• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flocking control of a fleet of unmanned aerial vehicles

    2018-06-04 02:47:34AdelBELKADIZhixiangLIULaurentCIARLETTAYouminZHANGDidierTHEILLIOL
    Control Theory and Technology 2018年2期
    關(guān)鍵詞:高達(dá)游說總計(jì)

    Adel BELKADI,Zhixiang LIU ,Laurent CIARLETTA ,Youmin ZHANG ,Didier THEILLIOL?

    1.CRAN,University of Lorraine,Nancy,France;

    2.Department of Mechanical,Industrial and Aerospace Engineering,Concordia University,Montreal,Canada;

    3.Lorraine Research Laboratory in Computer Science and its Applications(LORIA),University of Lorraine,Nancy,France

    1 Introduction

    The last decade has seen an increasing number of unmanned aerial vehicles(UAVs)applied to a variety of applications,such as forest health/fire surveillance[1,2],search and rescue[3],natural resources exploration[4],environmental surveillance[5],and military missions[6].As an important type of UAV,unmanned quadrotor helicopter(UQH)has also been dedicated significant investigations due to their numerous advantages including decreased operation complexity,affordable development cost[7],and improved maneuverability[8].These characteristics have contributed tremendous benefits to avariety of applications demanded by many universities,research institutes,commercial entities,and military[8].

    In order to greatly enhance the capabilities of UQHs against system failures,improve their efficiencies,and extend their coverage of surveillance and measurement applications,current research on UQH has already gone beyond single system.Inspired by the study of biologists on the flocking phenomenon of animals in nature,such as schools of fish,swarms of insects,herds of quadruped,and flocks of birds,Reynolds[9]has introduced the following three heuristic rules for the flocking control of a group of agents[10]:

    1)flock centering(cohesion):stay close to nearby agents;

    2)collision avoidance(separation):avoid collisions with surrounding agents;and

    3)velocity matching(alignment):match velocity with neighboring agents.

    These three rules have been considered as the basic elements of developing the theoretical framework and control strategies for the flocking control of multiple agents systems(including heterogeneous numbers and categories).

    The flocking control of multiple UQHs for a diversity of applications,including environmental surveillance,search and rescue,and natural resources exploration,has likewise attracted much attention from researchers around the world.On the early stage of flocking control development,several distinct flocking models have been developed.The first flocking model is proposed in[9].Then,the Cucker-Smale model is constructed in[11],while[12]develops the Vicsek model.Later on,an improvement to Vicsek model is made in[13].Following these models,numerous relative flocking control methods have also been investigated.Whereas these works solely concentrate on the alignment problem,while other rules of flocking control are not well studied.To improve the performance of flocking,further investigations are conducted.One research in[10]has combined the alignment rule with an additional repulsive/attractive term for keeping all agents within a desired region,whiletheunified velocityhasbeen matched by all agents.In addition to that,numerous studies have also extended the Cucker-Smale model[11]to maneuvre a fleet of unmanned vehicles[14].In[15],a repulsive force is incorporated in the flocking control design to maintain the safety distance among agents,a rigorous proof is provided to guarantee the collision avoidance capabilities of agents.Works in[16]and[17]extend the Cucker-Smale model by introducing additional interaction terms among agents for the purpose of achieving both collision avoidance functions and tighter spatial configurations.Other relative works on this subject are carried out in[18,19]which derive a decoupled control term based on a potential function;this term is devised to achieve the separation and cohesion among agents,together with using the velocity consensus control rule,both formation-keeping and collision avoidancecan be guaranteed.However,the above-mentioned approaches tend to be quite dangerous in the presence of low accurate measurements or actuator and sensor faults.Furthermore,most of the existing flocking control methodologies are designed and validated only on a simple system with double integrator dynamics without consideration of system uncertainties and nonlinear dynamics.These adverse effects may dramatically deteriorate the performance of flocking,as well as cause significant oscillations[20]and even divergence.

    In order to surmount the aforementioned challenging issues,this paper proposes a new flocking control approach which is an extension of authors’previous work summarized in[21].Different from the method adopted in[18,19],the solution proposed by this work is to consider all agents as a group without specifying any distances among them.The proposed method,which is expected to achieve the satisfactory performance(cohesion,separation and alignment)of multiple UQHs,treats the whole system as the following three layers:

    1)guidance system(flocking rule)for the translational control design in kinematics level;

    2)motion control system for rotational control design in kinetics level;and

    3)UQHs systems.

    The contributions of this paper can be highlighted as follows:1)design of a new flocking control method and implementation of it on a group of UQHs with nonlinear dynamics to make the proposed method applicable in practice;and

    2)it is normally difficult to guarantee the fixed neighbouring distance required by some existing works and model uncertainties and disturbances in practice can cause significant oscillations of agents.

    In addition,by using the formation control algorithm with fixed neighbouring distance requirement,it may become quite complicated to satisfy the anticipated formation control performance when the number of agents remarkably increases.However,the proposed flocking control method requires no fixed distance among agents,providing more flexibility to the formation control,especially for the practical implementation.

