• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Free radical reaction model for n-pentane pyrolysis

    2018-05-26 07:29:12CongZhouYuanyiYangWeiLiYingShiLiJinZhaobinZhangGuoqingWang

    Cong Zhou *,Yuanyi Yang ,Wei Li,Ying Shi,Li Jin ,Zhaobin Zhang ,Guoqing Wang

    1 College of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    2 SINOPEC Beijing Research Institute of Chemical Industry,Beijing 100013,China

    1.Introduction

    Ethylene,propylene,butadiene,and aromatics are the basic chemicals which are mainly produced by steam pyrolysis of petroleum hydrocarbons in the steam crackers.Petroleum hydrocarbons are preheated by superheated steam in the convection section of the furnace,and then the pyrolysis process takes place mainly in the radiant section of the furnace,where tubes are externally heated to 750–900 °C.Then the pyrolysis products are separated into hydrogen,ethylene,propylene,butadiene,aromatics and so on.The operating conditions,such as residence time,ratio of steam to oil,coil outlet pressure and coil outlet temperature,would affect the pyrolysis product yields.Therefore,the building of pyrolysis model to simulate hydrocarbons pyrolysis in cracking furnace is important for the technology development,furnace design,and operating optimization.

    During the establishment of the pyrolysis model,the key step is the simulation of the reaction process from reactants to products and the core is the kinetic model of the pyrolysis.The pyrolysis reaction kinetic model always is the focus of the research.Based on the research results,the kinetic model of pyrolysis can be divided into three categories generally.They are simple empirical model,semi-empirical model(molecular model),and theoretical model(the free radical model).The empirical model is a prediction model based on the relationship between the operating parameters(e.g.temperature,residence time)and the material properties(e.g.specific gravity and family composition)and the product yields[1–5].According to the molecular model,the free radical reaction is generally incorporated into a molecular reaction,or a number of molecular reactions are combined into average molecular reactions.The relatively simplified kinetic model was obtained by calculating the relevant kinetic parameters[6–10].These above two models are easier to build up and run quickly.However,both models should have sufficient experimental data and they are just suitable for test conditions.The free radical model is based on Rice's free radical theory[11],and the reaction network is constructed by the elementary reaction[12–15].The free radical model can better reflect pyrolysis process with good adaptability and external ductility.But the reactants and reaction types are complex,and the number of reaction kinetic parameters is large.So the establishment and solution of the model is more difficult.

    In this paper,the free radical reaction model was studied with the n-pentane pyrolysis process as an example.

    2.Pyrolysis Model Development

    2.1.Parameters' solution

    The kinetic parameters were generally obtained from experimental study in the previous research[16].According to the pyrolysis process of petroleum hydrocarbon,lots of free radicals need to be caught and analyzed.Recently,the development of quantum chemistry has provided a new way to solve this problem by theoretical calculation[17,18].Here,the n-pentane pyrolysis process is investigated by means of quantum chemistry and Gaussian 03 Software is used to calculate the thermodynamic parameters of reactants and products.Then the kinetic parameters of the reactions are obtained.At last,pyrolysis reaction network consisting of a large amount of reactions and free radicals is constructed and the free radical reaction model for n-pentane pyrolysis is built.

    2.1.1.Calculation of thermodynamic parameters

    The structure of the reactants and the products involved in the reaction is optimized by Gaussian03 Software to obtain the optimized structures(the stationary points)and to calculate the frequency and the thermodynamic parameters.Then,the structure of the van der Waals complex composed of the reactants and products is optimized.The optimized structure of the reaction initiation and termination is obtained to optimize the reaction transition state.The following is the choice of calculation method in the Gaussian03 Software:Calculation accuracy and calculation amount being evaluated,UB3LYP method applies to calculate the bimolecular reactions,and UMP2 is used to calculate the unimolecular reactions.The basis set of the calculation is the level of 6-31G+(d,p).

