• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pd catalysts supported on rGO-TiO2 composites for direct synthesis of H2O2:Modification of Pd2+/Pd0 ratio and hydrophilic property☆

    2018-05-26 07:29:20ShuyingChenRuiTuJunLiXiaohuaLu

    Shuying Chen,Rui Tu,Jun Li*,Xiaohua Lu*

    State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    Hydrogen peroxide(H2O2)is a green,versatile chemical commodity with wide applications,such as bleaching ofpulp/paper and synthesis of chemicals[1–4].Currently the industrial production of H2O2is mainly realized by anthraquinone process,which has serious drawbacks including the use of large amount of organic solvent.Compared with the anthraquinone process,the direct synthesis of H2O2from H2and O2is a greener process and thus attracts broad attention[5–17].However,the direct process is still not industrialized,even though it has been studied for decades.The major problem is the low productivity and selectivity of H2O2which resulted from the hydrogenation and decomposition of the generated H2O2.

    Many efforts have been made to develop efficient catalysts to address this problem.Among them,Pd supported catalysts have been extensively studied[5,8,10,17].The electronic state of Pd is proved to play a vital role in in fluencing the selectivity of H2O2.It was reported that the selectivity of H2O2on PdO is higher than that on Pd0,due to the lower hydrogenation and decomposition rate of H2O2on PdO[18–20].Pd0is more favorable for H2conversion because H2is more easily dissociated on Pd0sites[21,22].Therefore,the activity of the catalysts is actually determined by the synergy of Pd2+and Pd0.The latest report from Han et al.also confirmed that both Pd2+and Pd0have an important impact on the catalystic performance for H2O2synthesis[17].

    The hydrophobicity or hydrophilicity of the catalysts also has significant effects on the performance of the catalysts.Chuang et al.revealed that the repulsive effect between the hydrophobic groups on the catalyst surface and H2O2molecule could reduce the secondary adsorption of H2O2,which could significantly lower the hydrogenation rate of H2O2[23].Wang et al.found that the hydrogenation and decomposition rate of H2O2is much higher on catalyst surface with many hydrophilic groups[24].Therefore,the hydrophobic modification of the catalysts would be an effective mothed to improve the H2O2selectivity.

    TiO2is the frequently used support in the direct synthesis of H2O2[13,18,25,26],because it has several advantages including the strong interaction with Pd particles,stability and nontoxicity[27–29].However,the H2O2hydrogenation rate on Pd/TiO2ishigherthan thaton Pd/carbon owing to the hydrophilic property of TiO2[25].According to the above analysis,the hydrophobic nature of the catalyst surface and the electronic state of Pd particles are both controllable factors for the improvement of the H2O2selectivity.If two of them are joined together,the novel catalysts may be more effective for H2O2synthesis.Therefore,we think that the nanostructured composites of TiO2and graphene supported catalystseem to be a practical approach to regulate the above two factors.Graphene is a well-known carbonaceous material with orderly graphite structure which has been proved to be advantageous for high H2O2selectivity[24].Moreover,graphene could modify the electronic structure of Pd due to its unique electronic property[30–33],but the interaction between metal and carbon materials is weak that would lead to the instability of catalysts[23].Thus,the introduction of graphene to composite with TiO2could modify the oxide state of Pd particles and regulate the hydrophilic/hydrophobic nature of catalyst surface simultaneously.In this work,hydrophilic TiO2was combined with reduced graphene oxide(rGO)in hydrothermal method and then Pd nanoparticles were loaded with incipient wetness impregnation.The rGO-TiO2composites supported Pd catalysts showed higher selectivity and productivity ofH2O2compared with Pd/TiO2because ofthe reduced hydrogenation rate of H2O2.

    2.Experimental

    2.1.Catalyst preparation

    Graphene-TiO2(rGO-TiO2)composites with different rGO contents were prepared in a typical hydrothermal method.A certain amount of graphene oxide was well dispersed in deionized water/ethanol mixed solution with ultrasonic treatment,where the graphene oxide solution was acquired by the modified Hummer's method[34].TiO2(P25,20%rutile and 80%anatase,Degussa)was added into the above slurry under vigorous stirring.After 2 h,the suspension was transferred to a 100 ml Te flon-lined autoclave to heat at 180°C for 12 h.The resultant sample was regained by filtration and washed with deionized water,then it was dried at 110°C in vacuum oven overnight to obtain rGOTiO2composite.The composite of rGO and P25 was denoted as rGP-x,x represents the mass percentage of rGO in the composites.

    The Pd/rGP-x catalysts used in this work were synthesized in the incipient-wetness impregnation method.PdCl2was chosen as metal precursors(Sigma–Aldrich,99.9%),which was dissolved in hydrochloric acid solution.An aqueous solution of PdCl42?was added into support dropwise with stirring until the paste was formed.After aging for several hours,the sample was dried at 110°C in vacuum oven overnight.Before the reaction,the catalyst was reduced at 300°C in H2flow.The theoretical loading of Pd for all the catalysts was 3 wt%.

    2.2.Catalyst characterization

    X-ray diffraction(XRD)spectrum was recorded on a Bruker D/8 Advance X-ray diffractometer working at a voltage of 40 kV and a current of 100 mA with CuKαradiation in the 2θ range of 10°–80°.Laser Raman spectroscopic measurements were performed on Horiba–Jobin Yvon Labram HR800 Raman spectrometer with a 514.5 nm Ar+laser.Fourier transform infrared(FTIR)spectra were carried out using Perkin-Elmer spectrometer in the frequency range of 4000–450 cm?1with a resolution of 4 cm?1.The morphologies and dispersion of particle size of the catalysts were examined by transmission electron microscopy(TEM:JEOL JEM-2100,Japan)at120 kV.Axis AXIS UltraDLD using AlKαX-rays source was employed to measure X-ray photoelectron spectroscopy(XPS)of catalysts.

