• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved theoretical procedure for the pore-size analysis of activated carbon by gas adsorption☆

    2018-05-26 07:29:24GuodongWangJianchunJiangKangSunJianzhongWu

    Guodong Wang ,Jianchun Jiang *,Kang Sun ,Jianzhong Wu **

    1 College of Chemical Engineering,Nanjing Forestry University,Nanjing 210037,China

    2 Department of Chemical and Environmental Engineering,University of California,Riverside,CA 92521,USA

    3 Institute of Chemical Industry of Forest Products,Chinese Academy of Forestry,Nanjing 210042,China

    1.Introduction

    Amorphous porous carbon,also known as activated carbon,plays an important role in diverse applications in chemical engineering.Thanks to its large specific surface area and low production cost,activated carbon is promising as a viable high-capacity adsorbent for natural gas storage.Industrial applications of adsorbed natural gas(ANG)are critically dependent on the storage capacity of the adsorbent at ambient temperature and moderate pressure[1,2].The adsorption capacity of activated carbon varies significantly due to the variety ofcarbon sources and porous structures.Pore-size analysis is useful for the rational selection of different kinds of activated carbon and other amorphous materials with good performance[3,4].

    The adsorption capacity of activated carbons varies widely depending on the activation process.Gas adsorption has been considered as the primary method for the characterization of the pore-size distribution.Conventional methods are often concerned with materials surface area based on the Brunauer–Emmett–Teller(BET)adsorption model or,more recently,the classical density functional theory(CDFT).While much attention has been given to the reliability of the BET or CDFT predictions of specific surface area,much less is known on the usefulness of these methods for predicting the pore-size distribution and adsorption capacity at conditions different from materials characterization.While both BET and DFT method shave been routinely used forcharacterization of porous materials,rarely questioned are the accuracy of the theoretical models,as wellas the related numerical procedures,fordetermining the pore-size distributions.Furthermore,little is known on the reliability of traditional theoretical methodology,the mean- field approximation in particular,to describe gas-adsorption isotherms[5].

    Previous efforts to improve the theoretical procedure for materials characterization can be classified into two categories.On the one hand,one may improve the thermodynamic model to describe adsorption isotherms by using novel DFT functionals[6–9],a better equation of state for bulk systems[10–12],or a more accurate potential to represent gas–gas and gas–substrate interactions[13].On the other hand,one may take into consideration multi-aspects of porous materials including the surface defects[14,15],various kinds of pore geometries[16,17],and properties related to the intrinsic amorphous nature of porous materials[18,19].

    In this paper,we calibrate four different versions of free-energy density functionals that are potentially useful for the pore-size analysis of amorphous porous materials.Using molecular simulation and experimental data as a benchmark,our objective is to identify a reliable computation procedure to predict gas adsorption capacity based on the material characterization model.Based on the slit-pore model to represent the gas properties under confinement,the theoretical procedure may help minimize experimental efforts in material synthesis and can be used for both process design and materials discovery.

    2.Samples and Experimental Routine

    Natural gas is a mixture of low molecular weighthydrocarbons with CH4as its major component.The storage capacity of natural gas is often calibrated with CH4adsorption measurements.In this work,we used three activated-carbon samples,labeled as AC1,AC2 and AC3,all from Fujian Yuanli Active Carbon Co.,Ltd.Those carbon samples are degassed at10?5kPa and 623 K prior to gas adsorption experiments.The adsorption capacities of these samples for pure CH4and pure CO2at 298 K are measured using Hiden IGA-2 with maximum maintain time of 0.5 h for equilibrium at each pressure.Adsorption isotherms are obtained within the pressure range from 0.2 MPa to 2 MPa.More adsorption isotherms,corresponding to samples AC4~AC7(A,B,C and Vulcan),are available from the literature[20].

    3.Molecular Model and Numerical Procedure

    3.1.Molecular model

    To simulate gas adsorption in activated carbon,we use the slit-pore model for the adsorbent and the Lennard–Jones(LJ)model for gas molecules.The diameters of gas molecules(σff)are 0.364 and 0.381 nm,and the potential parameters(εff)are 236.15 and 148.10 K for CO2and CH4,respectively[21].As CO2molecules possess significant quadruples[22],the LJ parameters are fitted with the vapor–liquid coexistent densities at 298 K using the MBWR equation of state[23].Inside the slit pore,each gas molecule experiences an external potential represented by the Steele 10-4-3 model[24].The parameters for describing the gas–solid interactions are determined by the Lorentz–Berthelot rules[25].

    3.2.Adsorption integral equation(AIE)

    The adsorption integral equation(AIE)relates the overall gas adsorption amount of an amorphous material to that of the model slit pores and the pore-size distribution function[26]:

    where L denotes the overall adsorption isotherm;v represents the kernel matrix;Pjis the gas pressure for the jthexperimental data point;f stands for the normalized pore-size distribution function.Typically,the pore-size distribution function has a hypothetical form(the B-spline function[27]).

    In numerical implementation of AIE,Eq.(1)can be casted into the matrix form,L=A f,where A is the operator after the discretization of AIE.Using the rectangle discretization method[28],we can calculate A through A= ΔH ·v,where ΔH is the step length for the change in the pore width.Alternatively,the integration in AIE can be evaluated with the trapezoid method or the Simpson method.

    To determine the adjustable parameters in the B-spline function,we minimize the objective function that is defined as the square deviation of the experimental and theoretical results for the gas adsorption amount:

    Although the overall adsorption isotherm is projected into an operator equation,which takes the linear least square form,we still have a non-linear optimization problem.The size of the kernel matrix is flexible,without limitations induced by variable dependence,namely the distribution value of each pore width is effective even the matrix is in underdetermined.

