• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants

    2018-05-26 07:29:32YaseenMuhammadAyeshaShoukatAtaUrRahmanHaroonUrRashidWaqasAhmad

    Yaseen Muhammad *,Ayesha Shoukat,Ata Ur Rahman ,Haroon Ur Rashid ,Waqas Ahmad

    1 Institute of Chemical Sciences,University of Peshawar,Khyber Pakhtunkhwa,Pakistan

    2 School of Chemistry and Chemical Engineering,Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology,Guangxi University,Guangxi 530004,China

    3 Department of Chemistry,Sarhad University of Science and Information Technology,Peshawar,Pakistan

    1.Introduction

    Fossil fuels are contributing more than 82%of energy all over the globe,of which,50%comes from fuel oils and hence petroleum is still the primary source to ful fill these needs[1].Fuel oils are generally contaminated with organosulfur compounds comprising of thiols,aromatic sulfides,mercaptanes and benzothiophenes(BTs),where BTs contribute about 85%[2,3].These organosulfur ring compounds exist in non-substituted i.e.BT,dibenzothiophenes(DBT),as well as alkyl derivatives i.e.4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT)[4].These sulfur(S)compounds adversely affect the quality of petroleum products by decreasing the API gravity and calorific value as well as contribute to environmental pollution by getting converted into SOxduring combustion.Moreover,S species also lead to particulates production resulting in black exhaust fumes[5],causing impairment of pipelines,acid rain and poisoning of catalysts in oil re fineries[6].

    Worldwide oil re fineries are now producing low S fuel oils(less than 50 ppm)to meet new regulation mandate[7]which is a challenging job.Several reports following different approaches are available in literature to cope with these challenges including hydrodesulfurization(HDS)[8,9],biodesulfurization(BDS)[10],adsorptive desulfurization[11],oxidative desulfurization(ODS)[12,13],and extraction through ionic liquids(ILs)etc.[14,15].HDS,operated at high temperature and pressure in the presence of excess hydrogen over a suitable catalyst,is quite effective for cyclic and aliphatic S containing hydrocarbons but less attractive towards BT and DBT[16].Also harsh operating conditions in HDS cause higher consumption of hydrogen and decrease of catalyst life resulting in highercosts[17].Similarly,the use of otherapproaches like BDS is hindered by low versatility of types of enzymes,slow reaction rates and low miscibility ofthe reactants[18].On the contrary,ODSis an interesting and conventionalprocess characterized by mild temperature and pressure operation in the presence of a suitable catalyst and oxidant i.e.ozone,perchlorate,potassium permanganate,nitric acid,nitrogen oxides,ter-butyl hydroperoxide and hydrogen peroxide where H2O2has been reported with good activity[19].In addition to oxidant selection,various catalytic systems such as polyoxometalates,molybdates supported on alumina,tungsten,vanadium and titanium supported catalysts have been reported elsewhere[20].Apositive pointofthis approach isthatthe mostrefractory S containing compounds i.e.DBT and its derivatives show high reactivity[21]and are easily oxidized to highly polarized sulfones,which can be subsequently removed by distillation and solvent extraction[22].

    Mo supported overalumina has been the choice ofresearcher for the ODS of DBT over the years with high activity.For example,Cedeno-Caero,et al.reported enhanced desulfurization activity using Al2O3supported catalysts in the presence of H2O2as oxidant[23].Similarly,Jia,et al.investigated ODS of DBT into sulfones in the presence of H2O2and 14 wt%MoO3/Al2O3catalyst[16].Apart from this,Fe supported over activated carbon using oxygen as the oxidant has been reported with good ODS activity[24].Similarly,good ODS activity has been reported on Fe based ILs for different S compounds earlier[25–27].These reports show that Fe can act as a good promoter to classical desulfurization catalysts.Thus,it can be assumed to test the ODS of DBT in the presence of Fe based catalyst avoiding the use of expensive ILs which can considerably limit process cost.To achieve this task,this study was aimed to develop an efficient and cost effective catalyst for the ODS of DBT under mild operating conditions with special emphasis on the use of extremely low Fe loading(2 wt%)as the promoter to classical Co–Mo/Al2O3and Ni–Mo/Al2O3catalysts in the presence of H2O2and formic acid as oxidant systems.

    2.Experimental

    2.1.Chemical reagents

    Chemical reagents in this study were of analytical grade and used without further purification.DBT was purchased from Acros Organics,New Jersey,USA.n-heptane,acetic acid,HCl and NaOH were purchased from RdH Laborchemikalien,GmbH and Co.Seelze.Alumina support(Al2O3),Cobalt II nitrate hexahydrate Co(NO3)2·6H2O,Nickel II nitrate hexahydrate Ni(NO3)2·6H2O,ammonium heptamolybdate tetrahydrate[(NH4)6Mo7O24·4H2O]and 30 wt%H2O2were purchased from BDHLaboratory Supplies,Poole,England.Iron II sulfate heptahydrate(FeSO4·7H2O)waspurchased from Merck and Co.,Darmstadt,Germany.

    2.2.Model fuel oil

    The model oil comprised of 1000 ppm DBT(by dissolving 1 g of DBT in 1000 ml of n-heptane)from which working solutions of 200–1000 ppm were prepared to draw calibration curve for DBT.

    2.3.Catalyst preparation

    Catalysts were prepared by incipient wet impregnation method reported elsewhere[28,29]using powdered alumina as catalytic support.Stoichiometric amount of alumina was successively impregnated with aqueous solution of(NH4)6Mo7O24·4H2O,corresponding to 5 wt%of Mo followed by Co(NO3)2·6H2O or Ni(NO3)2·6H2O impregnation corresponding to 2 wt%of Co or Ni respectively.After each impregnation,the support with metal salt solution was stirred for 2 h in electric shaker.After shaking,solution was filtered and dried in oven at 120°C for 1 h,followed by calcination in muffle furnace at 500°C for 3 h converting each of the metallic species into oxide state.Similar protocol was followed for Fe promoted Co–Mo/Al2O3and Ni–Mo/Al2O3catalysts having 2 wt%Fe(using FeSO4.7H2O as Fe precursor)loadingsin allsamples.Atthe end of calcination,catalysts were stored in inert N2environment.

    2.4.Support and catalyst characterization

    Textural properties,elemental composition,and surface morphology of the prepared catalyst were characterized by X-ray diffraction(XRD),Atomic Absorption Spectroscopy(AAS),Energy Dispersive X-ray Analysis(EDX)and Scanning electron microscopy(SEM).

