• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dealumination kinetics of composite ZSM-5/mordenite zeolite during steam treatment:An in-situ DRIFTS study☆

    2018-05-26 07:29:22XiaoxiaoZhangDangguoChengFengqiuChenXiaoliZhan

    Xiaoxiao Zhang,Dangguo Cheng*,Fengqiu Chen,Xiaoli Zhan

    Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    Zeolite,crystalline microporous aluminosilicates,has been widely used as a heterogeneous catalyst in petrochemical process[1–4]such as catalytic cracking,hydrocracking,alkylation and isomerization of various hydrocarbon molecules[5–12].Itsvaluable success in industrial application can be ascribed to the combination of strong framework acidity and the uniform porosity[13–17].Despite its remarkable achievement,the catalytic reactivity and stability of the catalyst still need to further improve for industrial application.Composite zeolite with the binary structure would be a promising candidate,because it can not only keep the nature of individual zeolite but also give rise to new distinctive properties.Some zeolite composites,such as diatomite/MFI-type[18],CHA/AEI system[19],ZSM-5/SAPO-34[20–22],Y/MCM-41[23]and ZSM-5/Y[24],have been already synthesized.In this regard,composite ZSM-5/mordenite zeolites were developed and investigated in catalytic cracking of light hydrocarbons in our previous work[25].For this protonic acid catalyst,the active site is Br?nsted acid,created by replacing a Si with an Al atom and this substitution has to be compensated by a proton[26].However,these catalysts often lose their activity during the reactions because of the coke deposits on the surface.The common and effective method to prolong the durability of zeolite in application is to introduce water vapor in feedstock.Although the existence of watervaporcan maximize the contribution from monomolecular cracking and impede the is omerization of the primary products[27],the introduction of water vapor can negatively lead to the extraction of Al from the zeolite framework and the catalyst deactivation gradually.

    Much effort has been devoted to better understand the zeolite dealumination process and its effect on acidity of zeolites[28,29]and reaction performance[30,31].For example,Almutairi et al.[32]found that severe steaming would result in a significant decrease in the framework Al,which led to an increased amount of methanol converted because of the lower coke formation rate.Other works have addressed the dealumination from a theoretical point of view by employing density functional theory(DFT)to model the kinetics of the dealumination process and determine the relevant hydrolysis reaction mechanism of a tetrahedral atom[26,33].Despite these efforts,various characterization methods have also been applied to investigate dealumination of zeolites by hydrothermal treatment experimentally[34–36].However,the change of zeolitic structure caused by the dealumination process and its correlation with deactivation of zeolites during the reaction have not been comprehensively described and discussed.A deeper comprehension of the dealumination process is highly desirable to determine better anti-deactivation reaction condition in industrial application.

    Thus,in this work,we employed,the in-situ DRIFTS to study the mechanism and kinetics of the dealumination process on ZSM-5/MOR zeolite experimentally and choose the catalytic cracking of n-heptane with water vapor as a model reaction to investigate the correlation between the kinetics of the dealumination process and the structural deactivation of ZSM-5/MOR.Through the in-situ DRIFTS method,the variation of each hydroxyl group on zeolite can be observed and the amount of consumed and generated hydroxyl groups can be calculated by integrating area ofpeaks,thereby predicting dealumination rates as a function of temperature and pressure.A correlate mechanism for the dealumination process is also proposed.

    2.Experimental

    2.1.Catalysts and measurement

    ZSM-5/MOR(Si/Al=20)was synthesized and provided by Shanghai Research Institute of Petrochemical Technology.The catalytic cracking of n-heptane was carried out in a fixed-bed reactor(9 mm i.d.)over 100 mg catalysts under a gas hourly space velocity of 1 h?1at 650°C.Argon,as a carrier gas,was mixed with n-heptane and water vapor with the molar ratio of n-heptane/vapor as 1/2,or without water vapor,atthe flow rate of20 ml·min?1,respectively.The products were analyzed on-line using a gas chromatograph equipped with a capillary column(50 m×0.32 mm,KB-Al2O3/Na2SO4)and flame ionization detector(FID).

    2.2.In-situ DRIFTS study under hydrothermal treatment

    A Nicolet 5700 FTIR spectrometer at a spectroscopic resolution of 8 cm?1with a diffuse reflectance attachment and a liquid N2-cooled MCT-A detector were used with an accumulation of 64 scans.Reactions were conducted in a controlled temperature and environment diffuse reflectance chamber(Spectra-Tech 0030-91)with ZnSe windows.30 mg zeolites were placed in a 2-mm-tall ceramic crucible with 8.5 mm OD and 7.2 mm ID placed in the environment chamber.To investigate the effect of vapor pressure on the dealumination process,the temperature was set as 650°C and helium,as a carrier gas,mixed with water vapor at flow of 15 ml·min?1is fed through the sample bed in the chamber under the vapor pressure of 10.1,20.0,29.9 and 40.3 kPa,respectively,generated by a water vapor saturator for 4 h.Afterwards,in order to explore temperature factor,the vapor pressure was kept at 29.9 kPa,and four different temperatures(600,650,700,and 750°C)were chosen.The structuralchanges ofthe sample were analyzed with IR.All spectra were taken with the use of KBr windows under helium purging as a background reference.

    2.3.NH3-TPD analysis

    The acidity of the samples was determined by ammonia temperature programmed desorption(TPD)in a Micromeritics chemisorption analyzer(AutoChem II 2920).The sample was activated by heating at 600 °C for 1 h,and after cooling to 100 °C,ammonia adsorption was carried out for 0.5 h.The physically adsorbed ammonia was removed under pure helium flow for 2 h.The chemisorbed ammonia was determined by increasing temperature with a linear program from 100°C to 650 °C at a heating rate of 10 °C·min?1under a helium flow of 50 ml·min?1.