    With the pore-size distribution function,we can calculate the average deviation of the experimental isotherm Lexpfrom the corresponding results from Eq.(1),Lcal,

    where n is the number of experimental points in the adsorption measurements.

    3.3.Density functionals

    The classical density functional theory(DFT)has been recognized as being more rigorous than the BET method to describe gas adsorption isotherms[29,30].However,the performance of DFT calculations is highly dependent on the selection of the free-energy functional[31],which connects thermodynamic properties with the inhomogeneous distribution of the gas molecules inside the pore(viz.,density profiles).The free-energy functional typically includes two parts,an ideal-gas contribution and excess arising from intermolecular interactions.Whereas the former is exactly known,the excess contribution can only be approximated for most systems of practical concern.

    For systems containing simple gas molecules like CH4or CO2,the excess free-energy functional can be divided into a hard-sphere contribution to account for intermolecular repulsions and a perturbation for describing van der Waals attractions[32].The modified fundamental measure theory(MFMT)[33]provides an accurate representation of the hard-sphere free energy.From a practical perspective,the main issue is thus on the accuracy of the attraction part of the excess Helmholtz energy.Toward that end,the mean- field approximation(MFA)represents a common choice.Like the van der Waals equation of state,MFA provides only qualitative predictions or at most semiquantitative for most practical applications.In this work,we consider three additional versions of DFT methods recently proposed in this literature.For convenience,these functionals are labeled as MFA[34],WDA-Yu[7],WDA-Liu[8]and FMSA[6].Brie fly,these excess Helmholtz free energy functionals are given by

    MFA:

    where r stands for molecular position;uattis the attractive component of the LJ pair potential(uLJ)defined according to the Barker–Henderson(BH)theory for the bulk system:

    WDA:

    The mean- field functional in Eq.(6),FMFA[ρ(r)],is the same as that from Eq.(4);ˉρ(r)stands for the weighted density profile;?coris the Helmholtz free energy density induced by correlation interaction.In the version of non-local DFT proposed by Yu[7],the excess Helmholtz energy density is volumetric as given by Eq.(8).For the functional proposed by Liu et al.[8],designated as WDA-Liu,the excess Helmholtz energy density per molecule is given by

    where,β=1/(kBT),T isthe absolute temperature;ρbis bulk density;V is the system volume.Different from the original version of DFT proposed by Yu[7],we used the excess Helmholtz free energy for bulk LJ fluids()from the MBWR equation of state[23].The excess Helmholtz free energy for hard-sphere fluid in the bulk system()is calculated from the Carnahan–Starling equation of state[35].

    Tang and Wu[6]indicated that the LJ potential could be reproduced analytically by a double-Yukawa potential.Based on the first-order mean-spherical approximation(FMSA)[36],we are able to obtain the first and the second-order direct correlation functions(and.Subsequently,the excess Helmholtz free energy functional due to van der Waals' attraction can be determined through functional expansion:FMSA:

    Whereas the numerical performance of the aforementioned functionals has been carefully examined before[37,38],we are not aware of any previous publication to calibrate their applications to materials characterization.In this work,we attempt to incorporate these functionals into conventional mathematical procedures for the analysis of pore-size distributions and test their performance to predictgas adsorption capacity.We hope that the numerical procedure will help close the gap between materials characterization and rational design and selection for targeted applications.

    3.4.Grand canonical Monte Carlo(GCMC)

    The GCMC molecular simulation was executed with Towhee 7.0.4[39].The input chemical potential,μLJ,can be related to the bulk temperature and pressure from the MBWR equation of state.The force field for gas molecules is based on the OPLS-AA force field with Towhee_ff Version 13[40].Each simulation run consists of 106Monte Carlo steps including particle insertion,deletion and displacement in both equilibrium and production stages.The parallel computation was implemented on the platform of Python packages to reduce the computational cost[41].

    4.Results and Discussions

    4.1.Calibration with the slit-pore model

    We first calculated the equilibrium density profiles of gas molecules in slitpores and the average density throughρa(bǔ)=((z)d z)/H,where H is the pore width.The Gibbs excess adsorption is related to the difference between the average density inside the pore and that in the bulk,v=ρa(bǔ)?ρb.

    Fig.1.CO2 adsorption in a single slit pore at 298 K with the pore width H=1.6 nm(a),2.1 nm(b)and 2.6 nm(c).Different versions of the classical DFT method are explained in the main text.

    Fig.1 presents the theoretical results from GCMC simulation and from four versions of DFT discussed above.Given a molecular model,GCMC results are exact and thus provide a numerical basis to validate the accuracy of different DFT methods.Fig.1 indicates that two WDA methods,especially WDA-Yu,predict most accurate CO2adsorption isotherms in comparison with the GCMC data.Significant errors were found in both MFA and FMSA.MFA underestimates the adsorption capacity suggesting that correlation effects in general favor stronger gas adsorption.

    Fig.2 shows kernels constructed from different versions of DFT for CO2adsorption isotherms over a broad range of pressure(0.2~2.0 MPa).The theoretical results were obtained for slit pores with the pore width varying from 0.65 nm to 5.00 nm.Compared with the GCMC data,MFA underestimates the adsorption isotherm over the entire range ofthe pore width considered in this work,By contrast,predictions from WDA-Yu are accurate at all conditions.

    Fig.3 presents the CH4adsorption isotherms in individual slit pores predicted by the four versions of the DFT methods in comparison with GCMC data.Whereas the results from WDA-Yu and WDA-Liu are close to each other and both are in good agreement with GCMC data,discrepancies are noticeable for both MFA and FMSA predictions.As the pore width increases,the difference among the four DFT methods diminishes gradually,and all agree with GCMC reasonably well.