    2.5.Catalytic activity test

    ODS activity of the catalysts was tested using 800 ppm DBT solution(as model oil)in n-heptane in the presence of H2O2and formic acid as oxidants.Effect of experimental parameters was tested including oxidant type,amount of oxidant,catalyst dose,reaction time and pH one by one while keeping others constant.In a classical experiment,10 ml of 800 ppm solution,0.4 g catalyst and 30 wt%oxidant were taken in a flask.The flask was sealed and shaken at fixed temperature for certain reaction time in water-bath shaker.After shaking,the solution was filtered and analyzed using double beam UV–vis spectrophotometer.Catalytic desulfurization activity was recorded in terms of DBT conversion using Eq.(1).

    where:

    2.6.Analysis of reaction products

    ODS reaction products were analyzed using UV–visible spectrophotometer model 160 A,Shimadzu,Japan.The wavelength was swept from 200 to 800 nm where DBT showed a strong peak at wavelength of maximum absorption(λmax)at 320 nm[30].

    3.Results and Discussion

    3.1.Textural properties and characterization of catalysts

    3.1.1.XRD study

    XRD technique was used to get insight about the chemical composition,crystallinity and the presence ofCo,Mo,Niand Fe in Al2O3supported catalysts.XRD runs were recorded at 2θ angular range between 10°and 80°and the scans are depicted in Fig.1 which show peaks for Al2O3support,Mo[31,32]and Co attheirrespective positions[33].Furthermore,Fe(having a relatively weaker peak)was confirmed in XRD scan of Fe–Co–Mo–Al2O3indicating the presence of crystalline iron oxide,though in small amount[34].It is further believed that the species in a material present at concentration lower than 5 wt%,cannot be properly detected by XRD technique[35]and hence very weak peaks for Co,Ni,Fe(2 wt%)and Mo 5 wt%were observed for all the oxide phases.The consistency of XRD analysis can be confirmed from the fact that almost all metals appeared at their previously reported peaks position i.e.cobalt oxide(Co3O4),at 2θ =32°,37°,45°,58°and 66°[36],Fe2O3at 2θ:24°,33°,35°,40°,49°,54°and 57°[37]and NiO shows the characteristic peaks at 2θ =37°,43°and 63°[38].The appearance of weak peaks in XRD analysis for metallic species,specially Fe,required further unequivocal characterization tools i.e.EDX and Atomic Absorption Spectroscopy for catalyst characterization which are provided in the proceeding sections.

    Fig.1.XRD pattern of fresh catalysts.

    3.1.2.SEM and surface area analyses

    Attributed to the fact that surface morphology,and distribution of active species play a key role in determining catalytic activity[39],textural characterizations of catalysts were performed using SEM[Model No:Nova NanoSEM-450]and the scans are depicted in Fig.2(a–c).SEM studies showed that there are irregular distributions ofsupportparticles with average particle size less than 10 μm indicating a closely packed particle structure.SEM scans further showed that particles of Co,Mo,Ni and Fe impregnated catalysts were more tightly packed than nascent support.These results were further supported by low surface area of the impregnated catalysts than mere support.

    Fig.2.(a)SEM image of Nascent Al2O3.(b)SEM image of fresh Ni–Co–Mo/Al2O3.(c)SEM image of fresh Fe–Ni–Mo/Al2O3.

    In order to get further insight of the particles distribution and porosity of the catalysts,surface area of fresh and spent catalysts was determined via N2-adsorption approach using BET surface area and porosity analyzer(Micromeritics TriStar II 3020).The data are shown in Table 1,which indicate that Al2O3support was of low surface area having a structure close to impervious and packed nature.These data are consistent with SEM results showing irregular distribution with less porous nature of the catalyst.It can be seen that surface area of support considerably decreased with the impregnation of metals,which was more dominant in case of tri-metallic catalysts i.e.Fe–Ni–Mo/Al2O3compared to bi-metallic i.e.Co–Mo/Al2O3or Ni–Mo/Al2O3attributed to the presence of extra metal in the earlier one[8].Asupport with low surface area can decrease catalyst cost many times compared to those with high surface area and hence Al2O3with low surface area was chosen in this study without compromising on the over activity of the process.

    Table 1 BET surface area and metal loadings of different catalysts

    3.1.3.EDX and AAS analyses

    In order to confirm the presence and incorporation of metallic species onto Al2O3support in the prepared catalysts,EDX spectra were recorded for Fe–Ni–Mo/Al2O3using SEM[Model No:Nova NanoSEM-450].The data are shown in Table 1 and Fig.3,which shows corresponding peaks for Al,Ni,Mo and Fe,confirming results of XRD analysis.

    Similarly,success fulincorp oration ofFe in catalytic samples was also tested via quantitative analyses for Fe impregnated catalysts(Fe–Ni–Mo/Al2O3)using AAS technique.In a classical AAS analysis,the catalyst sample(0.125 g)was digested in 10 ml mixture comprised of HNO3,H2SO4,HCl and HF in a ratio of 3:3:2.5:1.5 ml respectively.2.5 ml portion of the solution was then diluted to about 1.2 L and analyzed by AAS(GBC Avanta Ver.1.32 Atomic Absorption Spectrophotometer)at a wavelength of 248.3 nm operated in flame mode using air–acetylene mixture as fuel gas.The amount of Fe contents in the catalyst sample as calculated from AAS analysis,was 1.8 wt%,which is close to the theoretical value of 2 wt%.The minor loss in Fe contents could be attributed to experimental handling errors or leaching during the impregnation process.AAS results are in good agreement with EDX and XRD results,suggesting the presence of Fe as the promoter in catalysts under study.

    3.2.Catalytic activity tests

    3.2.1.Effect of initial DBT concentration

    The effect of initial DBT concentration over Ni–Co–Mo/Al2O3and Fe–Ni–Mo/Al2O3was investigated in a range of 200–1000 ppm as shown in Fig.4.A direct relation between conversion and initial DBT concentration exists which reaches to maximum at 800 ppm and becomes constant onward.As catalysis being strongly affected by surface interaction,thus higher concentration of DBT provides more chances of interaction between DBT molecules and catalytic active sites leading to higher conversion[40,41].It is believed that at lower concentration,there are phase transfer limitations among molecules of S and polar H2O2resulting in lower DBT conversion,while higher DBT concentration allows greater such interactions leading to higher DBT conversion as visible from Fig.4.Based on these results,800 ppm is selected as optimum concentration for onward activity tests.

    Fig.3.EDX spectrum of Fe–Ni–Mo/Al2O3.