    2.3.Catalyst performance

    The directsynthesis ofH2O2from H2and O2wasperformed in a glass reactor at atmospheric pressure and 10°C,which is similar to the one reported in the literature[17].In the process,the reagent gases with a total flow rate of 60 ml·min?1(H2:O2:N2=9:36:15)were blended in a pre-mixer and then imported into the reactor.50 mg catalyst was dispersed in reaction medium contained 60 ml ethanol and 0.38 ml concentrated H2SO4.The rate of agitation in the reactor was kept at 950 r·min?1to minimize masstransferresistance.Gaschromatography with thermal conductivity detector was used to analyze the conversion of H2on-line.The concentration of H2O2was detected by colorimetry after the complexation of the reaction slurry with a TiOSO4/H2SO4reagent.The selectivity of H2O2was calculated with the following formula:

    Moreover,the hydrogenation and decomposition of H2O2over catalysts were also investigated in the similar reaction conditions described above.The initial H2O2added to reaction solvent had a concentration of 0.5 wt%.And the reactant gas was fixed with a flow of H2/N2(9:51 ml·min?1)for hydrogenation and a flow of N2(60 ml·min?1)for decomposition reaction.

    3.Results and Discussion

    3.1.Characterization

    Raman spectra of P25,rGO,and rGP-x composites were displayed in Fig.1.It could be seen that both rGO and rGP-x composites showed two Raman bands at 1330 cm?1(D band)and 1590 cm?1(G band),which are attributed to the graphite substrate[35].And these two bands do not appear atthe spectrum ofP25.As expected,the intensity ofD peaks and G peaks of rGP-x composites reduced along with the decreasing rGO content in rGP-x composites.Even the content of rGO is only 0.025 wt%,the signal of D band and G band are still detectable in Raman spectra,which verifies the successful introduction of rGO in the composites.

    Fig.1.Raman spectra of series of rGP-x composites.

    Fig.2.FTIR spectra of graphene,P25 and rGP-0.025 composite.

    The FTIR spectra of P25,graphene,and rGP-0.025 were exhibited in Fig.2.The absorption bands located at around 1600 cm?1are both found in the curve of graphene and rGP-0.025,which is attributed to the skeletal vibration of the graphene sheets[36].It also indicates that the graphene oxide is reduced to graphene after the hydrothermal treatment.For pure P25 particles,the spectrum showed a peak around at 641 cm?1,which results from the vibration of the Ti--O--Ti bond.However,the absorption peak below 1000 cm?1of rGP-0.025 was much deeper than the corresponding peak of P25,which can be identified as the combination ofthe vibration ofTi--O--Tibond and Ti--O--C bond(798 cm?1)[36].In otherwords,thatmeans the rGOand P25 have been successfully chemically combined by the interaction between the residualcarboxylic groups on the surface ofgraphene oxide and the surface hydroxyl groups of P25 during the hydrothermal process.

    Fig.3.TEM images of series of Pd/rGP-0.5(a),(b),Pd/rGP-0.05(c),(d),Pd/rGP-0.025(e),(f)and Pd/P25(g),(h).

    The morphology and distribution of the nanoparticles for Pd/rGP-x catalysts were detected by TEM as shown in Fig.3.The rGO sheets with some wrinkles can be found in Pd/rGP-x catalysts in Fig.3(b),(d),(f),as shown by the red arrows,which is consistent with the results of the Raman spectra.The microstructure of Pd/P25 particles was showed in Fig.3(h).It is revealed that the morphology of TiO2didn't change after hydrothermal treatment.After the statistics,the final mean particle size of Pd in Pd/rGP-0.5,Pd/rGP-0.05,Pd/rGP-0.025 and Pd/P25 catalysts were 2.54 nm,2.83 nm,2.76 nm,and 3.03 nm,respectively.It is illustrated that the Pd particles with small size disperse uniformly on the supports.There is also little difference among them,which reveals that the introduction of rGO has negligible influences on the particle size of Pd.

    The XRDpatterns for series ofPd/rGP-x catalysts were given in Fig.4.The diffraction peaks of Pd/P25 were indexed to anatase(JCPDF 21–1272)and rutile(JCPDF 21–1276)[37].While almost nothing had changed in the XRD patterns of Pd/rGP-x after the hydrothermal treatment and introduction of rGO,compared with Pd/P25.It might be ascribed to the low content or obscured diffraction peak of rGO at 24.5°shielded by the peak of anatase TiO2at 25.4°[37].In addition,no diffraction peaks for Pd had been found in Fig.4,which indicated the good dispersion of Pd on supports.

    Fig.4.XRD patterns of Pd/P25 and series of Pd/rGP-x catalysts.

    Fig.5.XPS spectroscopy of catalysts:(1)Pd/rGP-0.5;(2)Pd/rGP-0.05;(3)Pd/rGP-0.025;(4)Pd/P25.

    The XPS spectra of Pd3d for Pd/rGP-x catalysts were given in Fig.5.There are two pairs of peaks that appeared for Pd3d.One pairs center at the binding energy of 335.1 eV and 340.4 eV are assigned to metallic Pd03d5/2and Pd03d3/2respectively,the other one locate at 336.4 eV and 341.7 eV,corresponding to Pd2+[38].The atomic ratios of Pd0/Pd2+are believed to be a vital influence on the performance of catalysts,which can be quantified according to the peak area of fitting curves.The detailed results are shown in Table 1.Both Pd0and Pd2+are identified for all the catalysts,the ratio of Pd2+increased from 46.3%(Pd/P25)to 56.4%(Pd/rGP-0.5).It can be found that the introduction of rGO obviously modified the surface atomic ratios of Pd2+and Pd0of the catalysts.Due to the strong ability for electronic transmissions of rGO,it is facile to transfer electron from Pd which is located on the surface of rGP-x to the support[28,29].Therefore,it is easier to form the Pd2+species than Pd/P25[39].As a result,the ratio of Pd2+increases along with the rising content of rGO in catalysts.