    Fig.4 shows the kernels for CH4adsorption isotherms in slit pores over a broad range of the pore widths and pressures.Here,different panels correspond to results calculated from four DFT methods and from GCMC simulation.The CH4kernels from different theoretical procedures have a similar form and may have little effect when the local gas density is close to the bulk value.At 298 K,CH4is way beyond its critical temperature,but CO2is near its critical temperature.As a result,the MFA predictions for CO2adsorption are apparently less accurate than those for CH4in comparison with GCMC data[37].By contrast,the WDA-Yu method compares well with the GCMC results for both systems.

    To construct an effective kernel for porous analysis,we use the local adsorption isotherms in a series of slit pores.The kernel is crucial for both the numerical solution of AIE and adsorption capacity prediction.Apparently,the required kernels are either hill-like[20](Figs.2 and 4)or slope-like showing a monotonically declining surface[42].For a specific material,the kernel shape is dependent on the target range of the pore width.The existing analysis techniques for kernel construction are diverse,including backward error analysis in term of the theoretical error bound scale[43],the kernel-size analysis with different ratios of rows and columns in the kernel matrix[44],as well as the smoothness comparison of the surface[18].Although the kernel is typically constructed based on certain prior heterogeneity hypothesis of the solid surface,the assumptions may have remarkable influence on pore characterization results[44].The effective part in the kernel is hard to quantitatively distinguish after the exploration of the minimum pore width probed by gas molecules[25].According to the statistic distributed properties,we propose the pore width interval between 0.65 and 2.30 nm as the feature pore width range(FPWR).The range of pore sizes corresponds to the major part of the peak on the surface(Figs.2 and 4),rather than~100 nm scale recommended by IUPAC.Compared with FPWR,the distribution value corresponding to the rest part of the PSD has less physical meaning because the reflection of porous structure plays a compensate role in numerical fitting of adsorption isotherms.

    Fig.2.Kernel of CO2 adsorption calculated from different computational methods.(a)MFA,(b)WDA-Yu,(c)GCMC;(d)WDA-Liu;(e)FMSA.

    Fig.3.CH4 adsorption in a single slit pore at 298 K with the pore width=1.6 nm(a),2.1 nm(b)and 2.6 nm(c).

    Fig.4.Kernel of CH4 adsorption calculated from different computational methods.(a):MFA,(b):WDA-Yu,(c):GCMC;(d):WDA-Liu;(e):FMSA.

    Table 1 Average deviation(%)on fitting CO2 isotherms

    DFT is able to efficiently yield a smooth curve for the local isotherm in individual slit pores[37].The computational cost for kernel construction can be further reduced by numerical interpolation of the local isotherm.The deficiency in using the GCMC method for pore-size analysis is not only due to the computational time for calculating local adsorption isotherms in individual single-slit pores,but also due to the lack of mathematics trick that can be adopted for construction of the required kernel with fluctuated surfaces.

    4.2.Pore-size analysis

    Fig.5.The pore size distribution(PSD)of seven samples obtained from different computational methods.Panels(a)to(g)correspond to carbon samples AC1 to AC7,respectively.

    In order to re flect the porous structure of activated carbon,we constructed the pore-size distribution(PSD)model for several representative samples by fitting the adsorption isotherm with AIE[45].The average fitting deviation can be treated as an important criterion in forward error analysis.The PSD analysis required from fitting N2isotherm at 77 K has been proved unreliable because small pores are impenetrable by gas molecules at low temperature,leading to underestimation of the probed PSD of samples[46].Pore-size analysis with CO2isotherm at 298 K obviates some of these issues[20].

    According to the forward erroranalysis,the performance of different methodologies is compared with their average deviations in experimental isotherm fitting.In numerical implementation,we discretized AIE using the trapezoid method.The average deviation between experimental CO2isotherms for seven activated carbon samples and the fitted isotherms with the WDA-Yu functional and the related standard deviations are 90.0%and 91.2%,respectively,much smaller than those from MFA calculations(Table 1).The good fitting implies that the WDA-Yu functional is sufficiently accurate for the pore-size analysis.

    In the following,we use only the WDA-Yu functional for the calibration of CO2isotherm fitting.It should be noted that the numerical solution of AIE is also affected by the discretization methods.With the WDA-Yu functional for kernel building,we further compare the average deviation in CO2isotherm fitting for seven activated carbon samples using three discretization methods,viz.,trapezoid rule,rectangle and Simpson methods.The numerical deviations are 1.08,5.36 and 8.68%;and their standard deviations are 2.3,13.7 and 22.4,respectively.Notably,the trapezoid method is the most suitable for discretization of AIE.

    Fig.6.The pore size distribution(PSD)of seven samples obtained from different discretization methods.Panels(a)to(g)correspond to carbon samples AC1 to AC7,respectively.For AC7,the results from the Simpson method are omitted due to large deviation in isotherm fitting.

    Figs.5 and 6 show that the FPWR part in PSD exhibits a smooth form,less sensitive to the adopted numerical procedure and thus is more representative for pore-size characterization.While different theoretical methods predict remarkably different PSDs for samples within the pore size ranging from 0.65 nm to 5.00 nm(ΔH=0.05 nm),the distribution value within FPWR appears close to each other(Fig.5).Moreover,the FPWR parts are less affected by the discretization methods,while the rest of PSD seems sensitive to the adopted theoretical procedures(Fig.6).

    4.3.Optimal numerical procedure

    The representativeness of the PSD function obtained from different theoretical methods can also be validated with their predictive capability for gas adsorption[20].The PSD model can be used to calculate CH4adsorption in different adsorbents discussed above at arbitrary thermodynamic conditions.Table 2 presents the average deviations between experimental and theoretical isotherms.The standard deviation for WDA-Yu,FMSA,MFA,WDA-Liu and GCMC are 3.2,5.8,30.0,3.3 and 2.7%,respectively.Among different DFT methods,the WDA-Yu functional yields the smallest mean and standard deviations.The theoretical procedure is able to provide a faithful representation of the PSD function and thus promising for large-scale screening according to the pore-size analysis of carbon porous materials.