    Therest of this paper is organized as follows:Section 2 introduces the modelling of UQH and some preliminaries of flocking control system design.Section 3 illustrates the design procedure of the presented flocking control system.Section 4 addresses the conducted numerical simulations and their results analyses.The last section summarizes the conclusions and future works.

    2 Preliminaries

    2.1 Nonlinear model of unmanned quadrotor helicopter

    As shown in Fig.1,the UQH is usually operated by four motor-driven propellers which situate at the front,rear,left,and right corners of UQH,respectively,generating their corresponding thrusts u1,u2,u3,and u4.

    Fig.1 Schematic diagram of a typical UQH.

    Generally,the motion of UQH can be illustrated as follows:

    1)identical amount of control signals are distributed to each motor to achieve the vertical translation;and

    2)distinct amount of control signals are assigned to the opposite motors to fulfil the horizontal translation[8,22].

    For a common dynamical model of UQH in regard to the earth-fixed coordinate system,one can obtain that

    Moreover,the following relationship between accelerations and lift/torques can be formulated:

    The propeller force and its corresponding pulse width modulation(PWM)signal has the foll owing relationship:

    To facilitate the control scheme design,borrowing the ideas of existing research works[8,23],the following model simplification can be obtained as

    Therefore,equation(3)can be reduced to

    where Kmand ωmare theoretically assumed to be identical for all motors.

    The definition of above-mentioned symbols are all included in Table 1 for readers’convenience.

    Table 1 Nomenclature(earth-fixed coordinate system).

    2.2 Linearization of the unmanned quadrotor helicopter

    As UQH’s model is highly nonlinear,translational and rotational motions are coupled,in order to match the dynamics of UQH with double integrator model to enable the design of the flocking control algorithm,Assumption 1 is thereby made for linearizing the dynamics of UQH.

    Assumption 1The UQH is assumed to be in a near hovering condition which implies that:1)uz≈m g points toward the vertical direction;2)pitch and roll angles are so small that sinφ≈φand sinθ≈θ;3)there is no yaw angle(ψ=0).

    Based on Assumption 1 and equation(1),the new translational and rotational dynamicsof UQHin the similar formulation of double integrators can be achieved as equations(5)and(6),respectively.

    1)Translational dynamics of UQH:

    2)Rotational dynamics of UQH:

    3 Flocking control scheme design

    As addressed in Fig.2,the system architecture of the proposed method can be divided into three levels:the high level(translational motion control)guidance system,middle level(rotational motion control)control system,and low level(UQH system)[24].First,based on the mission command and states of formation,the high level guidance system produces the rotational reference command,which is then distributed to the middle level control system for maneuvering the low level UQHs to follow the desired references.

    貪污腐敗的形式之一是私相授受,一方是政府官員受賄,游說團(tuán)體的說客們往往就扮演了上門賄賂的腳色。第八、九章的分析對(duì)象就是這些活動(dòng)越趨頻繁、勢(shì)力日漸龐大的游說團(tuán)體。2007年,美國首都華盛頓有經(jīng)注冊(cè)的說客約35 800人。游說這一行,作者稱之為“游說業(yè)” (the lobbying industry),2007年向其客戶收取的費(fèi)用總計(jì)高達(dá)29億美元。游說業(yè)之勢(shì)力由此可見一斑。

    Fig.2 Control architecture of the proposed approach for each agent.

    3.1 Modified Cucker-Smale model design

    As a widely employed model for flocking control design,the Cucker-Smale model introduced by[11]is also used in this study.In this flocking model,each agent updates its velocity in every sampling time by adding to it with a time-varying value,which is the weighted average of the differences of its velocity with those of its neighboring agents.

    Assume a continuous model consists of n agents,xi(t)and vi(t)(i=1,...,n)denote the position and velocity of the i th agent,respectively.The dynamics of flocking model is then defined by

    where the weighting function aij(t),which represents the inter-agents distance between agents i and j,can be obtained by

    where H > 0,σ > 0,and β ≥ 0 are a given set of system parameters.

    The performance of Cucker-Smale model(7)depends on the selection of β,which satisfies the following conditions to guarantee the convergence of flocking:

    with

    It is worth noting that the convergence of the formation towards a flocking behavior(like a common velocity)can be obtained relying solely on the initial state conditions(x(0),v(0))of theflock if any of the conditions in equation(9)have been satisfied.

    In addition to guaranteeing the convergence feature of a flock of agents,it is also critical to ensure the collision avoidance among agents in order to fulfill the desired mission with a safe and satisfactory performance.Reference[15]proposes a flocking control method ensuring all agents converge to an identical velocity,while simultaneously satisfy the demand for collision avoidance.Furthermore,a solid mathematical stability proof is also provided.By borrowing the concept proposed in[15],the flocking model(7)can then be rewritten as follows:

    where

    λ(t)is designed to moderate the repelling force,while λ(t)=0 indicates that all agents in the flock align at a common velocity,r0>0 denotes the safety distance among all agents,and the differentiable function f(r)should be subjected to the following conditions:

    The first condition in equation(11)is used for ensuring collision avoidance,while the second one is devised for guaranteeing the convergence of flock to alignment.