    Table 1 The quantified XPS data of the surface Pd atoms

    The disperse state of the samples in the biphasic solvent of water and carbon tetrachloride were displayed in the Fig.6.The bottom layer is carbon tetrachloride phase and the upper layer is water phase.P25 powder is dispersed homogeneously in the phase of water while rGO is located at the bottom,indicating the different hydrophilicity and hydrophobicity.In addition,all the rGO-P25 composites disperse in the carbon tetrachloride phase;it means that the composites are all hydrophobic.And they tend to focus on the interface of biphasic solvent with the decreasing concentration of rGO in composites,indicating that the corresponding hydrophobicity becomes weaker.The difference in hydrophobicity brings about different interaction forces between H2O2and support,which has an important impact on the selectivity of H2O2according to the previous works in the literatures[24,40].The weaker interaction can decrease the hydrogenation rate of H2O2,resulting in the higher H2O2selectivity.Moreover,the hydrophobicity of catalyst surface could reduce the transfer resistance for the diffusion of H2to the catalysts surface[23].

    Fig.6.The hydrophobic and hydrophilic performance ofrGP-x composites:1–rGO,2–rGP-2,3–rGP-0.5,4–rGO-0.1,5–rGP-0.05,6–rGP-0.025 and 7–P25.

    3.2.Catalytic performance

    Fig.7.The H2 conversion and H2O2 selectivity,H2O2 productivity(a)and H2O2 hydrogenation and decomposition rate(b)of catalysts.

    The catalytic performance and H2O2hydrogenation/decomposition of Pd/rGP-x catalysts were shown in Fig.7.As shown in Fig.7,when the rGO was introduced,the activities of the catalysts were significantly changed compared with Pd/P25.Firstly,the H2O2selectivity improved from 51%to 57%and H2conversion decreased evidently along with the amount of rGO in catalysts increasing from 0.025%to 0.05%.However,as the content of rGO continued to increase and were more than 0.05%,the H2O2selectivity presented a downward trend,while a small increase in the H2conversion was observed.To address this,the side reactions including the hydrogenation and decomposition of H2O2were investigated.The detailed data are given in Table 2.And the experimental data of Pd/P25 what we achieved as reference were similar with the data in the literature[17].The concentration of H2O2had a little change in N2flow,which reduced evidently when H2/N2mixture was bubbled into the reactor.The fact indicates that H2O2hydrogenation is the main cause for the decrease of the H2O2selectivity.According to the characterization results mentioned above,the surface ratio of Pd2+and hydrophobicity of catalysts increased with the rising content of rGO.It was reported that the Pd2+and hydrophobicity of catalysts surface is beneficial for depressing the hydrogenation of H2O2[18,23].On the other hand,the Pd0sites are favorable for the H2conversion.Thus,the H2O2selectivity of Pd/rGP-x(x=0.025,0.05)turned out an upward drift and was higher than Pd/P25,the H2conversion of Pd/rGP-0.05 decreased obviously and it led to a low H2O2productivity.However,H2O2is an active intermediate,and it is inclined to leave from the catalyst sites through liquid phase rather than gas phase[23].If the surface of catalysts is too hydrophobic,H2O2generated on the catalysts site will tend to hydrogenate successively to form H2O.Yet the higher hydrophobicity could reduce the transfer resistance for H2to reach the active sites[23].Therefore,as the content of rGO was more than 0.05%,the H2O2hydrogenation rate of catalysts was much higher than Pd/rGP-x(x=0.025,0.05)and the conversion of H2increased gradually.Then H2O2selectivity of Pd/rGP-x(x=0.1,0.5,2)decreased and showed a descending tendency.The change of H2conversion and H2O2selectivity indicates that only introducing appropriate amount of graphene is advantageous for H2O2synthesis.

    For Pd/rGP-0.025,the hydrophobicity of catalyst surface caused by the introduction of rGO could reduce the transfer resistance of reactant gas and promote the desorption of H2O2.While compared with Pd/P25,a small decrease was observed in the ratio of Pd0of Pd/rGP-0.025.The combined effects of increased hydrophobicity and decreased ratio of Pd0resulted in that the H2conversion of Pd/rGP-0.025(28.1%)only increased a little than Pd/P25(26.2%).The H2O2hydrogenation rate of the Pd/rGP-0.025 was 2235.46 mmol H2O2·(g Pd)?1·h?1,which reduced a lot compared with Pd/P25.Ultimately,a H2conversion of 28%and a relative high H2O2selectivity of 51%towards Pd/rGP-0.025 brought about a H2O2productivity of 2333.2 mmol H2O2·(g Pd)?1·h?1,which increased by 26%than Pd/P25.

    4.Conclusions

    rGP-x(x=0,0.025,0.05,0.1,0.5,2,)supports with different rGO contents(x,wt%)were prepared in hydrothermal method.Then Pd/rGP-x catalysts prepared in an incipient wetness method were applied for the direct synthesis of H2O2from H2and O2.The ratio of Pd2+and the hydrophobicity of the catalysts increased along with the rising amount of rGO.Both the modified electronic structure of Pd and the hydrophobicity of the catalyst surface play an important role in enhancing the productivity of H2O2.The selectivity of H2O2appeared to increase firstly and then decrease at the content of 0.1 wt%,as the amount of rGO varied in the range of 0.025 wt%–2 wt%.It indicates that only the modified ratio of Pd2+/Pd0and hydrophobicity of catalysts caused byintroducing appropriate amount of rGO can achieve a high selectivity of H2O2.Among all the catalysts,the Pd/rGP-0.025 catalyst with relatively high selectivity of H2O2showed the largest H2O2productivity of 2333.2 mmol H2O2·(g Pd)?1·h?1,that increased by 26%compared with Pd/P25.Thus,the composites of reduced graphene oxide and TiO2could serve as a promising route forthe design of efficient catalysts.