    2.4.Surface area and pore analyses

    The N2adsorption–desorption tests were carried out at a temperature of 77 K using a Micromeritics ASAP 2020 analyzer.The surface areas of the samples were calculated using the Brunauer,Emmett and Teller(BET)equation.The mesopore size distributions were obtained from the desorption branch of the isotherms by the Barrett,Joyner and Halenda(BJH)method.The micropore size distributions were estimated according to the Horvath–Kawazoe(HK)model and the micropore surface areas were determined by the t-plot method.

    3.Results and Discussion

    3.1.Dealumination phenomenon

    Our previous work[25]has investigated the catalytic cracking of nheptane with water vapor over ZSM-5/MOR zeolites by employing insitu DRIFTS to observe the changes of the location and strength of acidic sites on the zeolite framework.The results showed that the ZSM-5/MOR zeolites were deactivated quickly with catalytic steam cracking reaction proceeding,due to the facts that the bridging hydroxylb and in IRspectra decreased significantly and the peak corresponding to the extra frame work amorphous Al species appeared at the reaction time of 80 min.These suggested that the zeolite dealumination has gradually taken place during the reaction in the water vapor atmosphere.

    To furtherconfirm this,two differentcatalytic cracking reaction conditions were carried out.One is in the presence of water vapor and the other only contains the reactant of n-heptane.In addition,the regeneration process is also conducted to observe if the loss of activity happens due to the dealumination from the framework.To regenerate the deactivated ZSM-5/MOR catalyst completely,the coke deposits are eliminated at 750°C under air atmosphere and then the activity of regenerated ones was also tested under the same condition.The results of activity tests on the fresh ZSM-5/MOR and the regenerated ones are exhibited in Fig.1.One can see that the activity of ZSM-5/MOR almost stays the same after regeneration,in the absence of water vapor in the catalytic cracking reaction.However,when the catalytic cracking reaction was accompanied with water vapor,the conversion of n-heptane decreases after the regeneration.This resultimplies that the steam in reactant leads to irreversible deactivation of ZSM-5/MOR zeolite at high temperature.

    Fig.1.The activity test at 650°C on fresh and regenerated ZSM-5/MOR catalysts.

    3.2.Characterization of catalysts

    According to the data of NH3-TPD result listed in Table 1,the acid amount and the acid strength of strong acidity and weak acidity of ZSM-5/MOR zeolites are both decreased during the catalytic cracking reaction in the steam atmosphere and can hardly be recovered through regeneration process.For acidic zeolite,its acidity is composed of the Lewis acid and the Br?nsted acid.The former is created by extraframe work aluminum and the latter is the active site created by substituting a Si with Al atom and a proton balances the charge offramework.The decreased amount of acidity can indirectly verify that the irreversible structural change of ZSM-5/MOR has taken place.Moreover,from the results of pore structure parameters,the difference of textural properties between the fresh ZSM-5/MOR and regenerated ones is obvious.For the fresh ZSM-5/MOR sample,the micropore area is 225 m2·g?1and the volume of micropores is 0.115 ml·g?1[25].However,for the regenerated ZSM-5/MOR sample,the corresponding value decreases to 172 m2·g?1and 0.089 ml·g?1,respectively,as listed in Table 2.But the external area and the volume of mesopores of the regenerated ZSM-5/MOR noticeably increased to 132 m2·g?1and 0.142 ml·g?1,compared with the fresh ones.All these results can prove that the dealumination process indeed happens in the presence of water vapor at high temperature.

    Table 1 The NH3-TPD result of the fresh and the regenerated ZSM-5/MOR catalysts

    Table 2 Pore structure parameters of the fresh and the regenerated ZSM-5/MOR catalyst

    3.3.In-situ DRIFTS study of structural evolution of ZSM-5/MOR during hydrothermal treatment

    When zeolite catalysts are exposed to water vapor at high temperature,the number of Br?nsted acid sites,directly determined by the number of framework Al atoms,is reduced because of dealumination.The in-situ DRIFTS can monitor the evolution of each hydroxyl group bonding to Al or Si clearly.Hence,the study on the changes of the hydroxyl groups during the hydrothermal treatment can be used to analyze the dealumination process.In the IR spectrum,the bands related with hydroxyl groups often exist in the range of 3500–3800 cm?1.To find hidden peaks,deconvolution analysis is an effective way to distinguish different hydroxyl groups on the zeolite and evaluate the consumption and generation of hydroxyl groups quantitatively during the hydrothermal treatment[25].The deconvolved hydroxyl regions of the IR spectra with time to 4 h over the ZSM-5/MOR zeolite in the steam atmosphere at the temperature of 650°C and the vapor pressure of 10.1 kPa are shown in Fig.2.The components of hydroxyl groups are obtained by Gaussian fits.The peak at3597 cm?1assigned to the bridging hydroxylSi--O(H)--Alin the main pore channels[25]is rapidly decreased with time,corresponding to the process of extraction of framework Alatomsand thus leads to a decrease of the protonic acidity.The peak at 3652 cm?1,ascribed to the terminal Al--OH of the framework in the pore channels[25],is decreased slower than the bridging hydroxyl Si--O(H)--Al in the presence of high temperature steam treatment.The detailed description of the variation of each hydroxyl group during the hydrothermal treatment is demonstrated in Fig.3.The peaks at 3710 and 3735 cm?1are assigned to terminal Si--OH of the framework[37–39].The former is in the pore channels and the latter is on the external surface of the catalyst.In the beginning of the hydrothermal treatment,the amount of internal Si--OH increases quickly.This increase can be ascribed to the creation of four internal Si--OH groups as a result of the extraction of each framework Al atoms followed by the crystal lattice defect.Then,with the hydrothermal treatment proceeding,it causes a pronounced increase of the amount of Si--OH on the external surface and a small decrease of the amount of Si--OH in the internal surface.This results from the formation of the mesopores caused by the collapse of partial crystal lattices during the dealumination process and consequently generate new Si--OHon the externalsurface.Thus,the change of Si--OHon the lattice defect is determined by the rate of lattice collapse and the extraction of dealumination from framework.At the later stage of the hydrothermal treatment,more and more silicon atoms polymerize into amorphous structures due to the collapse of framework,thus the total amount of Si--OH decreased.The peak at 3772 cm?1is ascribed to hydroxyls on the amorphous Al species[40]which are non-acid sites or very weak acid sites,such as O=Al--OH.These hydroxyls increase rapidly at the beginning,then become invariable and decrease at the later period gradually.These results can be explained by the fact that,at an earlier stage,more aluminums from dealumination and removal process migrate onto the surfaces of catalysts so that the amount of thus-formed hydroxyls increased.However,with more and more aluminums extracted,polymerization of some aluminum[41]results in the decrease of hydroxyls on amorphous Al species and transformation of vibration positions.From the above analysis,the dealumination mechanism under the hydrothermal treatment is proposed in Scheme 1.When ZSM-5/MOR zeolites are exposed to steam at high temperature,the dealumination process could be generally described as a multiple-step process consisting of removal of Al from the framework,namely the hydrolysis of four Al--O bonds accompanied with the self-healing of Si--OH bonds.In addition,the obtained extra-framework aluminum would be partially condensed with water molecules to form the two kinds of structures,as illustrated in Scheme 1.