    The structure of the reaction transition state is configuration optimized with QST2&QST3 method of Gaussian03.The frequency characteristic value of the transition state of the optimized structure is calculated,and the saddle point type of the structure is determined by the imaginary number to verify the reaction transition state.Then the IRC(intrinsic reaction coordinate)is used to search the reactants in the both ends of the reaction transition state to verify whether the transition state is in the intermediate state.At last,the thermodynamic parameters are calculated under the same calculation method and basis set.

    Based on the above thermodynamic parameters,the ground state energy,enthalpy of formation,entropy of formation and Gibbs free energy of the reactants,reaction transition state and the products are obtained,and the activation enthalpy(ΔH≠),the activation free energy(ΔG≠)and the activation entropy(ΔS≠)are calculated[19].

    2.1.2.Solution of the reaction kinetic parameters

    According to the obtained thermodynamic parameters,the reaction kinetic parameters can be calculated from the transition state theory,and the formula can be derived:

    In comparison with Arrhenius Eq.(2),

    The first half of the Eq.(1)is combined to the frequency factor A,and the activation enthalpy(ΔH≠)is equal to that of the Arrhenius equation.Therefore,the activation energy can be calculated from the thermodynamic parameters of quantitative chemistry calculation,and the frequency factor A can be obtained from the following equations.

    The free radical reaction of the pyrolysis of n-pentane is mainly divided into four type,i.e.initiation reaction,hydrogen absorption reaction,beta cleavage reaction and free radical coupling reaction.Here the kinetic parameters Eaand A of the four radical reactions involved in n-pentane pyrolysis are calculated,and the reaction rate constant k at different temperatures can be obtained.

    The initiation reaction is taken as the example.There are two kinds of bond cleavage in the initiation reaction of n-pentane pyrolysis,i.e.C-H bond cleavage and C--C bond cleavage.The C--H bond cleavage can occur on α carbon,β carbon and γ carbon,respectively.Since the C--C bond is σ bond,the C-H bonds on the carbon atom are axisymmetric and the reactions are equivalent.Then C-H bond cleavage of n-pentane can be divided into three different situations to calculate the kinetic parameters.According to the C--C bond cleavage,the kinetic parameters can be calculated under two conditions of α carbon-β carbon bond and β carbon-γ bond breaking,respectively(Fig.1).

    Fig.1.Diagram of reaction sites for pentane.

    The kinetic parameters of initiation reaction of the n-pentane pyrolysis calculated under five conditions are listed in Table 1.

    Table 1 Kinetic parameters of initiation reaction of the n-pentane pyrolysis

    The reaction rate constants of the above five reactions under the temperature range of the common pyrolysis are calculated by Arrhenius equation.The dependence of reaction rate constant on the temperature is shown in Fig.2.The figure shows that the activation energies of these five reactions are larger,and the reaction rate increases obviously when the reaction temperature exceeds 850°C,and its absolute value is small.

    In hydrogen abstraction reaction stag 60 reactions are considered,in the β cleavage reaction stage 10 β cleavage reactions and 10 reverse cleavage reactions are considered,in the free radical coupling reaction stage 9 free radical coupling reactions are considered.The reaction kinetic parameters of the above reactions are calculated.The changes of the reaction rate constants with the pyrolysis temperature are shown in Figs.3–5.

    From Figs.2 to 5,it can be seen that the reaction rate constant k of the initiation reaction(Fig.2)is significantly smaller than that of the other three reaction stages in the reaction temperature range.It is indicated that the initiation reaction is the speed control step of the n-pentane pyrolysis process.

    The kinetic parameters of four types of reactions,i.e.the free radical initiation reaction,hydrogen abstraction reaction,β cleavage reaction,and free radical coupling reaction,are obtained by quantum chemistry method.The obtained reaction is combined with the reaction of the pyrolysis model of C4 hydrocarbon[20],and the reaction network of pentane pyrolysis consisted of 199 free radicals reactions.

    Fig.2.Rate constants of the initiate reactions[reaction rate constant,s?1(unimolecular reaction)or m3·mol?1·s?1(bimolecular reaction)].

    Fig.3.Rate constants of hydrogen absorption reactions[reaction rate constant,s?1(unimolecular reaction)or m3·mol?1·s?1(bimolecular reaction)].