    Table 2 Catalytic performance of Pd catalysts supported on rGP-x composites

    [1]J.K.Edwards,G.J.Hutchings,Palladium and gold–palladium catalysts for the direct synthesis of hydrogen peroxide,Angew.Chem.Int.Ed.47(2008)9192–9198.

    [2]C.Samanta,Direct synthesis of hydrogen peroxide from hydrogen and oxygen:An overview of recent developments in the process,Appl.Catal.A Gen.350(2008)133–149.

    [3]R.Hage,A.Lienke,Applications of transition-metal catalysts to textile and woodpulp bleaching,Angew.Chem.Int.Ed.45(2005)206–222.

    [4]Y.Y.Lu,Y.Liu,B.W.Xia,W.Q.Zuo,Phenol oxidation by combined cavitation water jet and hydrogen peroxide,Chin.J.Chem.Eng.20(4)(2012)760–767.

    [5]V.R.Choudhary,C.Samanta,Role of chloride or bromide anions and protons for promoting the selective oxidation of H2by O2to H2O2over supported Pd catalysts in an aqueous medium,J.Catal.238(2006)28–38.

    [6]C.Samanta,V.R.Choudhary,Direct formation of H2O2from H2and O2and decomposition/hydrogenation of H2O2in aqueous acidic reaction medium over halide-containing Pd/SiO2catalytic system,Catal.Commun.8(2007)2222–2228.

    [7]V.R.Choudhary,P.Jana,Direct oxidation of H2to H2O2over different supported PdO catalysts in aqueous acidic medium:In fluence of the reduction,calcination temperature and support of the catalyst on its net H2O2formation activity,Catal.Commun.9(2008)1624–1629.

    [8]D.P.Dissanayake,J.H.Lunsford,The direct formation of H2O2from H2and O2over colloidal palladium,J.Catal.214(2003)113–120.

    [9]Q.Liu,J.Lunsford,The roles of chloride ions in the direct formation of H2O2from H2and O2over a Pd/SiO2catalyst in a H2SO4/ethanol system,J.Catal.239(2006)237–243.

    [10]Q.Liu,J.C.Bauer,R.E.Schaak,J.H.Lunsford,Supported palladium nanoparticles:An efficient catalyst for the direct formation of H2O2from H2and O2,Angew.Chem.Int.Ed.47(2008)6221–6224.

    [11]P.Landon,P.J.Collier,A.J.Papworth,C.J.Kiely,G.J.Hutchings,Direct formation of hydrogen peroxide from H2/O2using a gold catalyst,Chem.Commun.(2002)2058–2059.

    [12]G.Li,J.K.Edwards,A.F.Carley,G.J.Hutchings,Direct synthesis of hydrogen peroxide from H2and O2and in situ oxidation using zeolite-supported catalysts,Catal.Commun.8(2007)247–250.

    [13]J.K.Edwards,E.Ntainjua,A.F.Carley,A.Herzing,C.J.Kiely,G.J.Hutchings,Direct synthesis of H2O2from H2and O2over gold,palladium,and gold–palladium catalysts supported on acid-pretreated TiO2,Angew.Chem.Int.Ed.48(2009)8512–8515.

    [14]B.S.Jennifer,J.K.Edwards,N.N.Edwin,A.F.Carley,J.A.Herzing,G.J.Hutchings,Switching off hydrogen peroxide hydrogenation in the direct synthesis process,Science 23(2009)1037–1041.

    [15]J.K.Edwards,J.Pritchard,L.Lu,M.Piccinini,G.Shaw,A.F.Carley,D.J.Morgan,C.J.Kiely,G.J.Hutchings,The direct synthesis of hydrogen peroxide using platinumpromoted gold-palladium catalysts,Angew.Chem.Int.Ed.53(2014)2381–2384.

    [16]S.J.Freakley,J.H.Harrhy,L.Lu,D.A.Crole,D.J.Morgan,J.K.Edwards,A.F.Carley,A.Y.Borisevich,G.J.Hutchings,Palladium-tin catalysts for the direct synthesis of H2O2with high selectivity,Science 351(2016)965–968.

    [17]L.K.Ouyang,P.F.Tian,G.J.Da,X.C.Xu,C.Ao,T.Y.Chen,Y.F.Han,The origin of active sites for direct synthesis of H2O2on Pd/TiO2catalysts:Interfaces of Pd and PdO domains,J.Catal.321(2015)70–80.

    [18]V.R.Choudhary,C.Samanta,T.V.Choudhary,Direct oxidation of H2to H2O2over Pdbased catalysts:In fluence of oxidation state,support and metal additives,Appl.Catal.A Gen.308(2006)128–133.

    [19]V.R.Choudhary,P.Jana,Direct oxidation of H2to H2O2over PdO/Al2O3catalysts in aqueous acidic medium:In fluence on H2O2formation of Pd loading,calcination temperature and reduction of catalyst and presence of halide anions,Catal.Commun.9(2008)2371–2375.

    [20]V.R.Choudhary,C.Samanta,T.V.Choudhary,Influence of nature/concentration of halide promoters and oxidation state on the direct oxidation of H2to H2O2over Pd/ZrO2catalysts in aqueous acidic medium,Catal.Commun.8(2007)1310–1316.