    Fig.2.The deconvolution of the IR spectra of hydrothermal treatment on ZSM-5/MOR sample in the range of 3450–3850 cm?1(T=650 °C,vapor pressure P w=10.1 kPa,3%n-heptane in He, flow rate=15 ml·min?1).(—)single components,(--)computed spectra,(—)experimental spectra.

    Fig.3.The amount of hydroxyls on ZSM-5/MOR during hydrothermal treatment with TOS at 650°C under vapor pressure of 10.1 kPa.

    3.4.The kinetics of dealumination

    Br?nsted acid sites play an important role in the catalytic cracking reaction,and the dealumination process would cause the loss of catalytic activity.So,it is significantly necessary to figure out the kinetics of dealumination and hence the prediction of structural deactivation of ZSM-5/MOR zeolites.This can help determine a better anti-deactivation reaction condition in practical application.According to the investigation of dealumination mechanism and the rate of decreased hydroxyls,it is obvious that the extraction of framework Al atoms is irreversible.To investigate the kinetics of dealumination,some prerequisites should be determined.Due to the small size of catalyst particles(0.03–0.05 mm),the influence of internal and external diffusion of water vapor can be ignored under the high gas velocity.Hence,the kinetic equation is illustrated as follows:

    where NAlis the number of Al from framework per unit mass of catalyst,kDis the apparent rate constant of dealumination,Pwis the partial pressure of water vapor,n is the reaction order of concentration of tetrahedral Al atom and m is the reaction order of partial pressure of water vapor.

    The number of Alfrom framework perunitmass isproportionalto AOHwhich is the area of the peak at 3597 cm?1,so AOHcan take the place of NAl.To obtain the reaction order n of the concentration of tetrahedral aluminum atom,the experiment of dealumination under the different temperatures and vapor pressures has been investigated.The result is depicted in Fig.4,thus,the reaction order n is approximately equal to 1.It accords with the result of NMR in previous publications[36,42–44].Also,to determine the reaction order m,more experiments are conducted.Fig.5 shows the variation of the dealumination amount from the framework in the presence of different vapor pressures at the temperature of 650°C.Besides,Fig.6 demonstrates the effect of different vapor pressures on the dealumination rate at 650°C.From the above results,the reaction order m can be acquired,m≈0.6.Accordingly,the equation can be simplified as follows:

    where AOHis the integral area of hydroxyl groups at 3597 cm?1.

    Fig.4.The exponential fit of the integrated areas of the bridging hydroxyl with TOS under different hydrothermal conditions.

    Scheme 1.The mechanism of hydrothermal dealumination of ZSM-5/MOR catalysts.

    Fig.5.The exponential fit of the integrated areas of the bridging hydroxyl with TOS under different vapor pressures at 650°C.

    The parameter E,the activation energy,can be calculated by the change of reaction rate constant under different reaction temperatures and the activation energy meets the Arrhenius equation:

    where k0is the pre-exponential factor,R is the gas constant,E is the activation energy and T is reaction temperature.

    The value of activation energy E and pre-exponential factor k0can be obtained from the slope and intercept of the straight line which is fitted by the reaction rate constant and reciprocal of temperature.From Figs.7 and 8,the value of parameter E and k0is 21.1 kJ·mol?1and 0.70,respectively.The kinetic equation of dealumination can be written as follows:

    Fig.7.The exponential fit of the integrated areas of the bridging hydroxyl with TOS under vapor pressures of 29.9 kPa at different temperatures.

    Fig.8.Effect of the temperature on the dealumination rate under vapor pressure P w of 29.9 kPa.

    where Pwis the vapor pressure.We argue that the kinetic dealumination equation mainly states the self-deactivation kinetics of catalysts with the prerequisite of no coke deposition in the reaction.This is due to the fact that from the IR spectra,the bridging hydroxyls of Si--O(H)--Al,which are the catalytic active sites,decrease rapidly and this phenomenon is consistent with the dealumination process,namely the structural deactivation during the reaction.Moreover,from the obtained kinetics of dealumination,it can be used to determine a more effective antideactivation reaction condition by properly adjusting the reaction temperature and pressure to prolong the catalytic lifetime and maintain the high catalytic activity of zeolites.And it can also be used to predict the dealumination rate at other pressures or temperatures than already tested in practical application.