    Fig.4.Conversion of DBT as a function of initial concentration over Ni–Co–Mo/Al2O3 and Fe–Ni–Mo/Al2O3 catalyst.

    3.2.2.Effect of contact time

    Catalytic activity is strongly affected by the time given to the interaction of solute molecules and catalyst active sites.Thus,effect of contact time ODS of DBT at different intervals was tested and results are summarized in Fig.5,which shows that maximum DBT conversion was achieved at 90 min.These and other similar reports are supported by the fact that longer exposure facilitates better DBT–catalyst interaction leading to higher S removal[42,43].Comparatively longer reaction time in this study to previous reports can be attributed to low Fe loading keeping economic aspects in mind.120 min with 99%DBT conversion on Fe loaded catalysts is quite comparable with earlier reports[44]and Fenton's like reagent for the ODS of DBT[27].From Fig.5,it can be seen that Fe–Ni–Mo/Al2O3exhibited maximum activity i.e.99%DBT conversion with overall ODS activity order as:Fe–Ni–Mo/Al2O3> Fe–Co–Mo/Al2O3> Ni–Co–Mo/Al2O3> Ni–Mo/Al2O3> Co–Mo/Al2O3> Mo/Al2O3.Furthermore,this work can be considered superior as higher DBT conversion(90%)with Mo loading much lower(5 wt%)was reported compared to previous reports(16 wt%Mo loading)with only 83%DBT conversion[45].From the comparison of reported literature shown in Table 2 for ODS of DBT as model oil,it can be concluded that low operating temperature and cost effective Fe based catalysts with 99%conversion in the current work can be considered as a promising forward step in the field of fuel oil desulfurization.

    3.2.3.Effect of reaction temperature

    It is believed that both DBT oxidation and H2O2decomposition are favored athig her temperature[50–52].Catalytic activity of the catalysts as a function of reaction temperature was tested in a range of 20–60 °C at 150 min reaction time and 0.4 g of catalyst dose.Results compiled in Fig.6 show a direct relation of DBT conversion with temperature reaching to maximum i.e.97%at60°C over Fe–Ni–Mo/Al2O3.An optimal temperature is required in ODS system ashighertemperature can cause side reaction leading to thermal decomposition of H2O2which can adversely affect quality of the fuel[53].Furthermore,5 wt%Mo loading achieving a DBT conversion of 90%at 50°C demonstrates superior efficiency of the current catalyst–oxidant system to previous reports having 16 wt%Mo loading and 100°C reaction temperature[54].At any temperature,Fe–Ni–Mo/Al2O3exhibited maximum activity among different catalysts tested supporting the data mentioned in Section 3.2.2 above,indicating the consistency and accurateness of the current experimental set-up.

    3.2.4.Influence of catalyst dose on ODS process

    Experiments were performed over a catalyst dose ranging from 0.2–1.4 g per 10 ml of 800 ppm DBT to check its effect on ODS activity.Higher catalytic dose provides more interactions between catalytic intermediates and DBT molecules and hence leads to greaterconversion[50,51].It is clear from Fig.7 that%DBT conversion over all catalysts increases with increase in catalyst dosage and stays above 95%at 0.4 g dose.Conversion above 98%means that extra catalyst dose would remain un-interacted with DBT molecules and hence no further change in the trend can be seen in Fig.7 at a catalyst dose of 0.4 g onward.

    3.2.5.Effect of amount of oxidant on ODS process

    Fig.5.Catalytic conversion of DBT as a function of reaction time.

    Table 2 Comparative analysis of DBT conversion via ODS from reported literature and current study

    In ODS,H2O2and formic acid have been tested in the presence of various Mo/Al2O3supported catalysts[55]using Liquid–Liquid extraction approach.Amount of oxidant consumed in oxidation process can directly affect the efficiency as well as cost of the process.Unlike previous reports which did notfocus on the amount of oxidant in ODS of DBT[56],effect of the amount of H2O2and formic acid were tested in the presence of Fe promoted Mo–Al2O3catalysts and data are shown in Figs.8 and 9 respectively.It can be seen that ODS activity in case of H2O2is higher compared to formic acid while 0.5 ml was the optimum amount of each oxidant for maximum DBT conversion(86%in case of H2O2and 83%for formic acid).Moreover,Ni based catalysts ranked higher in activity than Co based ones which can be attributed to the fact that Ni2+with a 3d84S0external orbital possesses higher reduction potential(Eo)(?25 V)than Co(3d74S0)(?28 V),hence readily oxidizing the electron rich S center of DBT,exposing it for oxidation by H2O2or formic acid leading to sulfoxide and finally sulfones formation[57].Apart from reduction potential,S of the DBT acts as a soft acid on Pearson theory,which would prefer to interact with a soft base.The crystal field splitting of“d”orbitals of Co2+and Ni2+result in low spin species with ionic radii of 79 and 83 picometer(pm)respectively.Ni2+with larger ionic radii acts as a softer base compared to Co2+and thus preferentially interacts with S of DBT(a soft acidic center)in the reaction mixture,leading to higher DBT conversion by Ni based catalysts.Figs.8 and 9 further show that Fe,in the presence of both,H2O2and formic acid,enhances the catalytic activity of Co or Ni based catalysts based on Fenton's reaction.

    3.3.Proposed mechanism of ODS

    Fig.6.Catalytic conversion of DBT as a function of temperature.

    ODS process usually leads to the formation of sulfones in the presence of H2O2and/or formic acid[50,58]through a two-step mechanism with each step involving attack of oxygen atom on the S atom of DBT leading to final DBTO2molecule over Mo/Al2O3type catalysts[59].Higher oxidation ability by Fe promoted catalysts in the present study can be explained on the facts that Fe3+promotes the formation of performic acid.Performic acid with higher oxidizing power than formic acid converts MO2(M=Co,Mo,Ni or Fe)into MO3type species,which readily react with DBT,gradually oxidizing it into sulfones[60].It is also assumed that enhanced activity of Fe based catalysts can be attributed to the fact that in the presence of H2O2,Fe2+readily oxidizes into Fe3+,dissociating H2O2into OH?and OH?species,resulting in superoxide formation i.e.?OOH.This superoxide readily reacts with DBT molecule converting it into sulfoxide and ultimately into sulfone.These factors are summarized in a proposed mechanism depicted in Fig.10.

    Fig.8.Conversion of DBT as a function of amount of H2O2.

    4.Conclusions

    Fig.10.Proposed mechanism for the catalytic ODS of DBT using H2O2 as oxidant.