    [21]J.Lunsford,The direct formation of H2O2from H2and O2over palladium catalysts,J.Catal.216(2003)455–460.

    [22]S.Chinta,A mechanistic study of H2O2and H2O formation from H2and BO2catalyzed by palladium in an aqueous medium,J.Catal.225(2004)249–255.

    [23]L.Fu,K.T.Chuang,R.Fiedorow,Selective oxidation ofhydrogen to hydrogen peroxide,Stud.Surf.Sci.Catal.72(1992)33–41.

    [24]B.Z.Hu,W.P.Deng,R.S.Li,Q.H.Zhang,Y.Wang,F.Delplanque-Janssens,D.Paul,F.Desmedt,P.Miquel,Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen,J.Catal.319(2014)15–26.

    [25]J.K.Edwards,A.Thomas,B.E.Solsona,P.Landon,A.F.Carley,G.J.Hutchings,Comparison of supports for the direct synthesis of hydrogen peroxide from H2and O2using au–Pd catalysts,Catal.Today 122(2007)397–402.

    [26]L.K.Ouyang,G.J.Da,P.F.Tian,T.Y.Chen,G.D.Liang,J.Xu,Y.F.Han,Insight into active sites of Pd–Au/TiO2catalysts in hydrogen peroxide synthesis directly from H2and O2,J.Catal.311(2014)129–136.

    [27]S.J.Tauster,S.C.Fung,R.L.Garten,Strong metal-support interactions:Group 8 noble metals supported on titanium dioxide,J.Am.Chem.Soc.100(1978)170–175.

    [28]Q.S.Yang,Y.J.Liao,L.L.Mao,Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst,Chin.J.Chem.Eng.20(3)(2012)572–576.

    [29]M.J.Sampaio,L.M.Pastrana-Martinez,A.M.Silva,J.G.Buijnsters,C.Han,C.G.Silva,A.C.Carabineiro,D.D.Dionysiou,J.L.Faria,Nanodiamond–TiO2composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light,RSC Adv.5(2015)58363–58370.

    [30]A.H.Castro,F.Guinea,M.R.Peres,K.S.Novoselov,A.K.Geim,The electronic properties of graphene,Rev.Mod.Phys.81(2009)109–162.

    [31]Y.Nishina,J.Miyata,R.Kawai,K.Gotoh,Recyclable Pd–graphene catalyst:Mechanistic insights into heterogeneous and homogeneous catalysis,RSC Adv.2(2012)9380–9382.

    [32]L.M.Pastrana-Martínez,A.T.Silva,N.N.C.Fonseca,J.R.Vaz,J.L.Figueiredo,J.L.Faria,Photocatalytic reduction of CO2with water into methanol and ethanol using graphene derivative–TiO2composites:Effect of pH and copper(I)oxide,Top.Catal.59(2016)1279–1291.

    [33]G.D.Jiang,Q.Chang,F.F.Yang,X.Y.Hu,H.Q.Tang,Sono-assisted preparation of magnetic ferroferric oxide/graphene oxide nanoparticles and application on dye removal,Chin.J.Chem.Eng.23(2015)510–515.

    [34]W.S.Hummers,R.E.Offeman,Preparation of graphitic oxide,J.Am.Chem.Soc.80(1958)1939.

    [35]Y.X.Zhang,H.P.Li,X.L.Cui,Y.H.Lin,Graphene/TiO2nanocomposites:synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting,J.Mater.Chem.A 20(2010)2801–2806.

    [36]H.Zhang,X.J.Lv,Y.M.Li,Y.Wang,J.H.Li,P25-graphene composite as a high performance photocatalyst,ACS Nano 4(1)(2010)380–386.

    [37]Y.H.Zhang,Z.R.Tang,X.Z.Fu,Y.Xu,TiO2graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant is TiO2graphene truly different from other TiO2carbon composite materials,ACS Nano 4(12)(2010)7303–7314.

    [38]C.D.Wagner,W.M.Riggs,L.E.Davis,J.F.Moulder,in:G.E.Muilenberg(Ed.)Handbook of X-ray Photoelectron Spectroscopy,110,Perkin-Elmer,Minnesota,1979.

    [39]D.D.Zhou,L.Ding,H.Cui,H.An,J.P.Zhao,Q.Li,Fabrication of Pd/TiO2-multi wall carbon nanotubes catalyst and investigation of its electrocatalytic activity for formic acid oxidation,J.Power Sources 222(2013)510–517.

    [40]R.Tu,S.Y.Chen,W.Cao,S.Y.Zhang,L.C.Li,T.Ji,J.Li,X.H.Lu,The effect of H2O2desorption on achieving improved selectivity for direct synthesis of H2O2over TiO2(B)/anatase supported Pd catalyst,Catal.Commun.89(2017)69–72.