    Thus,it is possible to summarize the three objectives of equation(10)as follows:

    ·asymptotic velocity convergence of pairwise agents:

    ·asymptotic formation keeping:

    whereand R(n,r0)> r0denote the distance between the i th and j th agents and maximum radius of the formation,respectively;and

    ·collision avoidance among neighboring agents:

    3.2 Translational motion control scheme design

    The translational motion control law is designed using flocking theory based on the modified Cucker-Smale model.From equation(5),solely considering the variables related to the operation of UQHs in X-Y coordinate system,one can then obtain the position and velocity vectors for each UQH asandrespectively.The corresponding control input is selected as ui=[gθ,?gφ]T.

    Thus,the translational dynamics of UQH can be written as follows:

    In order to satisfy the three objectives proposed in equations(12)–(14),in addition to using equation(10)to meet the velocity matching and collision avoidance requirements,additional scheme for keeping the formation within a desired circle to flock centering is still required.Actually,this issue has been widely discussed in the literature,and solid mathematical proof are also provided.To guarantee the cohesion property of fleet with out changing the overall dynamics of flocking model(10)introduced in[15],this study proposes to add abounded attractive force term to equation(10)for constraining all agents within a circle with specific radius.Thus,with this additional term,equation(10)can be rewritten as

    where the bounded attractive force termis obtained by calculating the distance between the ith agent and the average positionandwhile functionsatisfies

    Functionis calculated by

    where Hcis a positive constant.

    Equation(17)indicates that the bounded attracting force affects the agent which is outside the specific circle for keeping the desired formation;while the attracting force vanishes when the agent is within the desired circle.

    Since the proposed flocking control algorithm is designed based on the linearized models(5)of UQH,while the simulation/experiment is conducted on the nonlinear model(1).It is thereby inevitably required to consider the uncertainties from the model linearizati on and external disturbances without causing much unexpected oscillations and serious performance degradation.In this study,the additional tuning gains are added to the three terms in equation(16)in order to compensate the uncertainties of linearized model and disturbances.Based on this design,the further modified flocking control law(16)becomes

    where Kp>0,Kd>0 and Ka>0 represent the user defined tuning gains.

    3.3 Rotational motion control scheme design

    The linear quadratic regulator(LQR)control methodology,which is well-known and widely applied for a variety of industrial,academic,and scientific research applications,can be a suitable solution for the controller design of single UQH[25].Therefore,in this study,the LQR control scheme is adopted to develop the state feedback control strategy.

    Without loss of generality,the linearized UQH model(6)with consideration of merely pitch and roll motion,can be rewritten into the following state-space representation:

    where x(t)∈Rnis the state vector,u(t)∈Rmdenotes the control input,A ∈ Rn×n,and B ∈ Rn×m.ω(t)=[g,ωd(t)]Tincludes acceleration of gravity g and bounded external disturbance ωd(t)∈ Rr.In this study,

    As an effective mechanism for eliminating the steady state error,the integral term is further introduced into the control scheme design[26].After incorporating this integral term,system(20)can then be augmented as follows:

    includes ω(t)and reference signal yref(t).

    Sr∈ Rl×pis used for selecting the required system states.

    Then,the employment of LQR controller is to design an appropriate control input u(t)to operate the augmented system from any initial state xa(t0)to the equivalent state within an infinite time period.This can be achieved by minimizing the following objective function[27]:

    where Q ∈ R(n+l)×(n+l)is a symmetric matrix,and R ∈R(m+l)×(m+l)is a positive symmetric definite matrix.The state feedback gain K is then obtainable by solving algebraic Riccati equations.

    Ultimately,the optimal augmented state feedback control input can be obtained as

    4 Simulation validation

    In order to demonstrate the effectiveness of the proposed flocking control method,numerical simulations on a group of UQH nonlinear models(a total of 12 agents)have been conducted.System parameters of the studied UQH,which are adopted from a real one,are listed in Table 2.

    Table 2 Values of used system parameters.

    Initially,UQHs in the fleet are allocated with different velocities and distributed in distinct positions.The safety distance of pairwise UQHs is set as 1m.The values for the adopted flocking controller parameters are selected as follows:H=1,β=0.4,Hc=0.1,r0=1m,Kp=0.5,Kd=0.7,Ka=1.7.The control gains for the motion controller is computed as

    As shown in Fig.3,the radius of the fleet is first assigned with R(n,r0)=12m,then changed to R(n,r0)=10m and R(n,r0)=8m at the 30th and 60th second,respectively.The result demonstrates that the desired fleet reformation is achieved by the proposed flocking control method.

    Fig.3 The flocking movement of the fleet.(a)t=0s,Radius=12m.(b)t=25s,Radius=12m.(c)t=50s,Radius=10m.(d)t=100s,Radius=8m.

    Fig.4 displays the velocity histories of all UQHs along the x and y coordinates.It can be observed from Fig.4 that the fleet can converge to the common velocity within around 20 seconds.

    To investigate the performance of the fleet of UQHs in a clearer fashion,Fig.5 shows the minimum and the maximum distances between each two agents,these distances are calculated by

    From Fig.5,the safety distance 1m between neighbouring agents can always be guaranteed,while the maximum distance for keeping the desired formation is satisfied as well.

