av有码| 成人欧美大片| 色视频在线一区二区三区| 九九在线视频观看精品| 最近2019中文字幕mv第一页| 2022亚洲国产成人精品| 成年免费大片在线观看| 免费高清在线观看视频在线观看| 蜜桃久久精品国产亚洲av| 2018国产大陆天天弄谢| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 免费观看在线日韩| 99热这里只有是精品在线观看| 成人国产麻豆网| 免费少妇av软件| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区久久久樱花 | 色网站视频免费| 国产免费视频播放在线视频| 午夜福利在线观看免费完整高清在| 国产乱来视频区| 国产伦精品一区二区三区视频9| 一级毛片aaaaaa免费看小| 啦啦啦中文免费视频观看日本| 亚洲电影在线观看av| 少妇人妻精品综合一区二区| freevideosex欧美| 欧美日韩亚洲高清精品| 99热网站在线观看| 在线观看一区二区三区激情| 成人特级av手机在线观看| 日韩国内少妇激情av| 丰满少妇做爰视频| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类| 久久久久精品久久久久真实原创| av在线老鸭窝| 狂野欧美激情性xxxx在线观看| 白带黄色成豆腐渣| 亚洲欧美清纯卡通| 日韩一本色道免费dvd| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清| 成人亚洲欧美一区二区av| 国产人妻一区二区三区在| 亚洲成人精品中文字幕电影| 久久精品国产a三级三级三级|