    狂野欧美激情性bbbbbb| 亚洲精品国产av蜜桃| 男女午夜视频在线观看| 亚洲久久久国产精品| 国产精品 国内视频| 日韩中文字幕视频在线看片| 人妻人人澡人人爽人人| 久久精品国产a三级三级三级| 久久亚洲国产成人精品v| 亚洲国产精品一区二区三区在线| 久久久久精品久久久久真实原创| 考比视频在线观看| 母亲3免费完整高清在线观看 | av国产久精品久网站免费入址| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 老司机影院毛片| 熟女av电影| 国产97色在线日韩免费| 免费观看a级毛片全部| freevideosex欧美| 欧美中文综合在线视频| 国产一区亚洲一区在线观看| 国产精品麻豆人妻色哟哟久久| 91在线精品国自产拍蜜月| 成人影院久久| 在线观看三级黄色| 色婷婷av一区二区三区视频| 精品国产一区二区久久| 国产熟女午夜一区二区三区| 69精品国产乱码久久久| 亚洲欧洲国产日韩| 久久久精品国产亚洲av高清涩受| 日本wwww免费看| 国产男女内射视频| 欧美国产精品一级二级三级| 9色porny在线观看| 黄色毛片三级朝国网站| av女优亚洲男人天堂| 精品国产一区二区三区四区第35| 最近最新中文字幕大全免费视频 | 满18在线观看网站| 男女边吃奶边做爰视频| 美女国产高潮福利片在线看| 考比视频在线观看| 午夜av观看不卡| 国产综合精华液| 性色av一级| 日韩视频在线欧美| 国产一区有黄有色的免费视频| 免费不卡的大黄色大毛片视频在线观看| 少妇被粗大猛烈的视频| 亚洲av男天堂| 爱豆传媒免费全集在线观看| 十分钟在线观看高清视频www| 99热国产这里只有精品6| 99热网站在线观看| 一本—道久久a久久精品蜜桃钙片| 一本—道久久a久久精品蜜桃钙片| 97在线视频观看| xxxhd国产人妻xxx| 黄色毛片三级朝国网站| 日本欧美国产在线视频| 免费黄色在线免费观看| 自线自在国产av| 亚洲伊人色综图| 丁香六月天网| h视频一区二区三区| 少妇的逼水好多| 午夜福利乱码中文字幕| 日韩在线高清观看一区二区三区| 国产欧美亚洲国产| 日本免费在线观看一区| 这个男人来自地球电影免费观看 | 国产在线免费精品| 亚洲精品美女久久av网站| 国产精品av久久久久免费| 久久久久久久久久久久大奶| 在线观看国产h片| 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 男人操女人黄网站| 亚洲国产欧美网| 日日啪夜夜爽| 99国产综合亚洲精品| 国产97色在线日韩免费| 最近2019中文字幕mv第一页| 欧美成人午夜免费资源| 国产色婷婷99| 欧美日本中文国产一区发布| 国产高清不卡午夜福利| 亚洲精品aⅴ在线观看| 哪个播放器可以免费观看大片| 久久精品亚洲av国产电影网| 久久精品久久久久久噜噜老黄| 成人国产av品久久久| 2022亚洲国产成人精品| 成年人午夜在线观看视频| 制服人妻中文乱码| 99久久中文字幕三级久久日本| 观看av在线不卡| 五月伊人婷婷丁香| 一本色道久久久久久精品综合| 国产一区亚洲一区在线观看| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 七月丁香在线播放| 亚洲五月色婷婷综合| 亚洲av美国av| 性欧美人与动物交配| www日本在线高清视频| 一a级毛片在线观看| 午夜福利在线观看吧| 天天添夜夜摸| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 亚洲男人天堂网一区| 午夜精品久久久久久毛片777| 日韩欧美在线二视频| 人妻久久中文字幕网| 日韩欧美国产一区二区入口| 亚洲av成人不卡在线观看播放网| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区三区四区久久 | 91大片在线观看| 九色亚洲精品在线播放| 日韩欧美三级三区| 女人精品久久久久毛片| 精品一区二区三区视频在线观看免费 | 国产精品av久久久久免费| 99久久综合精品五月天人人| 精品国产亚洲在线| 一个人免费在线观看的高清视频| 国产欧美日韩一区二区精品| 狂野欧美激情性xxxx| 欧美另类亚洲清纯唯美| 国产激情欧美一区二区| 亚洲专区国产一区二区| 在线视频色国产色| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 久久精品91无色码中文字幕| 免费在线观看亚洲国产| 法律面前人人平等表现在哪些方面| 伦理电影免费视频| 香蕉久久夜色| 亚洲五月色婷婷综合| 日韩精品免费视频一区二区三区| a级毛片在线看网站| 丰满迷人的少妇在线观看| 老熟妇仑乱视频hdxx| 久久中文字幕人妻熟女| 久久热在线av| 日韩成人在线观看一区二区三区| 久久精品亚洲av国产电影网| 国产精品乱码一区二三区的特点 | 中国美女看黄片| 窝窝影院91人妻| 亚洲精品一区av在线观看| 国产成人精品无人区| 精品第一国产精品| 精品久久久久久,| 国产黄色免费在线视频| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 国产精品 国内视频| 免费在线观看日本一区| 日本 av在线| 99在线视频只有这里精品首页| 好看av亚洲va欧美ⅴa在| 亚洲片人在线观看| 操美女的视频在线观看| 激情视频va一区二区三区| 国产免费现黄频在线看| 国产激情久久老熟女| 国产99白浆流出| 成在线人永久免费视频| 淫妇啪啪啪对白视频| 久久人人精品亚洲av| 国产精品久久视频播放| 欧美乱码精品一区二区三区| 一二三四社区在线视频社区8| 在线av久久热| 每晚都被弄得嗷嗷叫到高潮| 日韩人妻精品一区2区三区| 窝窝影院91人妻| 国产不卡一卡二| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 亚洲一区高清亚洲精品| 纯流量卡能插随身wifi吗| 黄频高清免费视频| 国产精品电影一区二区三区| 国产一区在线观看成人免费| 亚洲欧美激情综合另类| 国产一区二区三区视频了| 国产有黄有色有爽视频| xxx96com| 久热这里只有精品99| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 亚洲精品美女久久av网站| 久久精品国产99精品国产亚洲性色 | cao死你这个sao货| 欧美黄色淫秽网站| 国产精品野战在线观看 | 亚洲精品中文字幕一二三四区| 亚洲五月婷婷丁香| 国产亚洲欧美精品永久| 成年版毛片免费区| 男人舔女人的私密视频| 