    Fig.6 shows the average distance difference Φ(t)and average velocity difference Ψ(t)of pairwise UQHs.It clearly shows that the desired formation keeping and velocity matching performance are achieved.The Φ(t)and Ψ(t)are calculated by

    Fig.4 The velocities of all agents.

    Fig.5 The distances of the fleet.(a)Distances between agents and flocking center.(b)Minimum&maximum distances between pairwise agents.

    Fig.6 The average distance and velocity differences of pairwise UQHs.

    5 Conclusions

    This paper presents the development and application of a new flocking control algorithm on a fleet of unmanned quadrotor helicopters(UQHs)with nonlinear dynamics.The three critical characteristics of flocking,the cohesion,separation and alignment have been guaranteed in this work.First,the linearized model of unmanned quadrotor helicopter is demonstrated to be effective for designing both flocking control and motion control algorithms.Then,the satisfactory performance of the proposed method on multiple UQH nonlinear models is achieved in the numerical simulation.

    In the future,it is expected to extend the proposed work to considering both sensor and actuator faults in the scheme design to enhance the reliability and safety of the system.Further experimental tests on a group of real UQHs in the authors’lab have also been planned to further validate the proposed method.

    [1]C.Yuan,Y.Zhang,Z.Liu.A survey on technologies for automatic forest fire monitoring,detection,and fighting using unmanned aerial vehicles and remote sensing techniques.Canadian Journal of Forest Research,2015,45(7):783–792.

    [2]C.Yuan,Z.Liu,Y.Zhang.Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles.Journal of Intelligent&Robotic Systems,2017,88(2/4):635–654.

    [3]D.Kingston,R.W.Beard,R.S.Holt.Decentralized perimeter surveillance using a team of UAVs.IEEE Transactions on Robotics,2008,24(6):1394–1404.

    [4]A.Rango,A.Laliberte,J.E.Herrick,et al.Unmanned aerial vehicle-based remote sensing for rangeland assessment,monitoring,and management.Journal of Applied Remote Sensing,2009,3(1):DOI 10.1117/1.3216822.

    [5]J.E.Gomez-Balderas,G.Flores,L.G.Carrillo,et al.Tracking a ground moving target with a quadrotor using switching control.Journal of Intelligent&Robotic Systems,2013,70(1/4):65–78.

    [6]J.Escareno,S.Salazar,H.Romero,et al.Trajectory control of a quadrotor subject to 2D wind disturbances.Journal of Intelligent&Robotic Systems,2013,70(1/4):51–63.

    [7]Z.Liu,C.Yuan,X.Yu,et al.Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics.International Journal of Robust and Nonlinear Control,2017:DOI https://doi.org/10.1002/rnc.3889.

    [8]Z.Liu,C.Yuan,Y.Zhang,et al.A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter.Journal of Intelligent&Robotic Systems,2015,84(1/4):145–162.

    [9]C.W.Reynolds.Flocks,herds and schools:A distributed behavioral model.ACM SIGGRAPH Computer Graphics,1987,21(4):25–34.

    [10]R.Olfati-Saber.Flocking for multi-agent dynamic systems:Algorithms and theory.IEEE Transactions on Automatic Control,2006,51(3):401–420.

    [11]F.Cucker,S.Smale.On the mathematics of emergence.Japanese Journal of Mathematics,2007,2(1):197–227.

    [12]T.Vicsek,A.Czir′ok,E.Ben-Jacob,et al.Novel type of phase transition in a system of self-driven particles.Physical Review Letters,1995,75(6):1226–1229.

    [13]Z.Liu,L.Guo.Connectivity and synchronization of Vicsek model.Science in China Series F:Information Sciences,2008,51(7):848–858.

    [14]L.Perea,E.Pedro,G.Gerard.Extension of the Cucker-Smale control law to space flight formations.Journal of Guidance,Control,and Dynamics,2009,32(2):527–537.

    [15]F.Cucker,J.G.Dong.Avoiding collisions in flocks.IEEE Transactions on Automatic Control,2010,55(5):1238–1243.

    [16]J.Park,H.J.Kim,S.Y.Ha.Cucker-Smale flocking with inter particle bonding forces.IEEE Transactions on Automatic Control,2010,55(11):2617–2623.

    [17]S.M.Ahn,H.Choi,S.Y.Ha,et al.On collision-avoiding initial configurations to Cucker-Smale type flocking models.Communications in Mathematical Sciences,2012,10(2):625–643.

    [18]R.Olfati-Saber,R.M.Murray.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520–1533.

    [19]N.Moshtagh,N.Michael,A.Jadbabaie,et al.Visionbased,distributed control laws for motion coordination of nonholonomic robots.IEEE Transactions on Robotics,2009,25(4):851–860.

    [20]O.Saif,F.Isabelle,Z.R.Arturo.Real-time flocking of multiple quadrotor system of systems.IEEE Conference on System of Systems Engineering(SoSE),San Antonio:IEEE,2015:286–291.

    [21]A.Belkadi,D.Theilliol,L.Ciarletta,et al.Robust flocking control design for a fleet of autonomous agents.IEEE Conference on Control and Fault-Tolerant Systems(SysTol),Barcelona:IEEE,2016:1–6.

