• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Isobaric vapor–liquid equilibrium for ternary system of ethanol,ethyl propionate and para-xylene at 101.3 kPa☆

    2018-05-26 07:29:26ZhongpengXingYujieGaoHuiDingXianqinWangLujunLiHangZhou

    Zhongpeng Xing ,Yujie Gao ,Hui Ding *,Xianqin Wang Lujun LiHang Zhou

    1 School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    2 Tianjin Academy of Environmental Sciences,Tianjin 300191,China

    3 Tianjin Huanke Environmental Planning Technology Development Company Limited,Tianjin 300191,China

    4 School of Environmental Science and Engineering,Tianjin University,Tianjin 300072,China

    1.Introduction

    Ethyl propionate,a kind of widely-used organic synthetic raw material and solvent,is applied in the field of pharmacy,antifungal agents,edibles,plasticizers,spice,dyes and even biomass[1,2].In industry,the traditional method of producing ethyl propionate is esterification of propanoic acid and ethanol with sulfuric acid as catalyst at 101.3 kPa,and then cut fraction from 369.15 K to 373.15 K is collected to gain pure product in distillation[3].However,the literature has reported that ethyl propionate and ethanol form an azeotrope at 101.3 kPa,which reduces the yield and purity of ethyl propionate[4].Therefore,it is a challenge for researcher to find out a way to improve the purity of ethyl propionate in the operation process.

    For azeotrope or similar boiling point system,extractive distillation is an effective and widely-used process to separate the mixture[5],and entrainer needs to be added into the original azeotrope system to increase the relative volatility of the azeotrope.There are several reported entrainers used for breaking binary azeotrope system,such as ionic liquid[6,7],dimethyl sulfoxide(DMSO)[8]and N,N-dimethyl formamide(DMF)[9].Because of high viscosity,ionic liquid is not widely used in extractive distillation and the extraction capacity of DMSO,and DMF is lower than para-xylene in the field of separating ethanol and ethyl propionate azeotropic system[10].Due to wide availability,low cost,high boiling point,less causticity,good thermal stability and miscibility with organic solvent[11],para-xylene has been reported as an effective additive in traditional extractive distillation,especially for the separation of mixture of ethylic acid and water[12–13].Zhang[14]selected para-xylene as solvent of methanol and trimethoxysilane in extractive distillation and found that para-xylene can break the azeotrope.However,up to now,the utilization of paraxylene as extraction agent to separate azeotropic system of ethanol+ethyl propionate has not been reported,which may be due to the lack of VLE data.The binary system VLE data,including ethanol(1)and ethyl propionate(2)and ethanol(1)and p-xylene(3),have been reported in the literature[4,15],but lack of VLE data of ethyl propionate(2)and p-xylene(3).In addition,the ternary system of ethanol(1)+ethyl propionate(2)+para-xylene(3)also has no VLE data reported openly.Since the lack of VLE data and its preferable prospect in extractive distillation process,measurement of isobaric VLE data for binary of ethyl propionate(2)+p-xylene(3)and ternary system of ethanol(1)+ethyl propionate(2)+para-xylene(3)is meaningful.

    In this paper,the VLE data for binary system of ethyl propionate+para-xylene and ternary system of ethanol+ethyl propionate+para-xylene were determined at 101.3 kPa.The Wilson and UNIQUAC activity coefficient models were employed to correlate the binary VLE data and to obtain the interaction parameters,thus by use of the interaction parameters to predict the ternary VLE data.

    2.Experimental

    2.1.Chemicals

    Three chemicals are ethanol,ethyl propionate and para-xylene,respectively,which are always miscible in all measurements.Their corresponding information ab out molecular formula,purity grade and source is listed in Table 1.The purity of all the chemicals was measured by gas chromatograph(GC)with a FID detector.All the reagents were used without further purification.

    Table 1 Chemical reagents information

    2.2.Procedure

    A circulation vapor–liquid equilibrium was used to measure the isobaric VLE data of binary and ternary system[16].The volume of the chamber was about 50 ml,of which 40 ml was taken up by liquid.A mercury thermometer below the liquid level was used to detect experimental temperature.The accuracy of the mercury thermometer is±0.1 K.The pressure was measured by a transducer(Digiquartz 2300A)connected to a Digiuartz 740 intelligent display unit(Paroscientific)whose accuracy is 0.01%.More details about the apparatus were referred to our previous papers[17,18].

    About 40-ml liquid samples were fed into the chamber during each experiment,then heated at 101.3 kPa.The system was considered to reach equilibrium state when the temperature of the mercury thermometer was not change for about 1 h.Then,the samples of vapor and liquid phase were collected at the same time for analysis.To minimize the effect of sample amount on the equilibrium,three analyses were in parallel conducted and the amounts of the analyses were taken at 0.1 ml.