    4.Conclusions

    In this work,the dealumination deactivation has been observed during the catalytic cracking reaction due to the water vapor in feedstock.To determine a better anti-deactivation reaction condition towards steaming,in-situ DRIFTS has been employed to investigate the mechanism of structural deactivation under hydrothermal treatment.Through the deconvolution analysis,the hydroxyl groups located in different positions on the catalyst have been distinguished.Also,the consumption and the generation of hydroxyl groups can be quantitatively evaluated.The results show that the initial consumption rates of bridging hydroxyl groups,corresponding to the decrease of Br?nsted acid sites,are remarkably faster than that during later stage of the hydrothermal treatment.This explains the fast initial deactivation of the catalysts during the catalytic steam cracking reaction.Furthermore,based on the deconvolution analysis,the mechanism of the dealumination process has been successfully obtained,which consists of the hydrolysis of four Al--O bonds and the self-healing of Si--OH bonds accompanied with partial condensation of the extra-framework Al species.In addition,the kinetics of dealumination has also been obtained and it is in excellent agreement with the kinetics of deactivation in the presence of no coke deposition.With a better explanation of the dealumination process,the relationship between the catalytic performance and the acidic properties of the zeolites can be deeper understood.The obtained dealumination kinetics during the catalytic cracking reaction is also of directive significance to determine better anti-deactivation reaction condition in industrial application.

    [1]V.Van Speybroeck,K.Hemelsoet,L.Joos,M.Waroquier,R.G.Bell,C.R.A.Catlow,Advances in theory and their application within the field of zeolite chemistry,Chem.Soc.Rev.44(2015)7044–7111.

    [2]V.Van Speybroeck,K.De Wispelaere,J.Van der Mynsbrugge,M.Vandichel,K.Hemelsoet,M.Waroquier,First principle chemical kinetics in zeolites:The methanol-to-olefin process as a case study,Chem.Soc.Rev.43(2014)7326–7357.

    [3]U.Olsbye,S.Svelle,M.Bj?rgen,P.Beato,T.V.M.Janssens,F.Joensen,S.Bordiga,K.P.Lillerud,Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity,Angew.Chem.Int.Ed.51(2012)2–24.

    [4]W.Vermeiren,J.P.Gilson,Impact of zeolites on the petroleum and petrochemical industry,Top.Catal.52(2009)1131–1161.

    [5]F.Chen,L.Ma,D.Cheng,X.Zhan,Synthesis of hierarchical porous zeolite and its performance in n-heptane cracking,Catal.Commun.18(2012)110–114.

    [6]G.Roohollahi,M.Kazemeini,A.Mohammadrezaee,R.Golhosseini,Chemical kinetic modeling of i-butane and n-butane catalytic cracking reaction over HZSM-5 zeolite,AIChE J.28(2012)2456–2465.

    [7]Q.F.Tan,Y.Fan,H.Y.Liu,T.C.Song,G.Shi,B.J.Shen,X.J.Bao,Bimodal micromesoporous aluminosilicates for heavy oil cracking:Porosity tuning and catalytic properties,AIChE J.54(2008)1850–1859.

    [8]R.Van Borm,M.F.Reyniers,G.B.Marin,Catalytic cracking of alkenes on FAU:Singleevent microkinetic modeling including acidity descriptors,AIChE J.58(2012)2202–2215.

    [9]M.á.González-Borja,D.E.Resasco,Reaction pathways in the liquid phase alkylation of biomass-derived phenolic compounds,AIChE J.61(2015)598–609.

    [10]K.P.de Jong,J.Zecevic,H.Friedrich,P.E.de Jongh,M.Bulut,S.van Donk,R.Kenmogne,A.Finiels,V.Hulea,F.Fajula,Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts,Angew.Chem.Int.Ed.49(2010)10074–10078.

    [11]S.L.C.Moors,K.De Wispelaere,J.Van der Mynsbrugge,M.Waroquier,V.Van Speybroeck,Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5,ACS Catal.3(2013)2556–2567.

    [12]N.Zhu,Y.Liu,Y.Wang,F.Chen,X.Zhan,Kinetic models for the coke combustion on deactivated ZSM-5/MOR derived from n-heptane cracking,Ind.Eng.Chem.Res.49(2010)89–93.

    [13]K.Kim,R.Ryoo,H.Jang,M.Choi,Spatial distribution,strength,and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences,J.Catal.288(2012)115–123.

    [14]M.E.Davis,R.F.Lobo,Zeolite and molecular sieve synthesis,Chem.Mater.4(1992)756–768.

    [15]S.Schallmoser,T.Ikuno,M.F.Wagenhofer,R.Kolvenbach,G.L.Haller,M.Sanchez-Sanchez,J.A.Lercher,Impact of the local environment of Br?nsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking,J.Catal.316(2014)93–102.

    [16]G.T.Kokotailo,S.L.Lawton,D.H.Olson,Structure and synthetic ZSM-5,Nature 272(1978)437–438.

    [17]C.S.Cundy,P.A.Cox,The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time,Chem.Rev.103(2003)663–701.

    [18]W.Yu,L.Deng,P.Yuan,D.Liu,W.Yuan,F.Chen,Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption:The effects of desilication,Chem.Eng.J.270(2015)450–458.

    [19]R.L.Smith,W.A.S?awiński,A.Lind,D.S.Wragg,J.H.Cavka,B.Arstad,H.Fjellv?g,M.P.Att field,D.Akporiaye,M.W.Anderson,Nanoporous intergrowths:How crystal growth dictates phase composition and hierarchical structure in the CHA/AEI system,Chem.Mater.27(2015)4205–4215.

    [20]M.Razavian,S.Fatemi,Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process,Microporous Mesoporous Mater.201(2015)176–189.

    [21]H.J.Chae,Y.H.Song,K.E.Jeong,C.U.Kim,S.Y.Jeong,Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction,J.Phys.Chem.Solids 71(2010)600–603.

    [22]C.Duan,X.Zhang,R.Zhou,Y.Hua,J.Chen,L.Zhang,Hydrothermally synthesized HZSM-5/SAPO-34 composite zeolite catalyst for ethanol conversion to propylene,Catal.Lett.141(2011)1821–1827.

    [23]H.J.Zhang,X.C.Meng,Y.D.Li,Y.S.Lin,MCM-41 overgrown on Y composite zeolite as support of Pd–Pt catalysts for hydrogenation of polyaromatic compounds,Ind.Eng.Chem.Res.46(2007)4186–4192.