    2.2.Pyrolyisis model formulation

    A plug flow model is used to simulate the radiant coil of the cracking furnace(Fig.6).The setofcontinuity equations is written with the mass,energy and momentum conservation as follows[21].

    On the basis of the obtained kinetic parameters,the above set of equations is solved.The material composition,pressure,temperature and heat intensity of the reactor are calculated.The pyrolysis model is established.

    3.Solution and Optimization of Kinetic Model

    In the kinetic network of molecular reaction model,the set of ODEs(ordinary differential equation)consisted of fewer involved species and reactions isn't stiff.Such equation set can be solved by four-order Runge–Kutta method.

    Fig.4.Rate constants of β-fracture reactions[reaction rate constant,s?1(unimolecular reaction)or m3·mol?1·s?1(bimolecular reaction)].

    Fig.5.Rate constants of radical coupling reactions[reaction rate constant,s?1(unimolecular reaction)or m3·mol?1·s?1(bimolecular reaction)].

    In the above kinetic model,free radical species with very low concentration emerge.It brings the stiffness for the set of ODEs.In such an ODE set,some species' concentrations change rapidly and some change slowly.The rapidly changing component can quickly reach its steady value,while the slowly changing component reaches its steady value slowly.From the view of numerical solution,when the change is fast,the small step length should be selected for the integral,when the changing component reaches its steady value,larger step integration should been chosen.But in common method such as Runge–Kutta method,the step length couldn't be enlarged with the component change,otherwise the numerical instability will occur,i.e.the error will increase rapidly,so that the solving process cannot continue[22–24].

    Fig.6.Schematic diagram of the reaction tube in radiant section

    So the stiff of the set of free radical reaction ODEs brings large difficulty for the solving,and the Runge–Kutta method isn't efficient for such ODE set.It is necessary to find new method to solve such ODE set.

    3.1.Solution of kinetic model

    The semi implicit Eularmethod is applied to solve the stiffODEs[25].The ODE d Y/d t=M(Y)+N(Y)is taken as an example.The right term M(Y)of the equation is a non-rigid term and N(Y)is a rigid term.

    Explicit algorithm is as follows.

    The solution of this algorithm does not need iteration,but it is not suitable for rigid problems.

    Implicit algorithm is as follows.

    The algorithm needs to be solved iteratively with a lot of computing resources.

    By means of semi implicit method,the term M(Y)is calculated by explicit algorithm and the N(Y)is calculated by the semi implicit scheme.Such solution will not only solve the problem of rigid equations,but also reduce the consumption of computing resources to improve the efficiency of the solution.

    The semi implicit Eular method is used to solve the pyrolysis example,and the yield of the product is obtained,as shown in Fig.7.It can be seen that the semi implicit Eular method can solve the stiff ODEs.

    Fig.7.Chart for results from semi-Eular methods*:Others stand for minor products e.g.methane,hydrogen,propylene,butadiene,etc.

    Although the solution to the problem of stiff ODEs is solved,the current calculation takes a long time.The solution shown in Fig.7 takes more than 3400 ms.The computational efficiency needs to be improved.

    3.2.Optimization of solution method

    The operation efficiency is improved by multi-core CPU parallel computing with OpenMP assemblies.OpenMP is a parallel processing of program assemblies presented by OpenMP Architecture Review Board[26].It can describe a high-level abstract interface for parallel calculations to reduce the difficulty and complexity of parallel programming.This software can be used in parallel computing programs to support multi-core computing system.

    After the addition of the support for OpenMP in programming environment,the program blocks for parallel operation are searched.The parameters ofOpenMP are configured,such as the number of automatic opening process.Then the compiler can process these loops and call the OpenMP assembly to configure the thread granularity and load.The compiled program is running on the computer with quad-core CPU.It shows that threads optimized with OpenMP can use all the CPU resources and the execution time decrease.

    After the multi-core CPU parallel computing function is implemented,the code segment of the model is processed in serial and parallel respectively,and the calculation efficiency is tested.The time consuming of optimization is presented in Fig.8.