    2.3.Analysis

    Component analysis of the equilibrium vapor and liquid phase were conducted by GC2060 with a FID detector and SE-54 column(30 m×0.32 mm × 0.5 μm).High purity nitrogen was carrier gas at flow rate of 30 ml·min?1.The temperatures of injector,detector and oven were 473.15 K,473.15 K and 393.15 K,respectively.Standard solutions were applied to calibrate the GC,which were prepared gravimetrically by an electronic balance(FA2004N,uncertainty of±0.0001 g).In addition,calibration factor of pure substance was determined ahead of time.The final composition of each sample was determined upon the average of three analyses.

    3.Results and Discussion

    3.1.Experimental data

    The VLE data for binary systems,including ethanol(1)+ethyl propionate(2)and ethanol(1)+para-xylene(3),are measured at 101.3 kPa.The activity coefficient(γi)is determined by the following equation[19–20]:

    where xiand yirepresent the liquid and vapor content of component i,respectively;obtained according to the extended Antoine equation,is the saturation vapor pressure of pure component i;is the liquid molar volume of pure liquid i and R is the gas constant;φiandare the fugacity coefficient of component i in the heterogeneous vapor phase and in homogeneous saturated vapor phase,separately.At low pressure,the gas phase can be regarded as ideal gas,andis approximately equal to 1.Meanwhile,φiandare equal to 1,respectively[21,22],so the activity coefficient equation can be simplified as follows:

    The extended Antoine equation is defined by Eq.(3).

    where C1,i?C7,i,Tminand Tmaxare pure component constants which are listed in Table 2.

    Table 2 The constants C1,i-C7,i,T min and T max for the pure components?

    The isobaric VLE data for ethanol(1)+ethyl propionate(2)and ethanol(1)+para-xylene(3)are presented in Tables 3 and 4.To check the stability of experimental device,the experimental VLE data were compared with literature data[4,15],which are shown in Figs.1and 2.Meanwhile,the absolute and relative errors in temperature and vapor phase mole fraction are listed in Table 5.Obviously,the experiment results show a good agreement with literature data.Therefore,it is confirmed that the experimental device and operation process are reliable.

    Table 3 VLE data and activity coefficients for the binary system of ethanol(1)+ethyl propionate(2)at 101.3 kPa?

    Table 4 VLE data and activity coefficients for the binary system of ethanol(1)+para-xylene(3)at 101.3 kPa?

    Fig.1.T vs x1,y1 diagram for the ethanol(1)+ethyl propionate(2)system at 101.3 kPa(●,experimental vapor phase composition y1; ■,experimental liquid phase composition x1;—,literature liquid phase composition x1;…,literature vapor phase composition y1[4]).

    Fig.2.T vs x1,y1 diagram for the ethanol(1)+para-xylene(3)system at 101.3 kPa(●,experimental vapor phase composition y1;■,experimental liquid phase composition x1;—,literature liquid phase composition x1;…,literature vapor phase composition y1[15]).

    Table 5 The mean absolute and relative deviations of vapor phase mole fraction and equilibrium temperature for system of ethanol(1)+ethyl propionate(2)and ethanol(1)+para-xylene(3)

    The isobaric VLEdata for the binary system of ethyl propionate(2)+para-xylene(3)and ternary system of ethanol(1)+ethyl propionate(2)+para-xylene(3)were obtained at 101.3 kPa,which are listed in Tables 6 and 7.For the ternary system,para-xylene was added into the still at a constant content(50 mol%).In Table 7,x′and y′denote the mole fraction of corresponding liquid and vapor phase on the basis of free para-xylene,respectively.The relative volatility of ethanol to ethyl propionate is determined by the following equation[23]:

    Table 6 VLE data and activity coefficients for the binary system of ethyl propionate(2)+paraxylene(3)at 101.3 kPa?

    In extractive distillation,relative volatility is an important factor to evaluate the performance of extraction agent[24,25].When the relative volatility is greater than 1,the two components can be separated by distillation[21].Table 7 shows that the minimum relative volatility of ethyl alcohol to ethyl propionate is 3.4141 after para-xylene was added,which demonstrates the complete separation of ethanol and ethyl propionate can be achieved by extractive distillation.

    Table 7 VLE data for the ternary system of ethanol(1)+ethylpropionate(2)+para-xylene(3)at 101.3 kPa?

    3.2.Data regression

    The acquired VLEdata was correlated with the Wilson and UNIQUAC models by Aspen Plus to gain the interaction parameters of the ternary system of ethanol(1)+ethyl propionate(2)+para-xylene(3)[26].To obtain the minimizing maximum likelihood objective function,the binary VLE data was regressed,which was described as:

    where σ is the standard deviation of the corresponding parameters.The standard deviations of pressure σP,temperature σT,liquid composition σxand vapor composition σyused in this VLE data correlation are 0.1013 kPa,0.1 K,0.001 and 0.001,respectively.

    The correlated parameters and the root-mean-square deviations(RMSD)of temperature and vapor phase mole fraction are given in Table 8.Meanwhile,the contradistinction between experimental data and calculated data is presented in Fig.3,revealing that all the values calculated by the two models fit well with the experimental data.