    [22]Z.Liu,C.Yuan,Y.Zhang.Active fault-tolerant control of unmanned quadrotor helicopter using linear parameter varying technique.Journal of Intelligent&Robotic Systems,2017,88(2/4):415–436.

    [23]Y.Zhang,A.Chamseddine,C.A.Rabbath,et al.Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed.Journal of Franklin Institute,2013,350(9):2396–2422.

    [24]Z.Liu,Y.Zhang,X.Yu,et al.Unmanned surface vehicles:An overview of developments and challenges.Annual Reviews in Control,2016,41:71–93.

    [25]K.J.?str¨om,B.Wittenmark.Computer-Controlled Systems:Theory and Design.Englewood Cliffs:Prentice-Hall,1984.

    [26]Y.Zhang,J.Jiang.Integrated design of reconfigurable faulttolerant control systems.Journal of Guidance,Control,and Dynamics,2001,24(1):133–136.

    [27]B.Kedjar,A.H.Kamal.DSP-based implementation of an LQR with integral action for a three-phase three-wire shunt active power filter.IEEE Transactions on Industrial Electronics,2009,56(8):2821–2828.

    猜你喜歡
    高達(dá)游說總計(jì)
    美國科技巨頭游說政府費(fèi)用大增
    損耗率高達(dá)30%,保命就是保收益!這條70萬噸的魚要如何破存活率困局?
    2017公路交通管理十大熱詞
    中國公路(2018年1期)2018-01-27 21:54:10
    萬代FW GUNDAM CONVERGE《機(jī)動(dòng)武斗傳G高達(dá)》惡魔高達(dá)最終型態(tài)
    玩具世界(2017年10期)2018-01-22 02:52:45
    進(jìn)擊的磊編
    印度應(yīng)該使政治游說合法化嗎
    動(dòng)漫名人大聯(lián)歡
    Vishay推出開關(guān)頻率高達(dá)1.5MHz的同步降壓穩(wěn)壓器
    全國各地區(qū)、各類期刊出版的種數(shù)、印數(shù)、總印張、總金額
    游說公共關(guān)系對(duì)我國立法制度的影響
    嫩草影院入口| 十八禁网站免费在线| 日韩中文字幕欧美一区二区| 国产精品98久久久久久宅男小说| 特级一级黄色大片| 99久久99久久久精品蜜桃| 亚洲欧美精品综合久久99| 美女高潮的动态| 亚洲成人久久爱视频| 999久久久国产精品视频| 国产熟女xx| 亚洲午夜理论影院| 久久国产精品人妻蜜桃| 亚洲在线自拍视频| 国产在线精品亚洲第一网站| 欧美一级毛片孕妇| 国产视频内射| 老司机午夜十八禁免费视频| 国产精品久久电影中文字幕| 高潮久久久久久久久久久不卡| 一级黄色大片毛片| 国产高清激情床上av| 岛国在线免费视频观看| 亚洲男人的天堂狠狠| 国产免费男女视频| 一区二区三区激情视频| 国产精品野战在线观看| АⅤ资源中文在线天堂| 天天躁狠狠躁夜夜躁狠狠躁| 女人高潮潮喷娇喘18禁视频| 精品国产亚洲在线| 国产高潮美女av| 一区二区三区高清视频在线| 国产精品影院久久| 一夜夜www| 精品一区二区三区四区五区乱码| 国产午夜精品论理片| 日韩人妻高清精品专区| 国产一区二区三区在线臀色熟女| 欧美3d第一页| 成人高潮视频无遮挡免费网站| 精品久久久久久,| 久久久精品欧美日韩精品| 午夜激情欧美在线| 国产精品99久久久久久久久| 午夜a级毛片| av视频在线观看入口| 欧美中文日本在线观看视频| 免费无遮挡裸体视频| 国产真人三级小视频在线观看| 黄频高清免费视频| 伦理电影免费视频| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 午夜福利在线在线| 搡老妇女老女人老熟妇| 午夜成年电影在线免费观看| 精品国产亚洲在线| 亚洲av成人av| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 久久精品人妻少妇| 免费看美女性在线毛片视频| 亚洲国产中文字幕在线视频| 国产亚洲精品久久久久久毛片| 1024香蕉在线观看| 国产淫片久久久久久久久 | 搡老岳熟女国产| 狠狠狠狠99中文字幕| 久久久国产成人精品二区| 香蕉久久夜色| 精品国产三级普通话版| 午夜精品在线福利| 波多野结衣巨乳人妻| 男人舔女人的私密视频| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 