    Table 2 Average deviation(%)of CH4 adsorption capacity predicted from different theoretical methods

    A similar procedure has been used to validate the discretization method for AIE.Table 3 shows that the trapezoid method gives the smallest mean on predictive deviation for the seven carbon samples.The standard deviations of trapezoid,rectangle and Simpson discretization methods are 3.2,7.3 and 15.6%,respectively.If the largest deviation for AC7 is omitted,the mean deviation values for the above methods are 7.59,8.44 and 7.82%,respectively.The corresponding standard deviations are 2.9,2.8 and 2.9%,suggesting rather limited effect of the discretization method.

    Table 3 Average deviation(%)of CH4 adsorption capacity predicted from different discretization methods

    We can verify the faithfulness of FPWR in PSD from theoretical predictions of gas adsorption as well.Understandably,different theoretical methods lead to different pore size distributions in FPWR.Likewise,a similar form of FPWR leads to similar predictions.The details in FPWR of required PSD are truly important for the pore-size analysis as well as for the predictive calculation of adsorption capacity.As a preliminary hypothesis,the interval of FPWR is still blurry,which might be fixed when more samples are available.

    5.Conclusions

    In this paper,we discussed the accuracy and reliability of several theoretical procedures for the analysis of gas adsorption in various porous carbons.With the predictive capability as a benchmark,we show that the weighted-density approximation by Yu[6],here referred to as WDA-Yu,in combination with the trapezoid discretization ofthe adsorption integral equation(AIE),yields more faithful representation of the pore-size distribution(PSD)of amorphous carbon materials.The entire range of pore width can be divided into two parts,the feature pore width range(FPWR)with pore width approximately ranging from 0.65 to 2.30 nm and the compensate part.The distribution in FPWR is proved to be more representative for the analysis of activated carbon samples.The theoretical procedure presented in this work can be directly applied to characterization of other amorphous porous materials and for quantitative predictions of methane adsorption capacity based on PSD.

    Acknowledgements

    We give thanks to Professor Songlin Zuo in Nanjing Forestry University,Professor Xianlun Deng and Associate Professor Haitao Huang in National Engineering and Technology Research Center of Forest Chemistry Industry,China,for their kind help in review advices and activated carbon samples characterization.We also feel gratitude for Dr.Jia Fu,Dr.Yun Tian and Dr.Cheng Lian atthe University of California,Riverside for their constructive discussions,isotherm fitting and DFT codes.This work is implemented on the super computational center of Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences.

    [1]M.E.Casco,M.Martínez-Escandell,K.Kaneko,J.Silvestre-Albero,F.Rodríguez-Reinoso,Very high methane uptake on activated carbons prepared from mesophase pitch:a compromise between microporosity and bulk density,Carbon 93(2015)11–21.

    [2]M.E.Casco,M.Martínez-Escandell,E.Gadea-Ramos,K.Kaneko,J.Silvestre-Albero,F.Rodríguez-Reinoso,High-pressure methane storage in porous materials:are carbon materials in the pole position?Chem.Mater.27(3)(2015)959–964.

    [3]D.Cao,J.Wu,Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide,Carbon 43(7)(2005)1364–1370.

    [4]G.Han,X.Wang,Investigation on characteristics of liquid self-diffusion in slit nanopores using simple quasicrystal model of liquid,Chin.J.Chem.Eng.23(6)(2015)897–904.

    [5]M.Thommes,K.Cychosz,Physical adsorption characterization of nanoporous materials:progress and challenges,Adsorption 20(2)(2014)233–250.

    [6]Y.Tang,J.Wu,Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function,Phys.Rev.E 70(1)(2004)11201.

    [7]Y.Yu,A novel weighted density functional theory for adsorption, fluid–solid interfacial tension,and disjoining properties of simple liquid films on planar solid surfaces,J.Chem.Phys.131(2)(2009)24704.

    [8]Y.Liu,H.Liu,Y.Hu,J.Jiang,Density functional theory for adsorption of gas mixtures in metal-organic frameworks,J.Phys.Chem.B 114(8)(2010)2820–2827.

    [9]M.Zeng,Y.Tang,J.Mi,C.Zhong,Improved direct correlation function for density functional theory analysis of pore size distributions,J.Phys.Chem.C 113(40)(2009)17428–17436.

    [10]L.A.Mitchell,B.J.Schindler,G.Das,M.C.dos Ramos,C.McCabe,P.T.Cummings,M.D.LeVan,Prediction of n-alkane adsorption on activated carbon using the SAFT-FMTDFT approach,J.Phys.Chem.C 119(3)(2015)1457–1463.

    [11]G.Shen,X.Lu,X.Ji,Modeling of molecular gas adsorption isotherms on porous materials with hybrid PC-SAFT-DFT,Fluid Phase Equilib.382(2014)116–126.

    [12]Z.Li,Z.Jin,A.Firoozabadi,Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory,SPE J.19(6)(2014)1096–1109.

    [13]S.Patchkovskii,T.Heine,Quantized liquid density-functional theory for hydrogen adsorption in nanoporous materials,Phys.Rev.E 80(3)(2009)31603.

    [14]J.Jagiello,J.P.Olivier,2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation,Carbon 55(2013)70–80.

    [15]J.Jagiello,J.P.Olivier,Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation,Adsorption 19(2)(2013)777–783.

    [16]B.Peng,Y.Yu,A density functional theory for Lennard–Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials,Langmuir 24(21)(2008)12431–12439.

    [17]B.Peng,Y.Yu,A density functional theory with a mean- field weight function:applications to surface tension,adsorption,and phase transition of a Lennard–Jones fluid in a slit-like pore,J.Phys.Chem.B 112(48)(2008)15407–15416.