    Table 8 Correlated parameters and RMSD for systems of ethanol(1)+ethyl propionate(2),ethanol(1)+para-xylene(3)and ethyl propionate(2)+para-xylene(3)

    3.3.Consistency tests of experimental data

    The Van Ness test method,a point consistency method put forward by Fredenslund et al.[27],was quoted to verify the reliability of experimental data[28].The criterion is expressed by the following eq.[29]:

    Fig.3.T vs x2,y2 diagram for the ethyl propionate(2)+para-xylene(3)system at 101.3 kPa(■,□ experimental data;…,calculated data with Wilson model;—,calculated data with UNIQUAC model).

    where n is the number of experimental data points;the superscript exp represents experimental data;the superscript cal represents values determined by Wilson and UNIQUAC models.If the value of Δyiis lower than 1,the VLE data can be confirmed to be thermodynamically consistent.Table 9 shows the results of binary and ternary systems applying the above expression,revealing that all the experimental data obtained in this work is thermodynamically consistent.

    Table 9 The results of thermodynamic consistency test of Van Ness method for the binary and ternary systems

    3.4.Data prediction

    The ternary VLE data of ethanol(1)+ethyl propionate(2)+para-xylene(3)were predicted with the correlated binary parameters which were obtained by Wilson and UNIQUAC models.The maximum and mean absolute deviations of equilibrium temperature and vapor mole fraction for each system are listed in Table 10.The results illustrate that the predicted data agrees well with the experimental data,which indicate that both Wilson and UNIQUAC models can predict the experimental data accurately.A vapor–liquid residue curve map is constructed by residue in a simple distillation in time,which is a geometric analysis method for distillation system to explain the composition of an azeotropic system[30,31].In order to further check ternary system VLE data,the residue curve of the ternary system was predictedby UNIQUAC model using correlated binary parameters,which was shown in Fig.4.The connecting lines of the vapor phase points and liquid phase points are tangent very well with the residue curves atthe liquid phase points,indicating that the prediction data are coincident with experimental data[32,33].

    Table 10 Maximum and mean absolute deviations of equilibrium temperature and vapor-phase mole fraction for system of ethanol(1)+ethyl propionate(2)+para-xylene(3)

    Fig.4.Residue curves of the ternary system ethanol(1)+ethyl propionate(2)+paraxylene(3)(■,experimental liquid phase composition;○,experimental vapor phase composition;—,pairs of VLE data;…,residue curves).

    Fig.5.x1 vs y1 diagram for the comparison of VLE behavior of binary system ethanol(1)+ethyl propionate(2)with and without para-xylene(▲,experimental VLE data without para-xylene;●,experimental VLE data with para-xylene).

    To investigate the effect of with and with out para-xylene on the system of ethanol(1)+ethyl propionate(2),isobaric VLE data of the binary system are presented in Fig.5.As shown in Fig.5,one can note that the azeotropic phenomenon is disappeared when the mole ratio of para-xylene and binary system of ethanol and ethyl propionate is 1:1.The reason why para-xylene can change the relative volatility of azeotrope in our work may be explained by the fact that attraction of para-xylene for alcohols is larger than that for esters[34],which demonstrates that para-xylene is a potential extraction agent for this system.

    4.Conclusions

    Isobaric VLE data of the binary system ethyl propionate+para-xylene and ternary system of ethanol+ethyl propionate+para-xylene were determined at 101.3 kPa.The thermodynamic consistency test indicated that both binary and ternary VLE data passed the Van Ness test.Wilson and UNIQUAC activity coefficient models were used to correlate experimental data to obtain binary interaction parameters.The comparison between the experimental data and VLE data predicted by the two models reveals that predicted data fits well with experimental date.The azeotropic phenomenon vanishes when the mole ratio of the azeotrope and para-xylene is 1:1.The experimental and prediction results imply that para-xylene is an available additive to separate the binary system of ethanol and ethyl propionate in extractive distillation.

    Nomenclature

    aij,aji,bij,bjithe correlated parameters of Wilson and UNIQUAC models

    C1,i?C7,ipure component constants

    F term defined by Eq.(6)

    n the number of experimental data points

    P the total pressure,kPa

    saturated vapor pressure of pure component i,kPa

    R universal gas constant

    T tempreture,K

    ΔT mean absolute deviations of equilibrium temperature

    δT relative deviations of equilibrium temperature

    u standard uncertainty

    liquid molar volume of pure liquid i,m3·mol?1

    xi,yiliquid and vapor content of component i,respectively

    Δy mean absolute deviations of vapor-phase mole fraction

    δy mean relative deviations of vapor phase mole fraction

    σy root-mean-square deviations of vapor phase mole fraction

    α12relative volatility of ethanol to ethyl propionate

    γ liquid activity coefficient

    σ the standard deviation

    fugacity coefficient of component i in the mixture vapor phase and pure saturated vapor

    [1]D.C.Rennard,P.J.Dauenhauer,S.A.Tupy,L.D.Schmidt,Autothermal catalytic partial oxidation of bio-oil functional groups:esters and acids,Energy Fuels 22(2)(2008)1318–1327.