    [24]H.L.Chen,B.J.Shen,H.F.Pan,In situ formation of ZSM-5 in NaY gel and characterization of ZSM-5/Y composite zeolite,Chem.Lett.8(2003)726–727.

    [25]N.Zhu,Y.Wang,D.Cheng,F.Chen,X.Zhan,Experimental evidence for the enhanced cracking activity of n-heptane over steamed ZSM-5/mordenite composite zeolites,Appl.Catal.A Gen.362(2009)26–33.

    [26]M.Nielsen,R.Y.Brogaard,H.Falsig,P.Beato,O.Swang,S.Svelle,Kinetics of zeolite dealumination:Insights from H-SSZ-13,ACS Catal.5(2015)7131–7139.

    [27]R.Brosius,P.J.Kooyman,J.C.Q.Fletcher,Selective formation of linear alkanes from nhexadecane primary hydrocracking in shape-selective MFI zeolites by competitive adsorption of water,ACS Catal.6(2016)7710–7715.

    [28]A.G.Gayubo,A.T.Aguayo,A.Atutxa,R.Prieto,J.Bilbao,Role of reaction-medium water on the acidity deterioration of a HZSM-5 zeolite,Ind.Eng.Chem.Res.43(2004)5042–5048.

    [29]C.S.Trianta fillidis,A.G.Vlessidis,N.P.Evmiridis,Dealuminated H–Y zeolites:Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H–Y zeolites,Ind.Eng.Chem.Res.39(2000)307–319.

    [30]A.Yamaguchi,D.Jin,T.Ikeda,K.Sato,N.Hiyoshi,T.Hanaoka,F.Mizukami,M.Shirai,Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane,Fuel Process.Technol.126(2014)343–349.

    [31]G.M.Tonetto,M.L.Ferreira,J.A.Atias,H.I.de Lasa,Effectof steaming treatment in the structure and reactivity of FCC catalysts,AIChE J.52(2006)754–768.

    [32]S.M.T.Almutairi,B.Mezari,E.A.Pidko,P.C.M.M.Magusin,E.J.M.Hensen,Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite,J.Catal.307(2013)194–203.

    [33]S.Malola,S.Svelle,F.L.Bleken,O.Swang,Detailed reaction paths for zeolite dealumination and desilication from density functional calculations,Angew.Chem.Int.Ed.51(2012)652–655.

    [34]S.Sombatchaisak,P.Praserthdam,C.Chaisuk,J.Panpranot,An alternative correlation equation between particle size and structure stability of H–Y zeolite under hydrothermal treatment conditions,Ind.Eng.Chem.Res.43(2004)4066–4072.

    [35]S.M.Maier,A.Jentys,J.A.Lercher,Steaming of zeolite BEA and its effect on acidity:A comparative NMR and IR spectroscopic study,J.Phys.Chem.C 115(2011)8005–8013.

    [36]Q.L.Wang,G.Giannetto,M.Torrealba,G.Perot,C.Kappenstein,M.Guisnet,Dealumination of zeolites II.Kinetic study of the dealumination by hydrothermal treatment of a NH4NaY zeolite,J.Catal.130(1991)459–470.

    [37]A.Corma,C.Corell,V.Fornés,W.Kolodziejski,J.Pérez-Pariente,Infrared spectroscopy,thermoprogrammed desorption,and nuclear magnetic resonance study of the acidity,structure,and stability of zeolite MCM-22,Zeolites 15(1995)576–582.

    [38]P.A.Jacobs,J.B.Uytterhoeven,Assignment of the hydroxyl bands in the infrared spectra of zeolites X and Y,J.Chem.Soc.Faraday Trans.69(1973)359–372.

    [39]C.Yang,Q.H.Xu,States of aluminum in zeolite beta and in fluence of acidic or basic medium,Zeolites 19(1997)404–410.

    [40]Y.Oumi,R.Mizuno,K.Azuma,S.Nawata,T.Fukushima,T.Uozumi,T.Sano,Reversibility of dealumination–realumination process of BEA zeolite,Zeolites 49(2001)103–109.

    [41]A.G.Pelmenschikov,E.A.Paukshtis,M.O.Edisherashvili,G.M.Zhidomirov,On the Loewenstein rule and mechanism of zeolite dealumination,J.Phys.Chem.96(1992)7051–7055.

    [42]G.Engelhardt,U.Lohse,V.Patzelova,M.Magi,E.Lippmaa,High-resolution Si-29 n.m.r.of dealuminated Y-zeolites.1.The dependence of the extent of dealumination on the degree of ammonium exchange and the temperature and water-vapor pressure of the thermochemical treatment,Zeolites 3(1983)233–238.

    [43]Q.L.Wang,G.Giannetto,M.Guisnet,Dealumination of zeolites III.Effect of extraframework aluminum species on the activity,selectivity,and stability of Y zeolites in n-heptane cracking,J.Catal.130(1991)471–482.

    [44]G.Engelhardt,U.Lohse,V.Patzelova,M.Magi,E.Lippmaa,High-resolution Si-29 n.m.r.of dealuminated Y-zeolites.2.Silicon,aluminum ordering in the tetrahedral zeolite lattice,Zeolites 3(1983)239–243.