    [18]J.Landers,G.Y.Gor,A.V.Neimark,Density functional theory methods for characterization of porous materials,Colloids Surf.A Physicochem.Eng.Asp.437(2013)3–32.

    [19]G.Y.Gor,M.Thommes,K.A.Cychosz,A.V.Neimark,Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption,Carbon 50(4)(2012)1583–1590.

    [20]M.Sweatman,N.Quirke,Characterization of porous materials by gas adsorption at ambienttemperatures and high pressure,J.Phys.Chem.B 105(7)(2001)1403–1411.

    [21]X.Shao,Z.Feng,R.Xue,C.Ma,W.Wang,X.Peng,D.Cao,Adsorption of CO2,CH4,CO2/N2and CO2/CH4in novel activated carbon beads:preparation,measurements and simulation,AIChE J.57(11)(2011)3042–3051.

    [22]T.Ihara,T.Furusato,S.Kameda,T.Kiyan,S.Katsuki,M.Hara,H.Akiyama,Initiation mechanism of a positive streamer in pressurized carbon dioxide up to liquid and supercritical phases with nanosecond pulsed voltages,J.Phys.D.Appl.Phys.45(7)(2012)75204.

    [23]J.Johnson,J.Zollweg,K.E.Gubbins,The Lennard–Jones equation of state revisited,Mol.Phys.78(3)(1993)591–618.

    [24]D.D.Do,Adsorption analysis:equilibria and kinetics,Imperial College Press,London,1998.

    [25]C.Lastoskie,K.E.Gubbins,N.Quirke,Pore size heterogeneity and the carbon slit pore:a density functional theory model,Langmuir 9(10)(1993)2693–2702.

    [26]K.Wang,D.D.Do,Characterizing the micropore size distribution of activated carbon using equilibrium data of many adsorbates at various temperatures,Langmuir 13(23)(1997)6226–6233.

    [27]J.Jagiello,Stable numerical solution of the adsorption integral equation using splines,Langmuir 10(8)(1994)2778–2785.

    [28]X.Shao,X.Zhang,W.Wang,Comparison of density functional theory and molecular simulation methods for pore size distribution of mesoporous materials,Acta Phys.-Chim.Sin.19(6)(2003)538–542.

    [29]J.Wu,Variational methods in molecular modeling,Springer,Singapore,2017.

    [30]J.Wu,Density functional theory for chemical engineering:from capillarity to soft materials,52(3)(2006)1169–1193.

    [31]Y.Tian,J.Wu,Differential heat of adsorption and isosteres,Langmuir 33(4)(2017)996–1003.

    [32]Y.Liu,Application of density functional theory in MOF material and DNA denaturation(Ph.D.Thesis)East China University of Science Technology,China,2012.

    [33]Y.Yu,J.Wu,Structures of hard-sphere fluids from a modified fundamental-measure theory,J.Chem.Phys.117(22)(2002)10156–10164.

    [34]P.I.Ravikovitch,Characterization of nanoporous materials by gas adsorption and density-functional theory(Ph.D.Thesis)Yale University,United States,1998.

    [35]N.F.Carnahan,K.E.Starling,Equation of state for nonattracting rigid spheres,J.Chem.Phys.51(51)(1969)635–636.

    [36]Y.Tang,Z.Tong,C.Y.Lu,Analytical equation of state based on the Ornstein–Zernike equation,Fluid Phase Equilib.134(1–2)(1997)21–42.

    [37]J.Fu,Y.Liu,Y.Tian,J.Wu,Density functional methods for fast screening of metal-organic frameworks for hydrogen storage,J.Phys.Chem.C 119(10)(2015)5374–5385.

    [38]J.Fu,Y.Tian,J.Wu,Classical density functional theory for methane adsorption in metal-organic framework materials,AIChE J.61(9)(2015)3012–3021.

    [39]M.G.Martin,MCCCS towhee:a tool for Monte Carlo molecular simulation,Mol.Simul.39(14–15)(2013)1212–1222.

    [40]J.Pranata,S.G.Wierschke,W.L.Jorgensen,OPLS potential functions for nucleotide bases.Relative association constants of hydrogen-bonded base pairs in chloroform,J.Am.Chem.Soc.113(8)(1991)2810–2819.

    [41]L.Dalcín,R.Paz,M.Storti,J.D'Elía,MPI for python:performance improvements and MPI-2 extensions,J.Parallel Distrib.Comput.68(5)(2008)655–662.

    [42]C.Sitprasert,Z.Zhu,F.Wang,V.Rudolph,A multi-scale approach to the physical adsorption in slit pores,Chem.Eng.Sci.66(22)(2011)5447–5458.

    [43]G.Wang,Y.Tian,J.Jiang,J.Wu,Multimodels computation for adsorption capacity of activated carbon,Adsorpt.Sci.Technol.(2017),https://doi.org/10.1177/0263617417705472.

    [44]G.Davies,N.Seaton,V.Vassiliadis,Calculation of pore size distributions of activated carbons from adsorption isotherms,Langmuir 15(23)(1999)8235–8245.

    [45]S.H.Madani,L.H.Diaz,M.J.Biggs,P.Pendleton,Uncertainty in pore size distribution derived from adsorption isotherms:II.Adsorption integral approach,Microporous Mesoporous Mater.214(2015)217–223.

    [46]S.H.Madani,C.Hu,A.Silvestre-Albero,M.J.Biggs,F.Rodríguez-Reinoso,P.Pendleton,Pore size distributions derived from adsorption isotherms,immersion calorimetry,and isosteric heats:a comparative study,Carbon 96(2016)1106–1113.