    [2]S.S.Kanwar,H.K.Verma,R.K.Kaushal,R.Gupta,S.S.Chimni,Y.Kumar,Effect of solvents and kinetic parameters on synthesis of ethyl propionate catalysed by poly(AAc-co-HPMA-cl-MBAm)-matrix-immobilized lipase of Pseudomonas aeruginosa BTS-2,World J.Microbiol.Biotechnol.21(6-7)(2005)1037–1044.

    [3]S.J.Lin,Y.Z.Sun,Catalytic synthesis of ethyl propionate with p-toluene sulfonic acid,J.Beijing Inst.Petrochem.Technol.13(1)(2005)49–52(in Chinese).

    [4]J.Ortega,J.Ocon,J.Pe?a,C.D.Alfonso,M.Paz-Andrade,J.Fernandez,Vapor-liquid equilibrium of the binary mixtures C n H2n+1(OH)(n=2,3,4)+propyl ethanoate and+ethyl propanoate,Can.J.Chem.Eng.65(1987)982–990.

    [5]W.F.Shen,H.Benyounes,V.Gerbaud,Extractive distillation:recent advances in operation strategies,Rev.Chem.Eng.31(1)(2015)13–26.

    [6]Z.Y.Zhu,Y.S.Ri,M.Li,H.Jia,Y.K.Wang,Extractive distillation forethanoldehydration using imidazolium-based ionic liquids as solvents,Chem.Eng.Process.109(2016)190–198.

    [7]Y.Xiao,P.Bai,Z.K.Jiang,Vapour-liquid equilibrium for systems containing ionic liquids,Asian J.Chem.24(9)(2012)3775–3780.

    [8]H.Ding,Y.J.Gao,J.Q.Li,H.Zhou,S.J.Liu,X.Han,Vapor–liquid equilibria for ternary mixtures of isopropyl alcohol,isopropyl acetate,and DMSO at 101.3 kPa,J.Chem.Eng.Data 61(9)(2017)3013–3019.

    [9]Q.Y.Wang,B.R.Yu,C.J.Xu,Design and control of distillation system for methylal/methanol separation.Part 1:extractive distillation using dmf as an entrainer,Ind.Eng.Chem.Res.51(3)(2012)1281–1292.

    [10]H.Zhou,H.Ding,J.B.Quan,Extractive distillation of ethanol-ethyl propionate azeotrope with para-xylene,Chem.Ind.Eng.34(2017)25–34(in Chinese).

    [11]K.Xu,Handbook ofFine Organic ChemicalRaw Materials and Intermediates,Chemical Industry Press,Beijing,1998 34–36(in Chinese).

    [12]M.Corbetta,C.Pirola,F.Galli,F.Manenti,Robustoptimization of the heteroextractive distillation column for the purification of water/acetic acid mixtures using p-xylene as entrainer,Comput.Chem.Eng.95(2016)161–169.

    [13]C.Pirola,F.Galli,F.Manenti,M.Corbetta,C.L.Bianchi,Simulation and related experimental validation of acetic acid/water distillation using p-xylene as entrainer,Ind.Eng.Chem.Res.53(46)(2014)18063–18070.

    [14]H.Zhang,H.Xu,X.Dai,H.Yu,Q.Ye,Simulation and optimization of extractive distillation for separating methanol and trimethoxysilane,Mod.Chem.Ind.35(1)(2015)163–167(in Chinese).

    [15]M.D.Sanchez-Russinyol,A.Aucejo,S.Loras,Isobaric vapor-liquid equilibria for binary and ternary mixtures of ethanol,methylcyclohexane,and p-xylene,J.Chem.Eng.Data 49(5)(2004)1258–1262.

    [16]Q.S.Li,F.Y.Xing,Z.G.Lei,B.H.Wang,Q.L.Chang,Isobaric vapor-liquid equilibrium for isopropanol+water+1-ethyl-3-methylimidazolium tetra fluoroborate,J.Chem.Eng.Data 53(1)(2008)275–279.

    [17]J.Hou,S.M.Xu,H.Ding,T.Sun,Isobaric vapor–liquid equilibrium of the mixture of methyl palmitate and methyl stearate at 0.1 kPa,1 kPa,5 kPa,and 10 kPa,J.Chem.Eng.Data 57(10)(2012)2632–2639.

    [18]G.W.Tang,H.Ding,J.Hou,S.M.Xu,Isobaric vapor–liquid equilibrium forbinary system of ethyl myristate+ethyl palmitate at 0.5,1.0 and 1.5 kPa,Fluid Phase Equilib.347(2013)8–14.

    [19]J.M.Smith,H.C.Van Ness,M.M.Abbott,Introduction to Chemical Engineering Thermodynamics,McGraw-Hill Education,Boston,New York,2005 338-369,430-442,545-546.

    [20]J.M.Prausnitz,R.N.Lichtenthaler,E.G.D.Azevedo,Molecular Thermodynamics of Fluid-Phase Equilibria,Vols.1–22,Pearson Education,NJ,1998 42–45(in Chinese).

    [21]T.E.Tan,M.Dou,M.H.Zhou,Principles of Chemical Engineering,3rd.ed.Vols.74–75,Chemical Industry Press,Beijing,2006 157–158(in Chinese).