    人人妻人人添人人爽欧美一区卜| 嫩草影视91久久| 欧美黑人精品巨大| 国产成人精品久久二区二区91 | 制服人妻中文乱码| 欧美国产精品va在线观看不卡| 女的被弄到高潮叫床怎么办| 久久av网站| 国产成人精品久久二区二区91 | 中文字幕制服av| 亚洲人成网站在线观看播放| 久久久久久久久久久久大奶| 丰满乱子伦码专区| 美女国产高潮福利片在线看| 两个人免费观看高清视频| 亚洲七黄色美女视频| 99热网站在线观看| 国产在视频线精品| 国产成人系列免费观看| 精品国产露脸久久av麻豆| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 亚洲成人一二三区av| 另类亚洲欧美激情| 婷婷色麻豆天堂久久| 亚洲精品国产一区二区精华液| 亚洲综合精品二区| 精品亚洲成国产av| 国产免费福利视频在线观看| 亚洲欧洲日产国产| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 欧美日韩福利视频一区二区| 美女福利国产在线| 国产亚洲av片在线观看秒播厂| 美女高潮到喷水免费观看| 美女主播在线视频| 午夜福利视频精品| 乱人伦中国视频| 国产免费现黄频在线看| 国产97色在线日韩免费| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 欧美日韩一区二区视频在线观看视频在线| 国产成人欧美在线观看 | 精品人妻一区二区三区麻豆| 亚洲七黄色美女视频| 国产一区亚洲一区在线观看| 婷婷色麻豆天堂久久| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| 欧美激情 高清一区二区三区| 一级,二级,三级黄色视频| 熟女少妇亚洲综合色aaa.| 好男人视频免费观看在线| 国产爽快片一区二区三区| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 看免费av毛片| 精品人妻一区二区三区麻豆| 精品福利永久在线观看| 多毛熟女@视频| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| 日本wwww免费看| 亚洲国产欧美网| 亚洲专区中文字幕在线 | 国产精品久久久久久精品电影小说| 美女午夜性视频免费| 大话2 男鬼变身卡| 欧美另类一区| 欧美成人精品欧美一级黄| 欧美日本中文国产一区发布| 99久久精品国产亚洲精品| 大片免费播放器 马上看| 亚洲国产精品国产精品| 亚洲一码二码三码区别大吗| 亚洲国产精品一区三区| 悠悠久久av| 19禁男女啪啪无遮挡网站| 少妇被粗大猛烈的视频| 国产在视频线精品| 国产又色又爽无遮挡免| 如日韩欧美国产精品一区二区三区| 我的亚洲天堂| 男人舔女人的私密视频| 欧美在线一区亚洲| 观看美女的网站| 蜜桃国产av成人99| 不卡视频在线观看欧美| 一级毛片 在线播放| 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 丝袜人妻中文字幕| 一二三四中文在线观看免费高清| 国产亚洲精品第一综合不卡| 国产成人精品无人区| 亚洲欧洲日产国产| 性色av一级| 日韩,欧美,国产一区二区三区| 欧美日韩一级在线毛片| 亚洲国产最新在线播放| 赤兔流量卡办理| 大香蕉久久成人网| av卡一久久| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 男的添女的下面高潮视频| 丰满乱子伦码专区| 晚上一个人看的免费电影| 亚洲av日韩精品久久久久久密 | 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲午夜精品一区二区久久| 激情视频va一区二区三区| 国产在线视频一区二区| 久久这里只有精品19| 国语对白做爰xxxⅹ性视频网站| 丝袜喷水一区| 久久99精品国语久久久| 丝袜美足系列| 午夜福利乱码中文字幕| 91国产中文字幕| 国产成人a∨麻豆精品| 日本91视频免费播放| 免费女性裸体啪啪无遮挡网站| 日韩av免费高清视频| 国产精品一区二区精品视频观看| 亚洲国产日韩一区二区| 大码成人一级视频| 韩国高清视频一区二区三区| 伦理电影大哥的女人| 日本wwww免费看| 久久久久网色| 午夜福利一区二区在线看| 亚洲精品,欧美精品| 久久精品久久精品一区二区三区| 一个人免费看片子| 日韩av不卡免费在线播放| 色视频在线一区二区三区| 男人舔女人的私密视频| 久久久久久久久久久久大奶| 亚洲情色 制服丝袜| 美女视频免费永久观看网站| 国产免费现黄频在线看| svipshipincom国产片| 久久久精品区二区三区| 免费观看人在逋| 国产精品三级大全| 国产爽快片一区二区三区| 亚洲欧美一区二区三区黑人| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 成人亚洲欧美一区二区av| av免费观看日本| 99久久精品国产亚洲精品| 精品人妻熟女毛片av久久网站| 国产一区二区三区综合在线观看| 男女床上黄色一级片免费看| 国产精品一区二区在线观看99| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 久久久久精品国产欧美久久久 | 少妇精品久久久久久久| 亚洲人成网站在线观看播放| 国产伦人伦偷精品视频| 最黄视频免费看| 欧美国产精品一级二级三级| 精品卡一卡二卡四卡免费| 97人妻天天添夜夜摸| 自线自在国产av| 国产不卡av网站在线观看| 国产成人精品久久久久久| 99热国产这里只有精品6| 久久97久久精品| 日韩中文字幕欧美一区二区 | 亚洲第一区二区三区不卡| 纵有疾风起免费观看全集完整版| 亚洲天堂av无毛| 777米奇影视久久| 国产99久久九九免费精品| 免费日韩欧美在线观看| 久久久久久人人人人人| 国产淫语在线视频| 国产欧美亚洲国产| 日韩av在线免费看完整版不卡| 观看av在线不卡| 日韩av免费高清视频| 高清欧美精品videossex| 国产乱人偷精品视频| 亚洲欧美一区二区三区黑人| 国产精品女同一区二区软件| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 97精品久久久久久久久久精品| 19禁男女啪啪无遮挡网站| xxx大片免费视频| 国产亚洲一区二区精品| 精品免费久久久久久久清纯 | 日韩免费高清中文字幕av| av视频免费观看在线观看| 欧美日韩视频精品一区| 免费日韩欧美在线观看| 亚洲男人天堂网一区| 操美女的视频在线观看| 妹子高潮喷水视频| 精品免费久久久久久久清纯 | 欧美日韩亚洲高清精品| 黄频高清免费视频| 黑人欧美特级aaaaaa片| 新久久久久国产一级毛片| 久久免费观看电影| 国产在视频线精品| 岛国毛片在线播放| www.