    午夜亚洲福利在线播放| 99久久久亚洲精品蜜臀av| 最好的美女福利视频网| 麻豆国产97在线/欧美| 成人无遮挡网站| 校园春色视频在线观看| 老司机深夜福利视频在线观看| 1000部很黄的大片| 国产大屁股一区二区在线视频| 免费看光身美女| 嫩草影视91久久| 国产av不卡久久| 免费观看的影片在线观看| 亚洲美女搞黄在线观看 | 国内精品久久久久久久电影| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 九九热线精品视视频播放| 桃红色精品国产亚洲av| 亚洲在线观看片| 欧美最新免费一区二区三区 | 国产美女午夜福利| 在线国产一区二区在线| 久久热精品热| 成年女人永久免费观看视频| 国产真实乱freesex| 精品一区二区三区av网在线观看| 国产一区二区三区视频了| 国内揄拍国产精品人妻在线| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| 少妇的逼好多水| 毛片女人毛片| 成人一区二区视频在线观看| 又粗又爽又猛毛片免费看| 有码 亚洲区| 中国美女看黄片| 可以在线观看的亚洲视频| 欧美色视频一区免费| 午夜精品久久久久久毛片777| 久久久久久久精品吃奶| 淫秽高清视频在线观看| 免费看美女性在线毛片视频| 日本 欧美在线| 国产淫片久久久久久久久 | 伊人久久精品亚洲午夜| av福利片在线观看| 国内少妇人妻偷人精品xxx网站| 少妇人妻一区二区三区视频| 一进一出好大好爽视频| 久久久久久久午夜电影| 欧美bdsm另类| 亚洲激情在线av| 搡老岳熟女国产| 久久精品影院6| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片 | 色综合站精品国产| 精品无人区乱码1区二区| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 国产高清有码在线观看视频| av黄色大香蕉| 一区二区三区高清视频在线| 国产av不卡久久| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 此物有八面人人有两片| 国产伦人伦偷精品视频| 在线播放国产精品三级| 亚洲电影在线观看av| 亚洲自偷自拍三级| 国产中年淑女户外野战色| 波多野结衣巨乳人妻| 97碰自拍视频| 亚洲av一区综合| 中出人妻视频一区二区| 在线a可以看的网站| 欧美老熟妇乱子伦牲交| 日韩欧美精品v在线| 精品久久久久久久久av| 丰满人妻一区二区三区视频av| 免费观看在线日韩| 亚洲欧洲日产国产| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 18禁在线无遮挡免费观看视频| 国产久久久一区二区三区| 国产高清不卡午夜福利| 国产男女内射视频| 又爽又黄无遮挡网站| 十八禁网站网址无遮挡 | 国产高潮美女av| 色哟哟·www| 久久人人爽人人片av| 人妻一区二区av| av免费观看日本| 少妇猛男粗大的猛烈进出视频 | 日本猛色少妇xxxxx猛交久久| 国产美女午夜福利| 久久久久国产网址| 五月玫瑰六月丁香| 国产中年淑女户外野战色| 人妻一区二区av| 99热国产这里只有精品6| 丰满少妇做爰视频| 亚洲三级黄色毛片| av免费观看日本| 久久午夜福利片| 99热这里只有是精品50| 日本与韩国留学比较| 最近中文字幕高清免费大全6| 中文字幕免费在线视频6| 国产精品一区二区在线观看99| 99久久中文字幕三级久久日本| 久久久色成人| 国产精品国产av在线观看| 2021天堂中文幕一二区在线观| 国产黄片视频在线免费观看| 内地一区二区视频在线| av网站免费在线观看视频| 舔av片在线| 欧美日韩亚洲高清精品| av在线蜜桃| 精品一区在线观看国产| 国产精品久久久久久精品古装| 免费大片黄手机在线观看| 国产午夜精品久久久久久一区二区三区| 精品久久久久久电影网| 成人特级av手机在线观看| 春色校园在线视频观看| 国产人妻一区二区三区在| 国产精品久久久久久久久免| 在线观看一区二区三区激情| 国产午夜精品一二区理论片| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 免费av毛片视频| 一区二区三区四区激情视频| 亚洲精品成人av观看孕妇| 夜夜爽夜夜爽视频| 色网站视频免费| 亚洲精品日韩av片在线观看| 狂野欧美激情性xxxx在线观看| 久久久色成人| 老师上课跳d突然被开到最大视频| 免费大片黄手机在线观看| 蜜臀久久99精品久久宅男| 一级a做视频免费观看| 日本一二三区视频观看| 欧美极品一区二区三区四区| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 嫩草影院入口| 国产欧美日韩精品一区二区| 日本色播在线视频| 精品久久久久久久末码| 免费人成在线观看视频色| 国产精品无大码| 久久午夜福利片| a级一级毛片免费在线观看| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 成人美女网站在线观看视频| 日韩欧美精品v在线| 最后的刺客免费高清国语| 可以在线观看毛片的网站| 久久国产乱子免费精品| 熟女人妻精品中文字幕| 欧美区成人在线视频| 久久精品综合一区二区三区| 18禁动态无遮挡网站| 高清午夜精品一区二区三区| 免费观看性生交大片5| 亚洲天堂国产精品一区在线| av在线观看视频网站免费| 午夜福利视频精品| 成人一区二区视频在线观看| 黄片wwwwww| 99久国产av精品国产电影| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 韩国高清视频一区二区三区| 九九在线视频观看精品| 国产综合精华液| 老师上课跳d突然被开到最大视频| 神马国产精品三级电影在线观看| 免费观看的影片在线观看| 亚洲无线观看免费| 精品久久久久久电影网| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 国产成人福利小说| 九九爱精品视频在线观看| 国产永久视频网站| 最后的刺客免费高清国语| 日韩在线高清观看一区二区三区| 国产成年人精品一区二区| 日本黄色片子视频| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 国产一区有黄有色的免费视频| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| 