    [22]X.D.Zhang,D.P.Hu,Z.C.Zhao,Measurement and prediction of vapor pressure for H2O+CH3OH/C2H5OH+[BMIM][DBP]ternary working fluids,Chin.J.Chem.Eng.21(8)(2013)886–893.

    [23]M.T.G.Jongmans,J.I.W.Maassen,A.J.Luijks,B.Schuur,A.B.de Haan,Isobaric lowpressure vapor–liquid equilibrium data for ethyl benzene+styrene+sulfolane and the three constituent binary systems,J.Chem.Eng.Data 56(9)(2011)3510–3517.

    [24]Z.G.Lei,C.Y.Li,B.H.Chen,Behaviour of tributylamine as entrainer for the separation of water and acetic acid with reactive extractive distillation,Chin.J.Chem.Eng.11(5)(2003)515–519.

    [25]D.B.Kaymak,W.L.Luyben,O.J.Smith,Effect of relative volatility on the quantitative comparison of reactive distillation and conventional multi-unit systems,Ind.Eng.Chem.Res.43(12)(2004)3151–3162.

    [26]Aspentech,Aspen Property System:Physical Property Systems Methods and Models 11.1.,Aspen Technology,Inc.,Burlington,2001 20–33.

    [27]A.Fredenslund,J.Gmehling,P.Rasmussen,Vapor-liquid Equilibria Using UNIFAC:A Group Contribution Method,Elsevier,Amsterdam,1977.

    [28]P.L.Jackson,R.A.Wilsak,Thermodynamic consistency tests based on the Gibbs-Duhem equation applied to isothermal,binary vapor-liquid equilibrium data:data evaluation and model testing,Fluid Phase Equilib.103(1995)155–197.

    [29]J.W.Kang,V.Diky,R.D.Chirico,J.W.Magee,C.D.Muzny,A.F.Kazakov,K.Kroenlein,M.Frenkel,Algorithmic framework for quality assessment of phase equilibrium data,J.Chem.Eng.Data 59(7)(2014)2283–2293.

    [30]R.E.Rooks,V.Julka,M.F.Doherty,M.F.Malone,Structure of distillation regions for multicomponent azeotropic mixtures,AIChE J.44(6)(1998)1382–1391.

    [31]S.Widagdo,W.D.Seider,Azeotropic distillation,AIChE J.42(1)(1996)96–130.

    [32]X.M.Zhang,Y.X.Liu,C.G.Jian,F.Wei,H.P.Liu,Experimental isobaric vapor-liquid equilibrium for ternary system of sec-butyl alcohol+sec-butyl acetate+N,N-dimethyl formamide at 101.3 kPa,Fluid Phase Equilib.383(2014)5–10.

    [33]X.M.Zhang,H.P.Liu,Y.X.Liu,C.G.Jian,W.Wang,Experimental isobaric vapor-liquid equilibrium for the binary and ternary systems with methanol,methyl acetate and dimethyl sulfoxide at 101.3 kPa,Fluid Phase Equilib.408(2016)52–57.

    [34]A.Fredenslund,J.Gmehling,P.Rasmussen,Vapor–liquid Equilibria Using UNIFAC:A Group Contribution Method,Vols.68–84,Elsevier,Amsterdam,1977 150–155.