    The main focus of this study revolves around the promotion effect of cost effective Fe to classical Co or Ni based Mo/Al2O3catalysts for the ODS of DBT in the presence of H2O2and formic acid as oxidants at mild operating conditions.Experimental data showed that Fe greatly enhanced the oxidative desulfurization process following catalytic activity order as:Fe–Ni–Mo/Al2O3> Fe–Co–Mo/Al2O3> Ni–Co–Mo/Al2O3>Ni–Mo/Al2O3>Co–Mo/Al2O3>Mo/Al2O3.H2O2exhibited higher efficiency towards the oxidation process compared to formic acid.BET surface area,EDX,XRD,AAS and SEM characterization techniques were used to get insight about the textural structure and morphology of the catalysts.Current approach based on the application of mild operating conditions,low catalyst cost,high DBT conversion(99%)and simple mechanization can be considered as forward steps in the industrial desulfurization processing for fuel oil.

    Fig.9.Conversion of DBT as a function of amount of formic acid.

    Acknowledgments

    The authors highly acknowledge Centralized Resource Laboratory(CRL),University of Peshawar for their technical and instrumental facilities.

    [1]A.Al-Abduly,V.K.Sharma,Oxidation of benzothiophene,dibenzothiophene,and methyl-dibenzothiophene by ferrate(VI),J.Hazard.Mater.279(2014)296–301.

    [2]J.L.García-Gutiérrez,G.C.Laredo,P.García-Gutiérrez,F.Jiménez-Cruz,Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide,Fuel 138(2014)118–125.

    [3]F.Al-Shahrani,T.Xiao,S.A.Llewellyn,S.Barri,Z.Jiang,H.Shi,G.Martinie,M.L.Green,Desulfurization of diesel via the H2O2oxidation of aromatic sul fides to sulfones using a tungstate catalyst,Appl.Catal.B 73(2007)311–316.

    [4]V.C.Srivastava,An evaluation of desulfurization technologies for sulfur removal from liquid fuels,RSC Adv.2(2012)759–783.

    [5]A.Stanislaus,A.Mara fi,S.M.Rana,Recent advances in the science and technology of ultra low sulfur diesel(ULSD)production,Catal.Today 153(2010)1–68.

    [6]A.Trehoux,Y.Roux,R.Guillot,J.Mahy,F.Avenier,Catalytic oxidation of dibenzothiophene and thioanisole by a diiron(III)complex and hydrogen peroxide,J.Mol.Catal.A Chem.396(2015)40–46.

    [7]A.Ates,G.Azimi,K.Choi,H.W.Green,T.M.Timko,The role of catalyst in supercritical water desulfurization,Appl.Catal.B 147(2014)144–155.

    [8]Y.Muhammad,Y.Lu,C.Shen,C.Li,Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen,Energy Convers.Manag.52(2011)1364–1370.

    [9]F.Dai,Y.Muhammad,X.Gong,C.Li,Z.Li,S.Zhang,Low-temperature and lowpressure fuel hydrodesulfurization by solid catalyst coupling with ionic liquids,Fuel 134(2014)74–80.

    [10]H.Tang,Q.Li,Z.Wang,D.Yan,J.Xing,Simultaneous removal of thiophene and dibenzothiophene by immobilized Pseudomonas dela fieldii R-8 cells,Chin.J.Chem.Eng.20(2012)47–51.

    [11]A.Srivastav,V.C.Srivastava,Adsorptive desulfurization by activated alumina,J.Hazard.Mater.170(2009)1133–1140.

    [12]J.Wang,Q.Guo,C.Zhang,K.Li,One-pot extractive and oxidative desulfurization of liquid fuels with molecular oxygen in ionic liquids,RSC Adv.4(2014)59885–59889.

    [13]J.Zhang,A.Wang,Y.Wang,H.Wang,J.Gui,Heterogeneous oxidative desulfurization of diesel oil by hydrogen peroxide:Catalysis of an amphipathic hybrid material supported on SiO2,Chem.Eng.J.245(2014)65–70.

    [14]B.K.Saikia,K.Khound,B.P.Baruah,Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids,Energy Convers.Manag.81(2014)298–305.

    [15]Z.Song,D.Yu,Q.Zeng,J.Zhang,H.Cheng,L.Chen,Z.Qi,Effect of water on extractive desulfurization of fuel oils using ionic liquids:A COSMO-RS and experimental study,Chin.J.Chem.Eng.25(2017)159–165.

    [16]Y.Jia,G.Li,G.Ning,Ef ficient oxidative desulfurization(ODS)of model fuel with H2O2catalyzed by MoO3/γ-Al2O3under mild and solvent free conditions,Fuel Process.Technol.92(2011)106–111.

    [17]A.F.Shojaei,M.A.Rezvani,M.H.Loghmani,Comparative study on oxidation desulphurization of actual gas oil and model sulfur compounds with hydrogen peroxide promoted by formic acid:Synthesis and characterization of vanadium containing polyoxometalate supported on anatase crushed nanoleaf,Fuel Process.Technol.118(2014)1–6.

    [18]L.Kong,G.Li,X.Wang,Mild oxidation of thiophene over TS-1/H2O2,Catal.Today 93-95(2004)341–345.

    [19]C.Lanju,G.Shaohui,Z.Dishun,Oxidation of thiophenes over silica gel in hydrogen peroxide/formic acid system,Chin.J.Chem.Eng.14(2006)835–838.

    [20]M.Te,C.Fairbridge,Z.R,Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2and formic acid/H2O2systems,Appl.Catal.A Gen.219(2001)267–280.

    [21]S.Liu,B.Wang,B.Cui,L.Sun,Deep desulfurization of diesel oil oxidized by Fe(VI)systems,Fuel 87(2008)422–428.

    [22]W.Wang,S.Wang,H.Liu,Z.Wang,Desulfurization of gasoline by a new method of electrochemical catalytic oxidation,Fuel 86(2007)2747–2753.

    [23]C.L.Caero,E.Herna'ndez,F.Pedraza,F.Murrieta,Oxidative desulfurization of synthetic diesel using supported catalysts Part I.Study of the operation conditions with a vanadium oxide based catalyst,Catal.Today 107–108(2005)564–569.

    [24]X.Ma,A.Zhou,C.Song,A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption,Catal.Today 123(2007)276–284.

    [25]W.Zhu,P.Wu,L.Yang,Y.Chang,Y.Chao,H.Li,Y.Jiang,W.Jiang,S.Xun,Pyridiniumbased temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels,Chem.Eng.J.229(2013)250–256.