熟女人妻精品国产| 涩涩av久久男人的天堂| 国产极品天堂在线| 亚洲精品日本国产第一区| 久久狼人影院| 一级片'在线观看视频| 丰满乱子伦码专区| 黄色视频在线播放观看不卡| 免费黄频网站在线观看国产| 免费观看av网站的网址| 最新的欧美精品一区二区| 日本欧美视频一区| 国产在线免费精品| 久久人妻熟女aⅴ| 一区二区三区精品91| 国产毛片在线视频| 最近最新中文字幕大全免费视频 | 亚洲国产欧美一区二区综合| 91国产中文字幕| 久久久久视频综合| 在现免费观看毛片| 婷婷成人精品国产| 久久天堂一区二区三区四区| 满18在线观看网站| 亚洲av男天堂| 嫩草影院入口| 免费黄网站久久成人精品| 久久精品人人爽人人爽视色| 午夜老司机福利片| 国产av国产精品国产| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99| 成人国产av品久久久| 午夜影院在线不卡| 国产成人91sexporn| 天堂俺去俺来也www色官网| 黄频高清免费视频| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| 国产亚洲最大av| 日本91视频免费播放| 国产精品一国产av| 日韩中文字幕欧美一区二区 | 啦啦啦在线观看免费高清www| 亚洲专区中文字幕在线 | 免费黄网站久久成人精品| 在线看a的网站| 91精品伊人久久大香线蕉| 亚洲精品一二三| 777米奇影视久久| 日韩制服丝袜自拍偷拍| 69精品国产乱码久久久| 水蜜桃什么品种好| 永久免费av网站大全| 99久久综合免费| 国产毛片在线视频| 久久影院123| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频 | 不卡av一区二区三区| 国产探花极品一区二区| 青春草亚洲视频在线观看| 男女午夜视频在线观看| 久久这里只有精品19| 老汉色∧v一级毛片| 伊人亚洲综合成人网| 久久国产亚洲av麻豆专区| 久久久欧美国产精品| 狂野欧美激情性xxxx| 久久久久久久大尺度免费视频| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区久久| 国产在线免费精品| 日本av手机在线免费观看| 久久人人97超碰香蕉20202| 日韩 欧美 亚洲 中文字幕| 老司机影院成人| 老汉色∧v一级毛片| 尾随美女入室| 热99久久久久精品小说推荐| 青春草国产在线视频| 亚洲欧美一区二区三区黑人| 最近手机中文字幕大全| 黑丝袜美女国产一区| 校园人妻丝袜中文字幕| 欧美黑人欧美精品刺激| 激情五月婷婷亚洲| 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 美女中出高潮动态图| 人人妻人人澡人人看| 亚洲精品国产区一区二| 国产 一区精品| 97精品久久久久久久久久精品| 最近最新中文字幕大全免费视频 | 午夜福利影视在线免费观看| 成年人免费黄色播放视频| 欧美精品av麻豆av| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| svipshipincom国产片| 国产国语露脸激情在线看| 中文字幕高清在线视频| 熟妇人妻不卡中文字幕| 日本黄色日本黄色录像| 成人国产麻豆网| 日韩欧美精品免费久久| 一区福利在线观看| 日本av免费视频播放| 午夜91福利影院| 国产午夜精品一二区理论片| 日本一区二区免费在线视频| 色婷婷久久久亚洲欧美| 亚洲精品美女久久久久99蜜臀 | 欧美日韩一级在线毛片| 一区二区三区乱码不卡18| 久热这里只有精品99| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 国产精品无大码| 久久人人爽人人片av| 电影成人av| 9热在线视频观看99| 欧美xxⅹ黑人| 曰老女人黄片| 国产福利在线免费观看视频| 午夜激情av网站| 国产成人精品无人区| 在现免费观看毛片| 国产成人精品久久久久久| 国产精品久久久久成人av| 免费高清在线观看日韩| 欧美乱码精品一区二区三区| 肉色欧美久久久久久久蜜桃| 色婷婷久久久亚洲欧美| 国产精品久久久久久人妻精品电影 | 国产午夜精品一二区理论片| 制服人妻中文乱码| 亚洲久久久国产精品| 欧美日韩视频高清一区二区三区二| 午夜福利,免费看| 黑人欧美特级aaaaaa片| 亚洲国产日韩一区二区| 嫩草影院入口| 在线天堂最新版资源| 精品久久久精品久久久| 亚洲七黄色美女视频| 在现免费观看毛片| 久久久亚洲精品成人影院| 国产精品99久久99久久久不卡 | 中文字幕亚洲精品专区| 亚洲国产av新网站| 国产亚洲av片在线观看秒播厂| 最新在线观看一区二区三区 | 久久久欧美国产精品| 男女国产视频网站| 高清视频免费观看一区二区| 日日爽夜夜爽网站| 亚洲成人av在线免费| 午夜福利影视在线免费观看| 永久免费av网站大全| 欧美日韩av久久| 国产精品 国内视频| 黄色视频在线播放观看不卡| 超色免费av| 一区二区三区激情视频| 日本午夜av视频| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看| 成人三级做爰电影| 亚洲视频免费观看视频| 天美传媒精品一区二区| videosex国产| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| a 毛片基地| 久久天躁狠狠躁夜夜2o2o | 人妻一区二区av| 精品一区二区三区av网在线观看 | 国产视频首页在线观看| 亚洲成av片中文字幕在线观看| 久久青草综合色| 日韩熟女老妇一区二区性免费视频| 午夜日韩欧美国产| 亚洲欧美一区二区三区黑人| 