    欧美97在线视频| 国产精品一区二区在线观看99| 欧美xxⅹ黑人| 久久久久久久久大av| 欧美日韩视频高清一区二区三区二| 五月天丁香电影| videos熟女内射| 久久久久国产网址| 又大又黄又爽视频免费| 精品少妇久久久久久888优播| 简卡轻食公司| 91精品国产九色| 99热这里只有精品一区| 九九爱精品视频在线观看| 高清毛片免费看| 99久久人妻综合| 欧美精品高潮呻吟av久久| 看免费成人av毛片| 久久久久精品久久久久真实原创| 亚洲欧洲精品一区二区精品久久久 | 搡女人真爽免费视频火全软件| 97在线视频观看| 老司机影院成人| 一级爰片在线观看| 两个人的视频大全免费| 日韩中文字幕视频在线看片| 日韩欧美精品免费久久| 少妇精品久久久久久久| 中文字幕人妻丝袜制服| 国产精品免费大片| 简卡轻食公司| 亚洲无线观看免费| av在线观看视频网站免费| 自拍欧美九色日韩亚洲蝌蚪91 | 波野结衣二区三区在线| 丰满人妻一区二区三区视频av| freevideosex欧美| 欧美日韩在线观看h| 国产黄频视频在线观看| 亚洲一级一片aⅴ在线观看| xxx大片免费视频| 午夜久久久在线观看| 成人特级av手机在线观看| 男女边吃奶边做爰视频| 国产黄片视频在线免费观看| 午夜福利视频精品| 久久久久精品性色| 18禁动态无遮挡网站| 三上悠亚av全集在线观看 | 观看av在线不卡| 26uuu在线亚洲综合色| 午夜av观看不卡| 少妇丰满av| 极品人妻少妇av视频| 最近最新中文字幕免费大全7| 亚洲,一卡二卡三卡| 国产精品伦人一区二区| 亚洲中文av在线| 欧美日韩精品成人综合77777| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃 | 蜜桃在线观看..| 伊人亚洲综合成人网| 大片电影免费在线观看免费| 五月天丁香电影| 亚洲三级黄色毛片| 亚洲精品视频女| 黑人猛操日本美女一级片| 狂野欧美白嫩少妇大欣赏| 日韩精品免费视频一区二区三区 | 免费人成在线观看视频色| 永久网站在线| 精品一区在线观看国产| 免费黄色在线免费观看| av视频免费观看在线观看| 久久热精品热| 亚洲av电影在线观看一区二区三区| 国产淫片久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 日韩成人伦理影院| 麻豆成人av视频| 国产免费福利视频在线观看| 久久久久精品久久久久真实原创| 伦理电影免费视频| 国产亚洲午夜精品一区二区久久| 久久人人爽av亚洲精品天堂| 高清不卡的av网站| 欧美精品亚洲一区二区| 建设人人有责人人尽责人人享有的| 午夜精品国产一区二区电影| 中文字幕人妻熟人妻熟丝袜美| 久久久a久久爽久久v久久| 国产高清三级在线| 国产在线男女| 黄色一级大片看看| 亚洲欧美精品自产自拍| 亚洲av中文av极速乱| 亚洲欧洲国产日韩| 国产国拍精品亚洲av在线观看| 9色porny在线观看| 精品一区二区三区视频在线| 国产无遮挡羞羞视频在线观看| 久久狼人影院| 免费大片黄手机在线观看| 国产成人精品久久久久久| 国产黄色免费在线视频| 国产 一区精品| 桃花免费在线播放| 日韩av免费高清视频| 啦啦啦视频在线资源免费观看| 亚洲精品日本国产第一区| 国产一级毛片在线| 乱码一卡2卡4卡精品| 欧美97在线视频| 免费看光身美女| 免费观看在线日韩| 国产精品无大码| 欧美另类一区| 国产精品伦人一区二区| 中文字幕人妻丝袜制服| 青春草亚洲视频在线观看| 丰满饥渴人妻一区二区三| 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片| 夜夜骑夜夜射夜夜干| 夜夜爽夜夜爽视频| 亚洲av中文av极速乱| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 看免费成人av毛片| 一级毛片 在线播放| 日本欧美国产在线视频| 国产又色又爽无遮挡免| 69精品国产乱码久久久| 热99国产精品久久久久久7| h视频一区二区三区| 国产精品国产三级专区第一集| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| 国产欧美另类精品又又久久亚洲欧美| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 五月玫瑰六月丁香| 超碰97精品在线观看| 国产精品一区二区三区四区免费观看| 2018国产大陆天天弄谢| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 最新中文字幕久久久久| 男人爽女人下面视频在线观看| 午夜免费男女啪啪视频观看| 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 精品人妻熟女毛片av久久网站| 欧美bdsm另类| 人妻人人澡人人爽人人| 国产午夜精品一二区理论片| 深夜a级毛片| 六月丁香七月| 国产精品麻豆人妻色哟哟久久| 国产免费一级a男人的天堂| 久久午夜综合久久蜜桃| 中文字幕人妻熟人妻熟丝袜美| 成人毛片a级毛片在线播放| 国产精品一区二区在线不卡| 欧美 日韩 精品 国产| av福利片在线观看| 久久午夜综合久久蜜桃| 老熟女久久久| 婷婷色麻豆天堂久久| 免费观看无遮挡的男女| 99久久精品一区二区三区| 久久国产乱子免费精品| 丝袜脚勾引网站| 国产成人freesex在线| 久久久久久久久大av| 国产 精品1| 亚洲国产精品999| 亚洲国产av新网站| 99热全是精品| 欧美日本中文国产一区发布| 我的女老师完整版在线观看| 亚洲成人一二三区av| 最近中文字幕2019免费版| 午夜久久久在线观看| 亚洲精品456在线播放app| 久久国产精品大桥未久av | 另类亚洲欧美激情| 色婷婷av一区二区三区视频| 下体分泌物呈黄色| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频 | 26uuu在线亚洲综合色| 亚洲四区av| a级片在线免费高清观看视频| 国内揄拍国产精品人妻在线| 国产精品久久久久久精品电影小说| 国产伦在线观看视频一区| 国产伦精品一区二区三区视频9| 亚洲精品日本国产第一区| 欧美+日韩+精品| 99热网站在线观看| 亚洲欧美一区二区三区国产| 黑丝袜美女国产一区| 97在线视频观看| 亚洲精品国产av蜜桃| 99视频精品全部免费 在线| 国产精品免费大片| 