日韩 欧美 亚洲 中文字幕| av视频在线观看入口| 国产激情久久老熟女| 免费av不卡在线播放| 久久精品国产亚洲av香蕉五月| a级毛片在线看网站| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 变态另类丝袜制服| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 国产精品一及| 亚洲国产色片| 熟妇人妻久久中文字幕3abv| 日本 av在线| 久久精品91无色码中文字幕| 成人一区二区视频在线观看| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 美女被艹到高潮喷水动态| 18禁观看日本| 国产伦人伦偷精品视频| 久久国产精品人妻蜜桃| 18禁观看日本| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3| 中文亚洲av片在线观看爽| 88av欧美| 中文字幕精品亚洲无线码一区| 在线观看舔阴道视频| 精品人妻1区二区| 深夜精品福利| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 精品国产亚洲在线| 他把我摸到了高潮在线观看| 亚洲黑人精品在线| 校园春色视频在线观看| 国产精品99久久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 男女床上黄色一级片免费看| 亚洲国产精品成人综合色| 色视频www国产| 成人一区二区视频在线观看| 国产视频一区二区在线看| 日韩成人在线观看一区二区三区| or卡值多少钱| 99久久国产精品久久久| 最近最新中文字幕大全电影3| 白带黄色成豆腐渣| 国产精品亚洲一级av第二区| 国产精品久久久久久亚洲av鲁大| 亚洲美女视频黄频| 免费大片18禁| 午夜精品久久久久久毛片777| 特大巨黑吊av在线直播| 不卡一级毛片| 观看美女的网站| 亚洲精品456在线播放app | 欧美成人性av电影在线观看| 久久人妻av系列| 成人av一区二区三区在线看| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| 国产野战对白在线观看| 俺也久久电影网| 精品久久久久久久人妻蜜臀av| 午夜两性在线视频| 日韩欧美精品v在线| 免费高清视频大片| 最近最新中文字幕大全免费视频| 俺也久久电影网| 人妻久久中文字幕网| 一区二区三区国产精品乱码| 亚洲精品在线美女| 黄色女人牲交| 男女之事视频高清在线观看| 夜夜夜夜夜久久久久| 男女那种视频在线观看| 成人国产综合亚洲| 日韩免费av在线播放| 亚洲精品色激情综合| 在线观看午夜福利视频| 美女扒开内裤让男人捅视频| netflix在线观看网站| 中文在线观看免费www的网站| 观看美女的网站| 日韩三级视频一区二区三区| 观看美女的网站| 久久九九热精品免费| 欧美中文综合在线视频| 黑人操中国人逼视频| 国内少妇人妻偷人精品xxx网站 | 欧美一级毛片孕妇| 国产爱豆传媒在线观看| 99国产精品一区二区蜜桃av| 99国产精品99久久久久| 久久久成人免费电影| 嫁个100分男人电影在线观看| 日韩欧美在线二视频| 欧美性猛交╳xxx乱大交人| 波多野结衣高清作品| 日本免费a在线| 日韩高清综合在线| 色av中文字幕| 熟妇人妻久久中文字幕3abv| 国产精品乱码一区二三区的特点| 亚洲五月婷婷丁香| 在线观看午夜福利视频| 桃色一区二区三区在线观看| 日本一本二区三区精品| 一本综合久久免费| 激情在线观看视频在线高清| 成人特级黄色片久久久久久久| 老司机午夜十八禁免费视频| 国产成人精品无人区| 男女视频在线观看网站免费| www国产在线视频色| 成年女人毛片免费观看观看9| 国产伦在线观看视频一区| 国产真人三级小视频在线观看| 欧美极品一区二区三区四区| 久久人妻av系列| 激情在线观看视频在线高清| 搡老岳熟女国产| 最近视频中文字幕2019在线8| 久9热在线精品视频| 美女扒开内裤让男人捅视频| 9191精品国产免费久久| 日本黄大片高清| 18禁国产床啪视频网站| 成年免费大片在线观看| 国产精品综合久久久久久久免费| 国内毛片毛片毛片毛片毛片| 国产v大片淫在线免费观看| 88av欧美| 久久久久久久精品吃奶| svipshipincom国产片| 黄色成人免费大全| 国产欧美日韩一区二区三| 毛片女人毛片| 国产探花在线观看一区二区| 免费看a级黄色片| 亚洲av电影在线进入| 成人无遮挡网站| 国产av一区在线观看免费| 少妇的逼水好多| 日韩精品青青久久久久久| 99精品欧美一区二区三区四区| 国模一区二区三区四区视频 | 国产男靠女视频免费网站| 88av欧美| 久久久国产成人免费| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 日韩精品青青久久久久久| 我要搜黄色片| 精品一区二区三区视频在线 | 成人亚洲精品av一区二区| 白带黄色成豆腐渣| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 一本精品99久久精品77| 久久久久国产精品人妻aⅴ院| 亚洲乱码一区二区免费版| 国产精品日韩av在线免费观看| 日本 欧美在线| 成人鲁丝片一二三区免费| 国产精品野战在线观看| 欧美+亚洲+日韩+国产| a级毛片a级免费在线| 桃色一区二区三区在线观看| 啦啦啦韩国在线观看视频| 12—13女人毛片做爰片一| 