在线免费观看的www视频| 夜夜爽天天搞| 中出人妻视频一区二区| 亚洲av片天天在线观看| 伊人久久大香线蕉亚洲五| 淫秽高清视频在线观看| 久99久视频精品免费| xxxhd国产人妻xxx| 国产高清视频在线播放一区| 国产高清激情床上av| 免费人成视频x8x8入口观看| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 国产成人系列免费观看| 欧美日韩福利视频一区二区| 亚洲中文字幕日韩| 欧美在线一区亚洲| 国产熟女xx| 国产成年人精品一区二区 | 亚洲精品一二三| 18禁黄网站禁片午夜丰满| av片东京热男人的天堂| 男女床上黄色一级片免费看| 中国美女看黄片| 精品午夜福利视频在线观看一区| 9色porny在线观看| 中文亚洲av片在线观看爽| 18禁国产床啪视频网站| 亚洲精华国产精华精| 交换朋友夫妻互换小说| 老鸭窝网址在线观看| 99精品久久久久人妻精品| 国产精品久久电影中文字幕| 亚洲欧美一区二区三区久久| 欧美日韩黄片免| 久久中文看片网| 桃红色精品国产亚洲av| 老司机午夜福利在线观看视频| 欧美老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 亚洲 国产 在线| 久久精品影院6| 国产黄色免费在线视频| 最新美女视频免费是黄的| 亚洲精品国产区一区二| www.www免费av| 中文字幕精品免费在线观看视频| 日韩视频一区二区在线观看| 免费一级毛片在线播放高清视频 | 国产精品爽爽va在线观看网站 | 国产精华一区二区三区| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 亚洲午夜理论影院| 国产午夜精品久久久久久| 欧美黄色淫秽网站| 国产av在哪里看| 国产色视频综合| 成年版毛片免费区| 大型av网站在线播放| 亚洲av片天天在线观看| 日本黄色日本黄色录像| 欧美日韩亚洲国产一区二区在线观看| 欧美精品啪啪一区二区三区| 久久久国产欧美日韩av| 精品国产乱码久久久久久男人| 如日韩欧美国产精品一区二区三区| 日日夜夜操网爽| 午夜影院日韩av| 国产成人精品在线电影| 99热国产这里只有精品6| 亚洲av片天天在线观看| 十八禁网站免费在线| 免费在线观看亚洲国产| 日韩国内少妇激情av| 天天影视国产精品| 中文字幕人妻丝袜制服| 91麻豆av在线| 一级a爱视频在线免费观看| av视频免费观看在线观看| 亚洲av熟女| 国产激情久久老熟女| 女同久久另类99精品国产91| 1024香蕉在线观看| 在线观看免费午夜福利视频| 身体一侧抽搐| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 国产黄色免费在线视频| 亚洲精品成人av观看孕妇| 亚洲精品中文字幕一二三四区| 精品国产国语对白av| 日韩三级视频一区二区三区| 精品久久久久久久久久免费视频 | 性欧美人与动物交配| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三区在线| 日韩有码中文字幕| 日韩免费av在线播放| 制服诱惑二区| 亚洲一区二区三区色噜噜 | 免费日韩欧美在线观看| 亚洲欧美一区二区三区黑人| 两性午夜刺激爽爽歪歪视频在线观看 | 夫妻午夜视频| 午夜福利一区二区在线看| 婷婷丁香在线五月| 亚洲第一av免费看| 老司机福利观看| 日韩成人在线观看一区二区三区| 国产单亲对白刺激| 午夜免费成人在线视频| 在线观看午夜福利视频| 少妇的丰满在线观看| 国产黄色免费在线视频| xxx96com| 日韩欧美国产一区二区入口| 日韩人妻精品一区2区三区| 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 热99re8久久精品国产| 亚洲av片天天在线观看| 男女做爰动态图高潮gif福利片 | 长腿黑丝高跟| 久久精品国产99精品国产亚洲性色 | 18禁国产床啪视频网站| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 国产精品国产av在线观看| 真人一进一出gif抽搐免费| 女人爽到高潮嗷嗷叫在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 在线观看一区二区三区激情| 免费看十八禁软件| 人人妻人人添人人爽欧美一区卜| 日韩欧美国产一区二区入口| 久久精品国产亚洲av高清一级| 成人18禁在线播放| 精品一区二区三区视频在线观看免费 | 一二三四社区在线视频社区8| 亚洲一卡2卡3卡4卡5卡精品中文| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 又紧又爽又黄一区二区| 午夜福利在线免费观看网站| 成熟少妇高潮喷水视频| 丰满饥渴人妻一区二区三| 国产一区二区三区在线臀色熟女 | 亚洲 国产 在线| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频 | 美女高潮到喷水免费观看| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av | 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 91大片在线观看| 欧美激情 高清一区二区三区| 久久人妻av系列| 午夜免费观看网址| 欧美成人午夜精品| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 女人被躁到高潮嗷嗷叫费观| 久99久视频精品免费| 大型黄色视频在线免费观看| 夜夜夜夜夜久久久久| 波多野结衣av一区二区av| 亚洲免费av在线视频| 久久国产乱子伦精品免费另类| 中文字幕色久视频| 久久狼人影院| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| 国产高清videossex| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 他把我摸到了高潮在线观看| xxx96com| 五月开心婷婷网| 9191精品国产免费久久| 狠狠狠狠99中文字幕| 曰老女人黄片| 欧美在线一区亚洲| 亚洲中文字幕日韩| 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 成年女人毛片免费观看观看9| 国产精品久久久av美女十八| 久久伊人香网站| 久久中文看片网| 久久国产精品人妻蜜桃| 