丁香六月天网| 日韩中字成人| 黄色视频在线播放观看不卡| 免费av不卡在线播放| 在线观看三级黄色| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 久久97久久精品| 在线观看一区二区三区激情| av福利片在线| 韩国av在线不卡| 日韩一区二区视频免费看| 免费观看av网站的网址| 99久久精品热视频| 免费观看的影片在线观看| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| 91午夜精品亚洲一区二区三区| 精品午夜福利在线看| 春色校园在线视频观看| 极品教师在线视频| 亚洲图色成人| 免费黄网站久久成人精品| 在线亚洲精品国产二区图片欧美 | 天美传媒精品一区二区| 午夜福利视频精品| 午夜老司机福利剧场| 女性被躁到高潮视频| 日韩 亚洲 欧美在线| 亚洲欧美日韩另类电影网站| 99热这里只有精品一区| 国产探花极品一区二区| 久久免费观看电影| 国产精品三级大全| 丝袜脚勾引网站| a级一级毛片免费在线观看| 午夜福利网站1000一区二区三区| 国产国拍精品亚洲av在线观看| av不卡在线播放| 日本91视频免费播放| 久久久久久久久久人人人人人人| 久久精品久久久久久噜噜老黄| 亚洲高清免费不卡视频| 久久久欧美国产精品| 丰满人妻一区二区三区视频av| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 熟女人妻精品中文字幕| 三级国产精品欧美在线观看| 性色avwww在线观看| 国产探花极品一区二区| 欧美性感艳星| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| 国产精品99久久99久久久不卡 | 一区二区三区乱码不卡18| 赤兔流量卡办理| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久电影| 啦啦啦中文免费视频观看日本| 成年女人在线观看亚洲视频| 各种免费的搞黄视频| 18禁动态无遮挡网站| 天天躁夜夜躁狠狠久久av| 性色avwww在线观看| 久久鲁丝午夜福利片| 久久久精品94久久精品| 亚洲三级黄色毛片| 777米奇影视久久| 九九爱精品视频在线观看| 街头女战士在线观看网站| 亚洲综合精品二区| 人体艺术视频欧美日本| 99久久综合免费| 欧美+日韩+精品| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| 高清视频免费观看一区二区| 国产高清国产精品国产三级| 国产午夜精品一二区理论片| 午夜久久久在线观看| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| a级毛片免费高清观看在线播放| 麻豆乱淫一区二区| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 国产色爽女视频免费观看| 亚洲av欧美aⅴ国产| 久久久国产一区二区| 国产高清有码在线观看视频| 成年人午夜在线观看视频| 免费看日本二区| 青春草视频在线免费观看| 日韩一区二区视频免费看| 亚洲国产日韩一区二区| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区免费开放| 18禁在线播放成人免费| 好男人视频免费观看在线| 曰老女人黄片| 精品人妻一区二区三区麻豆| 久久毛片免费看一区二区三区| 成人免费观看视频高清| 交换朋友夫妻互换小说| 日本wwww免费看| 少妇裸体淫交视频免费看高清| 婷婷色综合www| 久久精品久久久久久久性| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 久久 成人 亚洲| 久久久a久久爽久久v久久| 汤姆久久久久久久影院中文字幕| 观看美女的网站| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 欧美日韩亚洲高清精品| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 成人二区视频| 色网站视频免费| 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 中文字幕av电影在线播放| 欧美+日韩+精品| 丰满迷人的少妇在线观看| 99久久精品一区二区三区| 久久久国产一区二区| 久久久久久久亚洲中文字幕| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区 | 欧美日韩一区二区视频在线观看视频在线| 夜夜骑夜夜射夜夜干| 黑丝袜美女国产一区| 大片免费播放器 马上看| av有码第一页| 男男h啪啪无遮挡| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 91精品国产国语对白视频| 黄色配什么色好看| 青春草亚洲视频在线观看| 久久久a久久爽久久v久久| 日本与韩国留学比较| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 亚洲精品视频女| 亚洲成人手机| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 我要看黄色一级片免费的| 日韩在线高清观看一区二区三区| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 久久女婷五月综合色啪小说| 青春草亚洲视频在线观看| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄| 久热久热在线精品观看| 久久久亚洲精品成人影院| 精品国产国语对白av| a级片在线免费高清观看视频| www.