    [26]H.Li,W.Zhu,Y.Wang,J.Zhang,J.Lu,Y.Yan,Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride,Green Chem.11(2009)810–815.

    [27]J.Zhang,W.Zhu,H.Li,W.Jiang,Y.Jiang,W.Huang,Y.Yan,Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids,Green Chem.11(2009)1801–1807.

    [28]Y.Muhammad,C.Li,Dibenzothiophene hydrodesulfurization using in situ generated hydrogen over Pd promoted alumina-based catalysts,Fuel Process.Technol.92(2011)624–630.

    [29]Y.Yoshimura,N.Matsubayashi,T.Sato,H.Shimada,A.Nishijima,Molybdate catalysts prepared by a novel impregnation method:Effect of citric acid as a ligand on the catalytic activities,Appl.Catal.A Gen.79(1991)145–159.

    [30]N.Farzin Nejad,E.Shams,M.K.Amini,J.C.Bennett,Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene,Fuel Process.Technol.106(2013)376–384.

    [31]V.Piriyawong,V.Thongpool,P.Asanithi,P.Limsuwan,Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique,J.Nanomater.2012(2012)2.

    [32]H.M.AbdelDayem,M.A.Al-Omair,Phase composition and catalytic activity of α-NiMoO4reduced with hydride anion,Ind.Eng.Chem.Res.47(2008)1011–1016.

    [33]R.Manigandan,K.Giribabu,R.Suresh,L.Vijayalakshmi,A.Stephen,V.Narayanan,Cobalt oxide nanoparticles:Characterization and its electrocatalytic activity towards nitrobenzene,Chem.Sci.Trans.2(2013)S47–S50.

    [34]S.A.Kulkarni,P.Sawadh,P.K.Palei,K.K.Kokate,Effect of synthesis route on the structural,optical and magnetic properties of Fe3O4nanoparticles,Ceram.Int.40(2014)1945–1949.

    [35]E.Warren,B.Ransom,The in fluence of analytical error upon the interpretation of chemical variations in clay minerals,Clay Miner.27(1992)193–209.

    [36]S.K.Chang,Z.Zainal,K.B.Tan,N.A.Yusof,W.Yusoff,S.Prabaharan,Surface morphology and crystallinity of metal oxides in nickel–cobalt binary system,Sains Malaysiana 41(2012)465–470.

    [37]M.Batin,V.Popescu,Synthesis and characterization of iron oxide powders,Powder Metall.Prog.11(2011)201–205.

    [38]W.Xing,F.Li,Z.-f.Yan,G.Lu,Synthesis and electrochemical properties of mesoporous nickel oxide,J.Power Sources 134(2004)324–330.

    [39]M.Ishaq,S.Sultan,I.Ahmad,H.Ullah,M.Yaseen,A.Amir,Adsorptive desulfurization of model oil using untreated,acid activated and magnetite nanoparticle loaded bentonite as adsorbent,J.Saudi Chem.Soc.21(2017)143–151.

    [40]A.T.Nawaf,S.A.Gheni,A.T.Jarullah,I.M.Mujtaba,Improvement of fuel quality by oxidative desulfurization:Design of synthetic catalyst for the process,Fuel Process.Technol.138(2015)337–343.

    [41]S.Mikhail,T.Zaki,L.Khalil,Desulfurization by an economically adsorption technique,Appl.Catal.A Gen.227(2002)265–278.

    [42]O.Gonzalez-Garcia,L.Cedeno-Caero,V–Mo based catalysts for oxidative desulfurization of diesel fuel,Catal.Today 148(2009)42–48.

    [43]Y.Tian,Y.Yao,Y.Zhi,L.Yan,S.Lu,Combined extraction–oxidation system for oxidative desulfurization(ODS)of a model fuel,Energy Fuel 29(2015)618–625.

    [44]X.Zhou,J.Li,X.Wang,K.Jin,W.Ma,Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine,Fuel Process.Technol.90(2009)317–323.

    [45]D.Wang,E.W.Qian,H.Amano,K.Okata,A.Ishihara,T.Kabe,Oxidative desulfurization of fuel oil:Part I.Oxidation of dibenzothiophenes using tert-butyl hydroperoxide,Appl.Catal.A Gen.253(2003)91–99.

    [46]W.Trakarnpruk,K.Rujiraworawut,Oxidative desulfurization of gas oil by polyoxometalates catalysts,Fuel Process.Technol.90(2009)411–414.

    [47]H.Lu,J.Gao,Z.Jiang,Y.Yang,B.Song,C.Li,Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis,Chem.Commun.(2007)150–152.

    [48]X.M.Yan,G.S.Su,L.Xiong,Oxidative desulfurization of diesel oil over Ag-modified mesoporous HPW/SiO2catalyst,J.Fuel Chem.Technol.37(2009)318–323.

    [49]J.Torres-Nieto,A.Arévalo,J.J.García,Catalytic desulfurization of dibenzothiophene and its hindered analogues with nickel and platinum compounds,Organometallics 26(2007)2228–2233.

    [50]F.Yu,R.Wang,Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts,Molecules 18(2013)13691–13704.

    [51]K.P.Cheng,H.Yang,J.H.Wang,H.P.Liu,C.Z.Qiao,Immobilization of acidic ionic liquid on silica gel for catalytic oxidative desulfurization of fuel oils(II):Desulfurization,Advanced Materials Research,Trans Tech Publ 2015,pp.183–187.

    [52]J.Zhang,A.Wang,X.Li,X.Ma,Oxidative desulfurization of dibenzothiophene and diesel over[Bmim]3PMo12O40,J.Catal.279(2011)269–275.

    [53]A.Haghighat Mamaghani,S.Fatemi,M.Asgari,Investigation of in fluential parameters in deep oxidative desulfurization of dibenzothiophene with hydrogen peroxide and formic acid,Int.J.Chem.Eng.2013(2013).

    [54]D.Wang,W.E.Qian,H.Amano,K.Okata,A.Ishihara,T.Kabe,Oxidative desulfurization offueloilPartI.Oxidation ofdibenzothiophenes using tert-butylhydroperoxide,Appl.Catal.A Gen.253(2003)91–99.

    [55]L.Hao,S.Benxian,X.Zhou,An improved desulfurization process based on H2O2/formic acid oxidation system followed by liquid–liquid extraction.Part 1.Coker gas oil feedstocks,Pet.Sci.Technol.23(2005)991–999.