国产三级黄色录像| 成人永久免费在线观看视频| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲高清精品| e午夜精品久久久久久久| 精品久久久久久,| 高清av免费在线| 国产精品国产av在线观看| 9色porny在线观看| videosex国产| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 99久久久亚洲精品蜜臀av| 久久久精品国产亚洲av高清涩受| 亚洲国产精品999在线| 亚洲国产中文字幕在线视频| 18禁国产床啪视频网站| 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 午夜激情av网站| a在线观看视频网站| 亚洲成人久久性| 国产成人av教育| 波多野结衣av一区二区av| 午夜久久久在线观看| 精品国产美女av久久久久小说| 亚洲情色 制服丝袜| 久久久水蜜桃国产精品网| 黑人巨大精品欧美一区二区蜜桃| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区| 欧美日韩亚洲高清精品| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 国产深夜福利视频在线观看| tocl精华| 少妇 在线观看| 一夜夜www| 欧美日韩国产mv在线观看视频| 天堂动漫精品| 午夜91福利影院| 亚洲aⅴ乱码一区二区在线播放 | 中文欧美无线码| 欧美成人午夜精品| 久久久久久久精品吃奶| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产av一区二区精品久久| 十分钟在线观看高清视频www| 超碰97精品在线观看| 国产黄色免费在线视频| 一边摸一边抽搐一进一出视频| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 久久精品影院6| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| 精品国产国语对白av| 欧美在线一区亚洲| 老汉色∧v一级毛片| av片东京热男人的天堂| 国产精品国产av在线观看| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 波多野结衣一区麻豆| 国产精品一区二区精品视频观看| 露出奶头的视频| 看片在线看免费视频| 亚洲第一青青草原| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 男女床上黄色一级片免费看| 欧美大码av| 在线观看一区二区三区激情| 99热国产这里只有精品6| 亚洲中文字幕日韩| 高清毛片免费观看视频网站 | 久久狼人影院| 亚洲第一欧美日韩一区二区三区| 好男人电影高清在线观看| 国产精品 国内视频| 亚洲中文日韩欧美视频| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 十八禁网站免费在线| 在线播放国产精品三级| 在线视频色国产色| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| 亚洲精华国产精华精| 97人妻天天添夜夜摸| 啪啪无遮挡十八禁网站| 欧美日韩av久久| 免费人成视频x8x8入口观看| 久久精品亚洲熟妇少妇任你| 中亚洲国语对白在线视频| 纯流量卡能插随身wifi吗| 99久久综合精品五月天人人| 国产欧美日韩精品亚洲av| 国产成+人综合+亚洲专区| 嫁个100分男人电影在线观看| 人人妻,人人澡人人爽秒播| 日韩欧美在线二视频| 亚洲中文av在线| 手机成人av网站| 成人黄色视频免费在线看| 村上凉子中文字幕在线| 久久人人爽av亚洲精品天堂| 极品教师在线免费播放| 夜夜看夜夜爽夜夜摸 | 久久久久久免费高清国产稀缺| 在线av久久热| 亚洲男人天堂网一区| 欧美乱色亚洲激情| 午夜精品在线福利| 免费少妇av软件| 看免费av毛片| 国产成人精品久久二区二区91| 免费在线观看影片大全网站| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品粉嫩美女一区| 97人妻天天添夜夜摸| 国产成人av教育| 黄色女人牲交| 在线观看舔阴道视频| 精品免费久久久久久久清纯| 一本综合久久免费| 久久中文字幕人妻熟女| 女人爽到高潮嗷嗷叫在线视频| 国内毛片毛片毛片毛片毛片| 91在线观看av| 国产一区二区三区在线臀色熟女 | 日韩视频一区二区在线观看| 免费一级毛片在线播放高清视频 | 久久精品影院6| 日日夜夜操网爽| 国产三级黄色录像| 中文字幕高清在线视频| 香蕉丝袜av| 不卡av一区二区三区| 夜夜爽天天搞| 黄网站色视频无遮挡免费观看| 中文欧美无线码| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 天天影视国产精品| 久久青草综合色| 久久亚洲真实| 亚洲av成人不卡在线观看播放网| 亚洲精品国产一区二区精华液| 国产黄a三级三级三级人| 午夜激情av网站| 日韩一卡2卡3卡4卡2021年| 99久久人妻综合| 成人影院久久| 黄色视频不卡| 欧美日韩av久久| 日本vs欧美在线观看视频| 欧美在线黄色| 中文字幕高清在线视频| 嫁个100分男人电影在线观看| 国产成人系列免费观看| 亚洲精品av麻豆狂野| 视频在线观看一区二区三区| 免费看a级黄色片| 人人妻人人添人人爽欧美一区卜| 免费人成视频x8x8入口观看| 亚洲伊人色综图| 午夜久久久在线观看| 国产精品免费一区二区三区在线| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 最近最新中文字幕大全电影3 | 精品欧美一区二区三区在线| 美女午夜性视频免费| 成人18禁在线播放| 日本黄色日本黄色录像| 搡老熟女国产l中国老女人| 人成视频在线观看免费观看| 精品国产亚洲在线| 精品国产一区二区久久| 日本 av在线| 搡老熟女国产l中国老女人| 男人操女人黄网站| 80岁老熟妇乱子伦牲交| 欧美乱码精品一区二区三区| 一区在线观看完整版| 在线永久观看黄色视频| 免费在线观看视频国产中文字幕亚洲| 99热国产这里只有精品6| a级片在线免费高清观看视频| www日本在线高清视频| 亚洲人成伊人成综合网2020| 亚洲精品国产区一区二| 夜夜夜夜夜久久久久| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 淫秽高清视频在线观看|