18+在线观看网站| 亚洲国产精品专区欧美| 国产中年淑女户外野战色| 三级男女做爰猛烈吃奶摸视频| 欧美国产精品一级二级三级 | 麻豆精品久久久久久蜜桃| 最近中文字幕2019免费版| 搡老乐熟女国产| 日日啪夜夜爽| 人妻系列 视频| 少妇高潮的动态图| 色哟哟·www| 亚洲精品乱码久久久v下载方式| 22中文网久久字幕| 亚洲va在线va天堂va国产| 亚洲欧美成人精品一区二区| 国产亚洲91精品色在线| 狠狠精品人妻久久久久久综合| 在线观看av片永久免费下载| 亚洲av免费高清在线观看| 亚洲最大成人中文| 久久ye,这里只有精品| av黄色大香蕉| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 成年女人看的毛片在线观看| 久久99热这里只频精品6学生| 国产日韩欧美在线精品| 免费av毛片视频| 国产69精品久久久久777片| 免费观看av网站的网址| 91久久精品国产一区二区成人| 精品久久久久久久人妻蜜臀av| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 亚洲欧美日韩另类电影网站 | 国产永久视频网站| 插阴视频在线观看视频| 欧美激情国产日韩精品一区| 一级毛片电影观看| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 一区二区三区免费毛片| 成人免费观看视频高清| 91在线精品国自产拍蜜月| 亚洲av中文字字幕乱码综合| 国产av不卡久久| 久久久久久久久久久丰满| 午夜福利在线在线| 国产美女午夜福利| 国产高潮美女av| videossex国产| 欧美激情国产日韩精品一区| 听说在线观看完整版免费高清| 国产色爽女视频免费观看| 在线观看一区二区三区| 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 国产中年淑女户外野战色| 亚洲欧美精品自产自拍| 最近手机中文字幕大全| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 国产毛片a区久久久久| 狂野欧美激情性xxxx在线观看| 国产成人精品一,二区| 一区二区av电影网| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 欧美日韩国产mv在线观看视频 | 精品国产乱码久久久久久小说| 日韩 亚洲 欧美在线| 国产毛片在线视频| 久久人人爽人人爽人人片va| 老女人水多毛片| 街头女战士在线观看网站| 国产淫片久久久久久久久| 最近中文字幕2019免费版| 国产高清有码在线观看视频| 十八禁网站网址无遮挡 | 最近最新中文字幕免费大全7| 国产精品蜜桃在线观看| 中文欧美无线码| 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 26uuu在线亚洲综合色| 午夜老司机福利剧场| 一级av片app| 黄色日韩在线| www.色视频.com| 亚洲国产精品成人久久小说| 色5月婷婷丁香| 日本wwww免费看| 国产精品嫩草影院av在线观看| 18+在线观看网站| eeuss影院久久| 国产在视频线精品| 午夜视频国产福利| 亚洲精品成人久久久久久| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 只有这里有精品99| 国产成人a∨麻豆精品| 精品久久久噜噜| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 国产精品.久久久| 日韩成人av中文字幕在线观看| kizo精华| 日本猛色少妇xxxxx猛交久久| 一级爰片在线观看| av又黄又爽大尺度在线免费看| 亚洲精品一区蜜桃| 久久久成人免费电影| 熟妇人妻不卡中文字幕| 国产伦精品一区二区三区视频9| 欧美极品一区二区三区四区| 日韩不卡一区二区三区视频在线| 高清毛片免费看| 欧美日韩精品成人综合77777| 亚洲成人一二三区av| freevideosex欧美| 韩国高清视频一区二区三区| 亚洲欧美日韩无卡精品| 如何舔出高潮| 在线观看一区二区三区| 久久精品国产亚洲av天美| 在线观看一区二区三区| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 免费在线观看成人毛片| 黄片无遮挡物在线观看| 欧美日韩亚洲高清精品| 搡女人真爽免费视频火全软件| 亚洲国产成人一精品久久久| 国产精品av视频在线免费观看| 女的被弄到高潮叫床怎么办| 男女下面进入的视频免费午夜| 晚上一个人看的免费电影| 日本午夜av视频| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 成年av动漫网址| 在线观看一区二区三区| 日日啪夜夜爽| 日本wwww免费看| 最近的中文字幕免费完整| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 欧美潮喷喷水| 免费电影在线观看免费观看| 精品一区二区三卡| av一本久久久久| 看黄色毛片网站| 国产高清国产精品国产三级 | av网站免费在线观看视频| 丝袜脚勾引网站| 久久热精品热| 天堂俺去俺来也www色官网| av在线观看视频网站免费| 久久99热6这里只有精品| 国产黄频视频在线观看| 蜜桃亚洲精品一区二区三区| 日本色播在线视频| 国产久久久一区二区三区| 精品久久久久久电影网| 老师上课跳d突然被开到最大视频| 一本色道久久久久久精品综合| 亚洲成人av在线免费| 午夜福利视频精品| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| 久久久久久九九精品二区国产| 水蜜桃什么品种好| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 亚洲成人中文字幕在线播放| 日本三级黄在线观看| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 我的女老师完整版在线观看| av在线老鸭窝| 国国产精品蜜臀av免费| 亚洲无线观看免费| 久久97久久精品| 一个人看的www免费观看视频| 国产精品久久久久久av不卡| 特级一级黄色大片| 国产亚洲91精品色在线| 亚洲欧美日韩另类电影网站 | 99热全是精品| 全区人妻精品视频| 91久久精品国产一区二区成人| 