    [56]M.Te,C.Fairbridge,Z.Ring,Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2and formic acid/H2O2systems,Appl.Catal.A Gen.219(2001)267–280.

    [57]K.K.Sarda,A.Bhandari,K.K.Pant,S.Jain,Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3and Ni/ZSM-5 extrudates,Fuel 93(2012)86–91.

    [58]J.Wang,D.Zhao,K.Li,Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid,Energy Fuel 24(2010)2527–2529.

    [59]J.L.García-Gutiérrez,G.A.Fuentes,M.E.Hernández-Terán,F.Murrieta,J.Navarrete,F.Jiménez-Cruz,Ultra-deep oxidative desulfurization of diesel fuel with H2O2catalyzed under mild conditions by polymolybdates supported on Al2O3,Appl.Catal.A Gen.305(2006)15–20.

    [60]W.Ahmad,I.Ahmad,M.Yaseen,Desulfurization of liquid fuels by air assisted peracid oxidation system in the presence of Fe-ZSM-5 catalyst,Korean J.Chem.Eng.33(2016)2530–2537.

    99久久精品国产亚洲精品| 国产成人一区二区在线| 国产成人欧美| 在线观看免费高清a一片| 日本wwww免费看| 亚洲一码二码三码区别大吗| 宅男免费午夜| 国产日韩欧美亚洲二区| 在线 av 中文字幕| xxxhd国产人妻xxx| 亚洲成国产人片在线观看| 国产成人精品久久二区二区91| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| 日韩大片免费观看网站| 久久久久久久久久久久大奶| 免费看不卡的av| 99久久人妻综合| 水蜜桃什么品种好| 中文字幕高清在线视频| www.精华液| 别揉我奶头~嗯~啊~动态视频 | 另类亚洲欧美激情| 新久久久久国产一级毛片| 亚洲图色成人| 国产成人欧美| 久久人人爽人人片av| 欧美性长视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 91老司机精品| 高清av免费在线| 99热国产这里只有精品6| 亚洲精品日韩在线中文字幕| 黄片小视频在线播放| 欧美av亚洲av综合av国产av| 侵犯人妻中文字幕一二三四区| 在线 av 中文字幕| 久久精品国产综合久久久| 久久久久久久久免费视频了| 免费不卡黄色视频| 国产成人91sexporn| 国产黄频视频在线观看| 纵有疾风起免费观看全集完整版| 精品人妻熟女毛片av久久网站| 久久狼人影院| 婷婷成人精品国产| 男男h啪啪无遮挡| 人人澡人人妻人| 久久影院123| 男女国产视频网站| 少妇人妻久久综合中文| 只有这里有精品99| 精品免费久久久久久久清纯 | 美女中出高潮动态图| 国产高清视频在线播放一区 | 水蜜桃什么品种好| a级毛片黄视频| 日日爽夜夜爽网站| 国产视频首页在线观看| 一边亲一边摸免费视频| 亚洲伊人久久精品综合| av福利片在线| 久久九九热精品免费| 国产亚洲精品久久久久5区| 性高湖久久久久久久久免费观看| 叶爱在线成人免费视频播放| 精品国产乱码久久久久久男人| 国产精品久久久久久人妻精品电影 | 亚洲成人国产一区在线观看 | 亚洲精品乱久久久久久| av又黄又爽大尺度在线免费看| 人人妻人人添人人爽欧美一区卜| 欧美激情高清一区二区三区| 亚洲av日韩精品久久久久久密 | 亚洲男人天堂网一区| h视频一区二区三区| a级片在线免费高清观看视频| 日韩电影二区| av在线app专区| 999久久久国产精品视频| 黄网站色视频无遮挡免费观看| a级毛片黄视频| 国产在视频线精品| 久久99热这里只频精品6学生| 国产精品免费大片| 黑丝袜美女国产一区| www.999成人在线观看| 日韩精品免费视频一区二区三区| 狠狠精品人妻久久久久久综合| 曰老女人黄片| 亚洲精品国产av成人精品| 国产av国产精品国产| 久久午夜综合久久蜜桃| 一级毛片 在线播放| 成年人黄色毛片网站| 免费观看av网站的网址| 九草在线视频观看| 尾随美女入室| 午夜免费观看性视频| 乱人伦中国视频| 国产黄色视频一区二区在线观看| av电影中文网址| 国产精品一区二区免费欧美 | 欧美亚洲 丝袜 人妻 在线| 欧美xxⅹ黑人| videosex国产| 国产成人精品在线电影| 人体艺术视频欧美日本| 叶爱在线成人免费视频播放| 51午夜福利影视在线观看| 亚洲av电影在线进入| 最近中文字幕2019免费版| 天堂中文最新版在线下载| 国产有黄有色有爽视频| 美女高潮到喷水免费观看| 亚洲五月色婷婷综合| 亚洲专区国产一区二区| a级毛片黄视频| 9热在线视频观看99| 欧美成人午夜精品| 国产日韩欧美视频二区| 欧美日韩黄片免| 中文字幕制服av| 国产无遮挡羞羞视频在线观看| 侵犯人妻中文字幕一二三四区| a级毛片黄视频| 在现免费观看毛片| 五月天丁香电影| 精品少妇内射三级| 久久国产亚洲av麻豆专区| 国产人伦9x9x在线观看| 国产精品免费大片| 国产精品三级大全| 亚洲国产精品一区三区| 91老司机精品| 亚洲成人手机| 精品国产国语对白av| 又紧又爽又黄一区二区| 激情视频va一区二区三区| 在线 av 中文字幕| 91九色精品人成在线观看| 午夜91福利影院| 咕卡用的链子| 中文字幕精品免费在线观看视频| 精品卡一卡二卡四卡免费| 99国产精品99久久久久| 一本大道久久a久久精品| 欧美日韩国产mv在线观看视频| 午夜日韩欧美国产| 精品少妇内射三级| 欧美人与性动交α欧美软件| 五月天丁香电影| av不卡在线播放| 亚洲一区中文字幕在线| 欧美日韩av久久| 欧美 日韩 精品 国产| 国产成人系列免费观看| 亚洲国产日韩一区二区| 天天操日日干夜夜撸| 女警被强在线播放| 伦理电影免费视频| netflix在线观看网站| 热re99久久精品国产66热6| 日韩一区二区三区影片| 欧美日韩亚洲高清精品| 亚洲三区欧美一区| 国产精品 国内视频| 老司机影院毛片| 成年美女黄网站色视频大全免费| 久久久久久久久久久久大奶| 亚洲一码二码三码区别大吗| 美女主播在线视频| 99香蕉大伊视频| 欧美日本中文国产一区发布| 国产伦理片在线播放av一区| 91字幕亚洲| 亚洲国产精品国产精品| 国产亚洲av片在线观看秒播厂| 91成人精品电影| 国产真人三级小视频在线观看| 