一级a爱视频在线免费观看| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区| 国产精品无大码| 久久久久久人人人人人| 亚洲免费av在线视频| 国产免费又黄又爽又色| 精品一区在线观看国产| 久久久久精品人妻al黑| av国产久精品久网站免费入址| 免费观看人在逋| 中文乱码字字幕精品一区二区三区| 电影成人av| 黄网站色视频无遮挡免费观看| 午夜av观看不卡| 欧美日韩亚洲高清精品| 最新在线观看一区二区三区 | 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| av女优亚洲男人天堂| 久久天躁狠狠躁夜夜2o2o | 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 美女脱内裤让男人舔精品视频| 不卡av一区二区三区| 老鸭窝网址在线观看| 最近的中文字幕免费完整| 两性夫妻黄色片| 18禁动态无遮挡网站| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 国产人伦9x9x在线观看| 伦理电影大哥的女人| 日韩欧美精品免费久久| 老鸭窝网址在线观看| 天堂俺去俺来也www色官网| 免费观看a级毛片全部| 亚洲伊人色综图| 在线观看三级黄色| 尾随美女入室| 99久久综合免费| 中文字幕人妻丝袜制服| 97精品久久久久久久久久精品| 国产黄频视频在线观看| 久久久久久久国产电影| 777米奇影视久久| 两个人免费观看高清视频| 91老司机精品| 国产免费现黄频在线看| 热99国产精品久久久久久7| 亚洲一区二区三区欧美精品| 999精品在线视频| 国产一区二区在线观看av| 国产精品久久久av美女十八| 久久久精品94久久精品| 国产探花极品一区二区| 天天躁日日躁夜夜躁夜夜| 中文天堂在线官网| 国产无遮挡羞羞视频在线观看| 美女主播在线视频| 亚洲欧美色中文字幕在线| 男女边吃奶边做爰视频| 啦啦啦 在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品无人区| 天堂俺去俺来也www色官网| 欧美久久黑人一区二区| 在线精品无人区一区二区三| 一级毛片我不卡| 亚洲精品aⅴ在线观看| 亚洲欧美激情在线| 亚洲欧美成人综合另类久久久| 国产成人系列免费观看| 久久热在线av| 黑丝袜美女国产一区| a 毛片基地| 亚洲天堂av无毛| 十八禁高潮呻吟视频| 高清av免费在线| 久久av网站| 中文字幕高清在线视频| 伊人亚洲综合成人网| 亚洲成人一二三区av| 亚洲av男天堂| 赤兔流量卡办理| 亚洲,一卡二卡三卡| 在线天堂最新版资源| 亚洲五月色婷婷综合| 波多野结衣一区麻豆| 免费黄频网站在线观看国产| 亚洲精品国产色婷婷电影| 大香蕉久久网| 亚洲精品日本国产第一区| 91aial.com中文字幕在线观看| 国产深夜福利视频在线观看| 国产精品 欧美亚洲| 99re6热这里在线精品视频| 人妻人人澡人人爽人人| 亚洲av国产av综合av卡| 亚洲伊人色综图| 亚洲国产中文字幕在线视频| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美软件| 免费高清在线观看视频在线观看| 国产乱人偷精品视频| 国产精品三级大全| 女性生殖器流出的白浆| 久久久久精品性色| 99精品久久久久人妻精品| 无遮挡黄片免费观看| 中国国产av一级| 欧美最新免费一区二区三区| 最近的中文字幕免费完整| 精品国产乱码久久久久久小说| 亚洲国产看品久久| 亚洲精品久久午夜乱码| 亚洲欧美精品自产自拍| 青春草国产在线视频| 桃花免费在线播放| 18禁国产床啪视频网站| 午夜福利影视在线免费观看| 国产极品天堂在线| 十八禁高潮呻吟视频| 欧美少妇被猛烈插入视频| 五月开心婷婷网| 777久久人妻少妇嫩草av网站| 亚洲熟女精品中文字幕| 日韩 欧美 亚洲 中文字幕| 色视频在线一区二区三区| 精品免费久久久久久久清纯 | 精品人妻熟女毛片av久久网站| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 在线观看人妻少妇| 亚洲国产欧美在线一区| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 色94色欧美一区二区| 午夜免费鲁丝| 两个人免费观看高清视频| 又粗又硬又长又爽又黄的视频| 久久天堂一区二区三区四区| 好男人视频免费观看在线| 丝袜人妻中文字幕| 新久久久久国产一级毛片| 丰满迷人的少妇在线观看| 肉色欧美久久久久久久蜜桃| 黄色 视频免费看| 中文精品一卡2卡3卡4更新| 精品少妇黑人巨大在线播放| 成年人午夜在线观看视频| 欧美人与性动交α欧美精品济南到| 男女无遮挡免费网站观看| 国产成人免费无遮挡视频| 久久久久久久久久久久大奶| 亚洲伊人色综图| 亚洲欧洲精品一区二区精品久久久 | 日本av免费视频播放| 欧美97在线视频| 啦啦啦视频在线资源免费观看| 电影成人av| 极品少妇高潮喷水抽搐| 国产成人av激情在线播放| 国产福利在线免费观看视频| 久久久久久人妻| 国产精品三级大全| 亚洲欧洲国产日韩| 亚洲成人国产一区在线观看 | 欧美在线黄色| 日日爽夜夜爽网站| 伊人亚洲综合成人网| 亚洲伊人色综图| 黄片播放在线免费| 天天操日日干夜夜撸| 久久人人97超碰香蕉20202| 欧美另类一区| 欧美日韩综合久久久久久| 韩国高清视频一区二区三区| 又粗又硬又长又爽又黄的视频| 国产在线免费精品| 亚洲精品成人av观看孕妇| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精| 热99国产精品久久久久久7| 最黄视频免费看| 两个人免费观看高清视频| 亚洲综合精品二区| 亚洲色图 男人天堂 中文字幕| 亚洲欧美色中文字幕在线| 国产免费视频播放在线视频| 午夜日本视频在线| 一级爰片在线观看| 丁香六月欧美| 最新的欧美精品一区二区| 免费少妇av软件| 亚洲国产欧美网| 成人黄色视频免费在线看| 两个人免费观看高清视频| 中文字幕精品免费在线观看视频| 99香蕉大伊视频| 1024香蕉在线观看| 无限看片的www在线观看| 少妇被粗大猛烈的视频| 亚洲欧美成人精品一区二区| 亚洲精品日本国产第一区| 日本vs欧美在线观看视频|