色视频.com| 一级黄片播放器| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 免费在线观看成人毛片| 久久女婷五月综合色啪小说| 色哟哟·www| 欧美成人午夜免费资源| 两个人的视频大全免费| 综合色丁香网| av专区在线播放| 一区二区av电影网| 免费在线观看成人毛片| 国产欧美亚洲国产| 日韩三级伦理在线观看| 春色校园在线视频观看| 午夜福利,免费看| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 我的老师免费观看完整版| 卡戴珊不雅视频在线播放| 欧美激情国产日韩精品一区| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 欧美 亚洲 国产 日韩一| 我的老师免费观看完整版| 乱系列少妇在线播放| 久久久久久久久久久久大奶| 久久99热6这里只有精品| 少妇人妻一区二区三区视频| 九九爱精品视频在线观看| 色婷婷av一区二区三区视频| 国产色婷婷99| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院 | 91午夜精品亚洲一区二区三区| 99热6这里只有精品| 日产精品乱码卡一卡2卡三| a 毛片基地| 久久久久久久久久人人人人人人| 日日爽夜夜爽网站| 久久久久久久久久成人| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片| 97在线人人人人妻| 日本与韩国留学比较| 久久久久精品性色| 亚洲欧美一区二区三区黑人 | 狠狠精品人妻久久久久久综合| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 国产成人精品福利久久| 综合色丁香网| 熟女av电影| 亚洲内射少妇av| 91成人精品电影| 日本午夜av视频| 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 亚洲国产日韩一区二区| 天堂8中文在线网| 久久久欧美国产精品| 九色成人免费人妻av| 国产日韩欧美亚洲二区| 国产精品成人在线| 国产69精品久久久久777片| 两个人的视频大全免费| 建设人人有责人人尽责人人享有的| 3wmmmm亚洲av在线观看| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 91成人精品电影| 高清av免费在线| a级片在线免费高清观看视频| 国产高清有码在线观看视频| av.在线天堂| 久久久久国产精品人妻一区二区| av福利片在线| 免费少妇av软件| 噜噜噜噜噜久久久久久91| 免费大片黄手机在线观看| 国产在视频线精品| 日韩人妻高清精品专区| 婷婷色av中文字幕| 日本wwww免费看| 男女无遮挡免费网站观看| 一级二级三级毛片免费看| 国产成人freesex在线| 亚洲国产最新在线播放| 伊人亚洲综合成人网| 国产精品久久久久久精品古装| 中文欧美无线码| 另类精品久久| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 亚洲精品日韩av片在线观看| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 欧美成人精品欧美一级黄| 国产欧美日韩综合在线一区二区 | 永久网站在线| 国产精品久久久久久精品电影小说| 日本免费在线观看一区| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 大片免费播放器 马上看| 最近中文字幕2019免费版| 亚洲综合精品二区| 中文字幕人妻丝袜制服| 在线 av 中文字幕| 国产成人精品无人区| 亚洲精品日本国产第一区| 天天操日日干夜夜撸| 国产精品久久久久久精品电影小说| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 国产在线男女| 黑人猛操日本美女一级片| 欧美97在线视频| 伦理电影大哥的女人| 啦啦啦中文免费视频观看日本| 亚洲久久久国产精品| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| 成人影院久久| 欧美97在线视频| 777米奇影视久久| 美女中出高潮动态图| 久久久久视频综合| 国产高清三级在线| 777米奇影视久久| 青春草视频在线免费观看| 久久久国产一区二区| 午夜免费观看性视频| 午夜久久久在线观看| 纯流量卡能插随身wifi吗| 婷婷色综合大香蕉| 中文字幕制服av| 少妇人妻久久综合中文| 丁香六月天网| 日韩三级伦理在线观看| 国产色婷婷99| 黑人猛操日本美女一级片| 欧美老熟妇乱子伦牲交| 精品少妇久久久久久888优播| 久久鲁丝午夜福利片| 国产免费一区二区三区四区乱码| 91午夜精品亚洲一区二区三区| 丝瓜视频免费看黄片| 亚洲精品国产成人久久av| 国产男女超爽视频在线观看| 99热全是精品| 最近最新中文字幕免费大全7| 人妻一区二区av| 大香蕉97超碰在线| 一区在线观看完整版| 欧美97在线视频| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠久久av| 久久精品国产a三级三级三级| 亚洲精品国产色婷婷电影| 国产av精品麻豆| 三级国产精品片| 我的女老师完整版在线观看| 午夜福利,免费看| 国产精品熟女久久久久浪| 日韩中字成人| 国产av一区二区精品久久| 一区二区三区免费毛片| 日日啪夜夜撸| 国产深夜福利视频在线观看| 国产亚洲最大av| 亚洲成人av在线免费| 久久精品久久久久久久性| 亚洲国产欧美在线一区| 亚洲中文av在线| 亚洲精品第二区| 中国三级夫妇交换| 亚洲欧美日韩东京热| 精品人妻熟女av久视频| 亚洲国产精品专区欧美| 国产伦在线观看视频一区| 老司机影院成人| 亚洲欧洲国产日韩| 91精品一卡2卡3卡4卡| 久久国内精品自在自线图片| 观看av在线不卡| 80岁老熟妇乱子伦牲交| 亚洲va在线va天堂va国产| 久久国产乱子免费精品| 午夜免费观看性视频| 午夜老司机福利剧场| 少妇人妻一区二区三区视频| 欧美成人精品欧美一级黄| 97在线视频观看| 高清午夜精品一区二区三区| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 国产淫片久久久久久久久| 最新中文字幕久久久久| 在线播放无遮挡| 日韩亚洲欧美综合| 搡女人真爽免费视频火全软件| 熟女av电影| 99久国产av精品国产电影| 国内揄拍国产精品人妻在线| 欧美老熟妇乱子伦牲交| 女性被躁到高潮视频| 国产一区二区在线观看av| 欧美人与善性xxx| 熟女人妻精品中文字幕| 成人国产av品久久久| 亚洲在久久综合| 麻豆成人午夜福利视频| 极品人妻少妇av视频| 亚洲久久久国产精品| 高清欧美精品videossex| 国产极品天堂在线| 国产欧美日韩一区二区三区在线 | 啦啦啦视频在线资源免费观看| 制服丝袜香蕉在线|