99热只有精品国产| 男插女下体视频免费在线播放| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| 日韩成人在线观看一区二区三区| 国产精品日韩av在线免费观看| 别揉我奶头~嗯~啊~动态视频| 一本精品99久久精品77| 曰老女人黄片| 日韩免费av在线播放| 亚洲18禁久久av| 久久性视频一级片| 观看免费一级毛片| 999久久久精品免费观看国产| 久久久国产精品麻豆| 在线观看日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲美女黄片视频| 91久久精品国产一区二区成人 | 欧美乱妇无乱码| 天堂av国产一区二区熟女人妻| 国产野战对白在线观看| 欧美在线一区亚洲| svipshipincom国产片| 亚洲色图av天堂| 亚洲美女视频黄频| 日韩有码中文字幕| 亚洲一区二区三区色噜噜| 精品免费久久久久久久清纯| 黑人操中国人逼视频| 天堂√8在线中文| 国产精品 欧美亚洲| 午夜福利18| 亚洲色图 男人天堂 中文字幕| 国产乱人伦免费视频| av在线天堂中文字幕| 一级毛片女人18水好多| 99热只有精品国产| 九色国产91popny在线| avwww免费| 美女高潮的动态| 91字幕亚洲| 欧美黑人巨大hd| 看免费av毛片| 两人在一起打扑克的视频| 色综合欧美亚洲国产小说| 成人国产综合亚洲| 亚洲片人在线观看| а√天堂www在线а√下载| 首页视频小说图片口味搜索| netflix在线观看网站| 欧美在线黄色| 中出人妻视频一区二区| 精品人妻1区二区| 熟女人妻精品中文字幕| 免费在线观看影片大全网站| a在线观看视频网站| 757午夜福利合集在线观看| 99国产综合亚洲精品| 99国产精品99久久久久| 亚洲无线在线观看| 国产1区2区3区精品| 亚洲国产欧洲综合997久久,| 亚洲欧洲精品一区二区精品久久久| 97人妻精品一区二区三区麻豆| 97超级碰碰碰精品色视频在线观看| 日本免费一区二区三区高清不卡| 可以在线观看的亚洲视频| 国产午夜福利久久久久久| 在线观看午夜福利视频| 熟女电影av网| 黄片大片在线免费观看| 亚洲成人免费电影在线观看| 又大又爽又粗| 国产精品亚洲一级av第二区| 午夜免费激情av| 日本成人三级电影网站| 丝袜人妻中文字幕| 欧美三级亚洲精品| 亚洲成av人片免费观看| 动漫黄色视频在线观看| 亚洲欧美日韩高清专用| 三级国产精品欧美在线观看 | 亚洲专区国产一区二区| 亚洲五月天丁香| www日本在线高清视频| 老司机福利观看| 不卡一级毛片| 在线观看日韩欧美| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 这个男人来自地球电影免费观看| 成年版毛片免费区| 成人午夜高清在线视频| 国产精品国产高清国产av| 日本免费a在线| 成人永久免费在线观看视频| 亚洲狠狠婷婷综合久久图片| 国产午夜精品论理片| 亚洲性夜色夜夜综合| 国产亚洲精品综合一区在线观看| av在线天堂中文字幕| 黑人操中国人逼视频| 精品久久久久久久毛片微露脸| 99久久精品一区二区三区| АⅤ资源中文在线天堂| 一级毛片高清免费大全| 国产精品自产拍在线观看55亚洲| 国产精品99久久久久久久久| 男女之事视频高清在线观看| 亚洲av五月六月丁香网| 制服丝袜大香蕉在线| 91九色精品人成在线观看| 88av欧美| 99久久国产精品久久久| 18禁美女被吸乳视频| 亚洲精品乱码久久久v下载方式 | 黄色成人免费大全| www.www免费av| 久久国产精品影院| 国产亚洲精品久久久com| 国产午夜福利久久久久久| 禁无遮挡网站| 一区二区三区高清视频在线| 免费在线观看成人毛片| 精品久久久久久,| 免费看日本二区| 巨乳人妻的诱惑在线观看| 91麻豆av在线| 一区福利在线观看| 黄色丝袜av网址大全| 黄色女人牲交| 亚洲在线观看片| 99在线人妻在线中文字幕| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 无限看片的www在线观看| 日本a在线网址| 无限看片的www在线观看| 视频区欧美日本亚洲| 国产精品一区二区免费欧美| 巨乳人妻的诱惑在线观看| 久久久色成人| 岛国在线观看网站| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品久久男人天堂| 久久精品人妻少妇| 99久久无色码亚洲精品果冻| 一本综合久久免费| 亚洲精品美女久久久久99蜜臀| 亚洲男人的天堂狠狠| 亚洲专区中文字幕在线| a级毛片在线看网站| 久久久久久久久中文| 久久久成人免费电影| 久9热在线精品视频| 亚洲专区字幕在线| 长腿黑丝高跟| 人妻久久中文字幕网| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 日韩精品中文字幕看吧| 少妇裸体淫交视频免费看高清| 欧美精品啪啪一区二区三区| 又大又爽又粗| 黄色 视频免费看| 热99re8久久精品国产| 国产三级在线视频| 午夜福利成人在线免费观看| 欧美午夜高清在线| 成人一区二区视频在线观看| 叶爱在线成人免费视频播放| 精品福利观看| 国产精华一区二区三区| www.自偷自拍.com| 国产v大片淫在线免费观看| 草草在线视频免费看| 黑人欧美特级aaaaaa片| 久久精品综合一区二区三区| www.