免费人成在线观看视频色| av国产免费在线观看| 久久韩国三级中文字幕| 国产欧美日韩精品一区二区| 国产成人91sexporn| 美女视频免费永久观看网站| 男女边摸边吃奶| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看 | 久久久久久久久大av| 女人被狂操c到高潮| 国产免费一级a男人的天堂| 王馨瑶露胸无遮挡在线观看| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 夜夜爽夜夜爽视频| 免费av毛片视频| 国产欧美日韩一区二区三区在线 | 国产精品精品国产色婷婷| 精品一区二区三卡| 99久久中文字幕三级久久日本| 中文字幕制服av| 亚洲自拍偷在线| 美女视频免费永久观看网站| videossex国产| 夜夜看夜夜爽夜夜摸| 男人爽女人下面视频在线观看| 久久精品人妻少妇| 欧美 日韩 精品 国产| 草草在线视频免费看| av黄色大香蕉| 国国产精品蜜臀av免费| 亚洲最大成人中文| 亚洲精品国产av成人精品| 交换朋友夫妻互换小说| 婷婷色av中文字幕| 精品久久久久久电影网| 亚洲丝袜综合中文字幕| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 美女cb高潮喷水在线观看| 国产永久视频网站| 欧美成人精品欧美一级黄| 精品一区二区免费观看| av专区在线播放| 免费大片18禁| 成人亚洲欧美一区二区av| 久久久色成人| 亚洲欧美精品专区久久| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 免费观看无遮挡的男女| 身体一侧抽搐| 干丝袜人妻中文字幕| 精品久久久久久电影网| 久久久精品免费免费高清| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃 | 在线观看一区二区三区| 午夜精品一区二区三区免费看| 国国产精品蜜臀av免费| 九草在线视频观看| 热99国产精品久久久久久7| 国产极品天堂在线| 别揉我奶头 嗯啊视频| 中文精品一卡2卡3卡4更新| 中文资源天堂在线| 欧美成人一区二区免费高清观看| 日韩av不卡免费在线播放| 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 另类亚洲欧美激情| 天天躁日日操中文字幕| 国内少妇人妻偷人精品xxx网站| 蜜桃亚洲精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 欧美高清成人免费视频www| 在线观看免费高清a一片| 国产免费一级a男人的天堂| 国产69精品久久久久777片| 亚洲国产精品专区欧美| 人人妻人人看人人澡| 卡戴珊不雅视频在线播放| av在线蜜桃| 国产精品久久久久久精品古装| 色吧在线观看| 人人妻人人看人人澡| av卡一久久| 久久久久久九九精品二区国产| 晚上一个人看的免费电影| 亚洲自偷自拍三级| 内射极品少妇av片p| 天天躁日日操中文字幕| 男女啪啪激烈高潮av片| 高清毛片免费看| 色哟哟·www| 国产毛片a区久久久久| 在线 av 中文字幕| 美女主播在线视频| 国产免费又黄又爽又色| 久久精品久久精品一区二区三区| 国内精品美女久久久久久| 婷婷色av中文字幕| 国产一区亚洲一区在线观看| 内射极品少妇av片p| 2021少妇久久久久久久久久久| 亚洲欧美精品专区久久| 国产一区有黄有色的免费视频| 国产精品精品国产色婷婷| 精品国产一区二区三区久久久樱花 | 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美一区二区三区黑人 | 51国产日韩欧美| 免费观看a级毛片全部| 99热这里只有是精品50| 午夜免费鲁丝| av在线蜜桃| 国产精品蜜桃在线观看| 亚洲内射少妇av| 黄色一级大片看看| 国产人妻一区二区三区在| 精品国产乱码久久久久久小说| 成人一区二区视频在线观看| 日日摸夜夜添夜夜爱| 边亲边吃奶的免费视频| 九九爱精品视频在线观看| 久久久精品94久久精品| 久久久久久久久久久免费av| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 国产精品人妻久久久久久| 午夜老司机福利剧场| 2021天堂中文幕一二区在线观| 久久久a久久爽久久v久久| 欧美一区二区亚洲| 日本黄大片高清| 亚洲av不卡在线观看| 亚洲欧洲日产国产| 老司机影院毛片| 99热这里只有是精品在线观看| 免费不卡的大黄色大毛片视频在线观看| 欧美激情国产日韩精品一区| 国产老妇伦熟女老妇高清| 日韩伦理黄色片| av专区在线播放| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 99热这里只有是精品50| 亚洲,一卡二卡三卡| av网站免费在线观看视频| 别揉我奶头 嗯啊视频| 舔av片在线| 免费观看在线日韩| 欧美日韩亚洲高清精品| 久久精品综合一区二区三区| 最近中文字幕2019免费版| 欧美丝袜亚洲另类| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av男天堂| 国产伦在线观看视频一区| 99久国产av精品国产电影| 久久精品国产自在天天线| av专区在线播放| 国模一区二区三区四区视频| 91aial.com中文字幕在线观看| 精品一区二区三卡| 嫩草影院入口| 街头女战士在线观看网站| 欧美97在线视频| 91精品伊人久久大香线蕉| 日产精品乱码卡一卡2卡三| 国产成人a区在线观看| 丝袜美腿在线中文| 男人舔奶头视频| 国产精品麻豆人妻色哟哟久久| 最近中文字幕高清免费大全6| 22中文网久久字幕| 亚洲天堂国产精品一区在线| 精品少妇久久久久久888优播| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 精品少妇久久久久久888优播| 天天躁夜夜躁狠狠久久av| 欧美日韩视频高清一区二区三区二| 麻豆久久精品国产亚洲av| 久久精品国产a三级三级三级| 国产精品女同一区二区软件| 边亲边吃奶的免费视频| 高清在线视频一区二区三区| 观看美女的网站| 欧美精品人与动牲交sv欧美| 国产乱人偷精品视频| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠久久av| 蜜桃久久精品国产亚洲av| 一级二级三级毛片免费看| 国产高潮美女av| 乱码一卡2卡4卡精品| 免费观看无遮挡的男女|