欧美变态另类bdsm刘玥| 男女床上黄色一级片免费看| 看免费成人av毛片| videosex国产| 亚洲人成77777在线视频| 精品国产一区二区三区久久久樱花| 精品国产一区二区三区久久久樱花| 大话2 男鬼变身卡| 亚洲一码二码三码区别大吗| 色精品久久人妻99蜜桃| 大香蕉久久成人网| 精品熟女少妇八av免费久了| 日韩一卡2卡3卡4卡2021年| av片东京热男人的天堂| 免费久久久久久久精品成人欧美视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久精品精品| 丝袜美足系列| 国产片特级美女逼逼视频| 亚洲午夜精品一区,二区,三区| 国产亚洲一区二区精品| 91字幕亚洲| 男女无遮挡免费网站观看| 欧美变态另类bdsm刘玥| 国产在线视频一区二区| 成人亚洲欧美一区二区av| 大话2 男鬼变身卡| 嫁个100分男人电影在线观看 | 高潮久久久久久久久久久不卡| 在线观看免费高清a一片| 99久久综合免费| 五月天丁香电影| 麻豆乱淫一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲图色成人| 国产淫语在线视频| 91精品三级在线观看| 波野结衣二区三区在线| 一级片免费观看大全| 亚洲国产最新在线播放| 国产免费视频播放在线视频| 亚洲av片天天在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av成人精品| 国产片内射在线| 制服人妻中文乱码| 国产男女内射视频| 一级毛片我不卡| 国产黄色视频一区二区在线观看| 女人被躁到高潮嗷嗷叫费观| 成人午夜精彩视频在线观看| 国产在线免费精品| 一级片免费观看大全| 十分钟在线观看高清视频www| 人人澡人人妻人| 亚洲一区中文字幕在线| 欧美日韩亚洲高清精品| 日韩 欧美 亚洲 中文字幕| 性高湖久久久久久久久免费观看| 日韩av不卡免费在线播放| 国产成人av教育| 男女国产视频网站| 一级毛片我不卡| 亚洲精品国产区一区二| 午夜免费观看性视频| 国产伦人伦偷精品视频| 亚洲欧美成人综合另类久久久| 久久人人爽av亚洲精品天堂| 亚洲国产欧美网| 又紧又爽又黄一区二区| 日韩制服丝袜自拍偷拍| 欧美黑人欧美精品刺激| 国产女主播在线喷水免费视频网站| 一区二区日韩欧美中文字幕| 国产欧美亚洲国产| 男女边摸边吃奶| 七月丁香在线播放| 久久99热这里只频精品6学生| 免费日韩欧美在线观看| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精| 天天操日日干夜夜撸| 国产精品秋霞免费鲁丝片| 大片电影免费在线观看免费| 国产99久久九九免费精品| 男人爽女人下面视频在线观看| 成年av动漫网址| 国产精品二区激情视频| 免费观看av网站的网址| 亚洲天堂av无毛| 老司机影院成人| 亚洲精品一卡2卡三卡4卡5卡 | 首页视频小说图片口味搜索 | 蜜桃在线观看..| 国产精品偷伦视频观看了| 欧美少妇被猛烈插入视频| 一本久久精品| 91字幕亚洲| www.999成人在线观看| 国产福利在线免费观看视频| 欧美日韩福利视频一区二区| svipshipincom国产片| 99久久99久久久精品蜜桃| 在线观看www视频免费| 精品一品国产午夜福利视频| 久久中文字幕一级| 国产国语露脸激情在线看| 我的亚洲天堂| 晚上一个人看的免费电影| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 桃花免费在线播放| 午夜日韩欧美国产| 十八禁高潮呻吟视频| 精品国产一区二区三区久久久樱花| 亚洲伊人久久精品综合| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 热99久久久久精品小说推荐| 天天操日日干夜夜撸| 在线av久久热| 亚洲国产欧美网| 少妇粗大呻吟视频| 国产伦理片在线播放av一区| 亚洲国产欧美一区二区综合| 中文字幕色久视频| 美国免费a级毛片| 久久久久久久国产电影| 熟女av电影| 麻豆av在线久日| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 国产高清视频在线播放一区 | 人人妻,人人澡人人爽秒播 | 免费看十八禁软件| 熟女少妇亚洲综合色aaa.| 午夜福利影视在线免费观看| 美女视频免费永久观看网站| 熟女av电影| 这个男人来自地球电影免费观看| 国产男人的电影天堂91| 午夜日韩欧美国产| 美女视频免费永久观看网站| 国产成人一区二区在线| 久久性视频一级片| 50天的宝宝边吃奶边哭怎么回事| 国产视频一区二区在线看| 国产不卡av网站在线观看| 美女大奶头黄色视频| 美女扒开内裤让男人捅视频| 午夜福利影视在线免费观看| 丝瓜视频免费看黄片| 一二三四社区在线视频社区8| 久久免费观看电影| 成人三级做爰电影| 午夜福利影视在线免费观看| 国产爽快片一区二区三区| 国产一区二区激情短视频 | 色精品久久人妻99蜜桃| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 十八禁高潮呻吟视频| 夫妻性生交免费视频一级片| bbb黄色大片| 国产成人免费无遮挡视频| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密 | 免费一级毛片在线播放高清视频 | 18禁观看日本| 看十八女毛片水多多多| 国产成人一区二区三区免费视频网站 | 国产片特级美女逼逼视频| 久久人人爽av亚洲精品天堂| 美女视频免费永久观看网站| 中文字幕人妻丝袜制服| 高清av免费在线| 蜜桃国产av成人99| 人人妻人人澡人人爽人人夜夜| 午夜激情久久久久久久| 国语对白做爰xxxⅹ性视频网站| 乱人伦中国视频| 国产高清不卡午夜福利| 99热网站在线观看| 久久精品国产综合久久久| 三上悠亚av全集在线观看| 成人免费观看视频高清| 久久这里只有精品19| 亚洲国产最新在线播放| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| 各种免费的搞黄视频| 免费在线观看视频国产中文字幕亚洲 | 久久ye,这里只有精品| 一级黄色大片毛片| 18禁国产床啪视频网站| 色精品久久人妻99蜜桃| 亚洲欧洲精品一区二区精品久久久| 久久人人爽人人片av| 亚洲第一青青草原| 如日韩欧美国产精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产一级毛片在线| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 成人手机av| 啦啦啦在线免费观看视频4| av国产久精品久网站免费入址| 十八禁高潮呻吟视频| 亚洲五月婷婷丁香| 色视频在线一区二区三区| 999精品在线视频| 女性生殖器流出的白浆| 亚洲国产av新网站| 不卡av一区二区三区| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 天堂8中文在线网| 久久久久久久大尺度免费视频| 看十八女毛片水多多多| 女人精品久久久久毛片| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| 亚洲激情五月婷婷啪啪| 91老司机精品| 亚洲 国产 在线| 中文字幕人妻丝袜制服| 欧美中文综合在线视频| 亚洲欧美激情在线| 91精品三级在线观看| 精品国产乱码久久久久久小说| 精品少妇内射三级| 日韩 欧美 亚洲 中文字幕| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| www.