熟女人妻精品国产| 村上凉子中文字幕在线| 男女视频在线观看网站免费| 亚洲成av人片在线播放无| 麻豆国产97在线/欧美| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 最近在线观看免费完整版| 午夜福利高清视频| 老司机午夜福利在线观看视频| 男女下面进入的视频免费午夜| 亚洲国产中文字幕在线视频| 丰满人妻一区二区三区视频av | 亚洲av片天天在线观看| 91久久精品国产一区二区成人 | 男女午夜视频在线观看| 午夜成年电影在线免费观看| 长腿黑丝高跟| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 两个人的视频大全免费| e午夜精品久久久久久久| 最新中文字幕久久久久 | 男人舔女人下体高潮全视频| 亚洲九九香蕉| www.熟女人妻精品国产| 中文字幕人成人乱码亚洲影| 热99re8久久精品国产| 我的老师免费观看完整版| 一本久久中文字幕| 一级黄色大片毛片| 最近最新免费中文字幕在线| 一个人看的www免费观看视频| 制服丝袜大香蕉在线| 黑人操中国人逼视频| 麻豆国产97在线/欧美| 夜夜躁狠狠躁天天躁| 中文字幕人妻丝袜一区二区| 日本在线视频免费播放| 亚洲美女黄片视频| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品 国内视频| 不卡av一区二区三区| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 十八禁网站免费在线| 天堂网av新在线| 美女高潮喷水抽搐中文字幕| 成人18禁在线播放| 日韩欧美一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 首页视频小说图片口味搜索| 美女免费视频网站| 精品久久久久久久久久免费视频| 极品教师在线免费播放| 在线a可以看的网站| 亚洲国产色片| 美女午夜性视频免费| 淫妇啪啪啪对白视频| av在线天堂中文字幕| 一级黄色大片毛片| 美女 人体艺术 gogo| 美女免费视频网站| 天堂网av新在线| 我要搜黄色片| 动漫黄色视频在线观看| 欧美3d第一页| 亚洲av免费在线观看| 亚洲国产欧美网| 亚洲九九香蕉| 一区二区三区激情视频| 国产97色在线日韩免费| 亚洲,欧美精品.| 亚洲av片天天在线观看| 久久精品91无色码中文字幕| 高潮久久久久久久久久久不卡| 天天添夜夜摸| 国产亚洲精品久久久久久毛片| 99热6这里只有精品| 婷婷六月久久综合丁香| 少妇的逼水好多| 天天躁日日操中文字幕| 欧美+亚洲+日韩+国产| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲欧美在线一区二区| 成年版毛片免费区| 18禁黄网站禁片午夜丰满| 国产一区在线观看成人免费| 亚洲 欧美一区二区三区| 黄频高清免费视频| 日本黄大片高清| 99久国产av精品| 天堂动漫精品| www日本在线高清视频| 后天国语完整版免费观看| 国产成人系列免费观看| 免费观看精品视频网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人久久性| 精品日产1卡2卡| 香蕉av资源在线| 亚洲av成人一区二区三| 一本久久中文字幕| 日韩成人在线观看一区二区三区| 国产成人av激情在线播放| 一夜夜www| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片 | 99久久99久久久精品蜜桃| 这个男人来自地球电影免费观看| 男女午夜视频在线观看| 99热这里只有是精品50| 日本免费a在线| 麻豆久久精品国产亚洲av| 成人亚洲精品av一区二区| 女生性感内裤真人,穿戴方法视频| 国产乱人伦免费视频| 在线免费观看不下载黄p国产 | 亚洲国产日韩欧美精品在线观看 | 99热这里只有是精品50| 亚洲精品中文字幕一二三四区| 亚洲成人久久性| 蜜桃久久精品国产亚洲av| 综合色av麻豆| 亚洲成人免费电影在线观看| 成年女人毛片免费观看观看9| 亚洲精品美女久久av网站| 欧美不卡视频在线免费观看| 无人区码免费观看不卡| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 五月玫瑰六月丁香| 日韩欧美在线乱码| 性色av乱码一区二区三区2| 亚洲av五月六月丁香网| 老鸭窝网址在线观看| 全区人妻精品视频| 后天国语完整版免费观看| 久久欧美精品欧美久久欧美| 亚洲第一欧美日韩一区二区三区| 久久婷婷人人爽人人干人人爱| 91老司机精品| 九九热线精品视视频播放| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 亚洲av成人不卡在线观看播放网| 国产aⅴ精品一区二区三区波| 搡老妇女老女人老熟妇| 精品电影一区二区在线| 日韩欧美国产在线观看| 性色av乱码一区二区三区2| ponron亚洲| 午夜久久久久精精品| 制服丝袜大香蕉在线| 久久久久久九九精品二区国产| 国产久久久一区二区三区| 黄色视频,在线免费观看| 三级国产精品欧美在线观看 | 国产午夜精品久久久久久| 小说图片视频综合网站| 色视频www国产| 天堂√8在线中文| 在线观看66精品国产| 国产单亲对白刺激| 国产亚洲欧美在线一区二区| 全区人妻精品视频| 亚洲av电影不卡..在线观看| 久久久精品欧美日韩精品| 色哟哟哟哟哟哟| 日本在线视频免费播放| 日本免费a在线| 久久精品人妻少妇| 久久久久久久久免费视频了| 母亲3免费完整高清在线观看| 日本与韩国留学比较|