精华液| 久久久久久免费高清国产稀缺| 性高湖久久久久久久久免费观看| 七月丁香在线播放| 狂野欧美激情性bbbbbb| 亚洲精品一二三| 国产极品粉嫩免费观看在线| 一区二区三区乱码不卡18| 欧美在线黄色| 一区二区三区精品91| 国产免费视频播放在线视频| 少妇精品久久久久久久| a级毛片在线看网站| 日本av手机在线免费观看| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 日本av手机在线免费观看| 91字幕亚洲| 男女下面插进去视频免费观看| 久久久久久久久免费视频了| 嫩草影视91久久| 亚洲一码二码三码区别大吗| 亚洲av电影在线观看一区二区三区| 久久久久久久大尺度免费视频| 精品免费久久久久久久清纯 | 欧美少妇被猛烈插入视频| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 在线观看一区二区三区激情| a级毛片在线看网站| 丝袜在线中文字幕| 国产免费现黄频在线看| 黑人猛操日本美女一级片| 丝瓜视频免费看黄片| 丝袜人妻中文字幕| 一本久久精品| 中文字幕人妻丝袜一区二区| 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| 人体艺术视频欧美日本| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区蜜桃| 国产高清不卡午夜福利| 丰满人妻熟妇乱又伦精品不卡| 好男人电影高清在线观看| 黄频高清免费视频| 色视频在线一区二区三区| 久久亚洲精品不卡| 人人妻人人澡人人看| 日韩 亚洲 欧美在线| 午夜福利在线免费观看网站| 国产精品欧美亚洲77777| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 丰满少妇做爰视频| 亚洲,欧美精品.| 十分钟在线观看高清视频www| 国产精品一二三区在线看| 国产精品av久久久久免费| 国产精品一区二区免费欧美 | 中文字幕亚洲精品专区| 交换朋友夫妻互换小说| 99国产精品99久久久久| 亚洲精品美女久久久久99蜜臀 | 精品视频人人做人人爽| 99香蕉大伊视频| 亚洲欧美精品综合一区二区三区| 久久精品aⅴ一区二区三区四区| 99热网站在线观看| 丝袜在线中文字幕| 婷婷色麻豆天堂久久| 欧美精品啪啪一区二区三区 | 黄网站色视频无遮挡免费观看| 色网站视频免费| 国产成人av激情在线播放| 精品人妻在线不人妻| 国产97色在线日韩免费| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| 免费在线观看视频国产中文字幕亚洲 | 我要看黄色一级片免费的| 欧美黑人欧美精品刺激| 午夜久久久在线观看| 在线观看一区二区三区激情| 99香蕉大伊视频| 97精品久久久久久久久久精品| 9色porny在线观看| 国产一区有黄有色的免费视频| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 国产在线免费精品| 久久久久精品国产欧美久久久 | 欧美性长视频在线观看| 最近中文字幕2019免费版| 色视频在线一区二区三区| 宅男免费午夜| 国产精品三级大全| 极品少妇高潮喷水抽搐| 日本午夜av视频| 一区二区三区激情视频| 婷婷色麻豆天堂久久| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 美女福利国产在线| 久久鲁丝午夜福利片| 精品少妇久久久久久888优播| 一本一本久久a久久精品综合妖精| 免费av中文字幕在线| 久久亚洲精品不卡| 多毛熟女@视频| 国产亚洲av片在线观看秒播厂| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 亚洲天堂av无毛| 亚洲av综合色区一区| av网站免费在线观看视频| 老司机亚洲免费影院| 久久中文字幕一级| 91精品伊人久久大香线蕉| 亚洲精品美女久久久久99蜜臀 | 波多野结衣av一区二区av| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 日本一区二区免费在线视频| 丰满饥渴人妻一区二区三| 日韩av在线免费看完整版不卡| 手机成人av网站| 久久人妻福利社区极品人妻图片 | 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 国产av一区二区精品久久| 啦啦啦在线观看免费高清www| videos熟女内射| 成年女人毛片免费观看观看9 | 在现免费观看毛片| 最近中文字幕2019免费版| 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 精品久久蜜臀av无| 男女午夜视频在线观看| 国产成人av教育| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 中文字幕制服av| 国产成人av教育| 丝瓜视频免费看黄片| 免费在线观看黄色视频的| 一级黄片播放器| 久久免费观看电影| 国产黄色视频一区二区在线观看| 免费女性裸体啪啪无遮挡网站| 99久久99久久久精品蜜桃| 久久女婷五月综合色啪小说| 精品卡一卡二卡四卡免费| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 男女床上黄色一级片免费看| 青春草亚洲视频在线观看| 亚洲成人国产一区在线观看 | 午夜福利影视在线免费观看| 90打野战视频偷拍视频| av一本久久久久| 日韩制服丝袜自拍偷拍| 免费观看a级毛片全部| 999精品在线视频| 中文欧美无线码| 免费看av在线观看网站| 99香蕉大伊视频| 欧美+亚洲+日韩+国产| 亚洲国产av新网站| 日本91视频免费播放| 国产精品人妻久久久影院| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 午夜免费观看性视频| 久久久精品94久久精品| 国产淫语在线视频| 亚洲国产中文字幕在线视频| 两个人免费观看高清视频| 国产人伦9x9x在线观看| 黄片小视频在线播放| 黄色a级毛片大全视频| 老汉色av国产亚洲站长工具| 高清不卡的av网站| 国产在线免费精品| 99国产精品99久久久久| 视频区欧美日本亚洲| 欧美日韩国产mv在线观看视频| 国产熟女欧美一区二区| www日本在线高清视频| 伊人亚洲综合成人网|