    Fig.8.Comparison chart of time-consuming of optimized semi-implicit Eular.

    After comparison,the code segment with significant optimization is selected to be optimized,and the code segment without obvious optimization is keeping the serial execution.The system resource for creating threads in parallel is reduced and the delay of the inter thread information exchange is also reduced.At last,the average consuming time of the serial semi-implicit Euler method is reduced from nearly 3500 ms to 1200 ms.

    3.3.Parameter optimization

    In the semi implicit Eular algorithm,there are three important parameters to control the amount of calculation and the calculation accuracy of ODEs' solution,i.e.the absolute error convergence(atol),the relative error(rtol)and the initial step size(h).In the coded program,two of the above three parameters are fixed and the average time of semi implicit Eularalgorithm is scanned under the fixed interval parameter changes.The influence of parameter changes on the average time is presented in Fig.9.

    Fig.9.Influence of calculation parameters on consuming time.

    Fig.9 shows that with the increase of h value,the average time of the algorithm is obviously reduced,and the inflection pointis reached when the value of h is 0.1 that is the optimized value of h.With the increase of rtol and Atol parameters,the average time of algorithm is decreased obviously without obvious inflection point.But with the increase of the two parameters,the calculation accuracy of semi implicit Eular algorithm decreases.The values of two parameters are selected as those higher values in the range of accuracy requirements.

    Fig.10.Schematic device of bench scale pyrolysis unit.

    Table 2 Operating conditions of n-pentane pyrolysis experiments

    By adjusting the three parameters of rtol,Atol and h,the average time of semi implicit Eular algorithm can be reduced to less than 300 ms.The calculation efficiency is increased by 10 times.

    4.Model Verification

    The verification of the kinetic scheme was performed on the basis of n-pentane pyrolysis experiments in the bench scale pyrolysis unit under the temperature range of 650 °C to 875 °C.Fig.10 is the schematic device of the bench scale pyrolysis unit.The unit can predict the yields for most of cracking coils and most of operating conditions and this unit provides valuable lots of suggestions to the ethylene plant about the operation[27].Table 2 is the operating conditions of experiments.

    The comparison between measured and calculated yields of hydrogen,ethylene and propylene are presented in Figs.11–13.

    Fig.11.Hydrogen yield of n-pentane pyrolysis from model simulation and experimentation.

    Fig.12.Ethylene yield of n-pentane pyrolysis from model simulation and experimentation.

    Fig.13.Propylene yield of n-pentane pyrolysis from model simulation and experimentation.

    The figures show the general favorable agreement between the predicted data and the experimental data.The experimental yields of main products are consistent with the simulated results from the above kinetic model.The validity of the above built free radical reaction model and its solution method is confirmed.On the basis,the pyrolysis network can be explored,such as increasing the number of reactions and the reaction path,to apply to more complex pyrolysis process.

    5.Conclusions

    A method of the establishment and solution of the hydrocarbon pyrolysis model based on free radical reaction mechanism is presented.The n-pentane pyrolysis process is taken as an example.The pyrolysis kinetic parameters are obtained by quantum chemistry and the free radical reaction net is established.The pyrolysis model is developed on the basis of the plug flow reactor model.During the solution of the model,the stiff ODEs are solved by semi implicit Eular algorithm and the computational efficiency increases 10 times by algorithm optimization.

    The method is applicable to building free radical reaction model of pyrolysis process of n-pentane.It can accurately simulate hydrocarbon pyrolysis process,and effectively improve calculation speed of reaction model.Itprovides an effective method for the accurate prediction of the yields of pyrolysis products.

    Nomenclature

    A frequency factor,s?1(unimolecularreaction)orm3·mol?1·s?1(bimolecular reaction)

    diinside diameter,m

    dooutside diameter,m

    Eaactivation energy,kJ·mol?1

    f friction coefficient

    G mass flow,kg·m?2·s?1

    ΔG≠Gibbs activation free energy,kJ·mol?1

    Hiheat into micro element,kJ·s?1

    Hoheat out of micro element,kJ·s?1

    Hrreaction heat of micro element,kJ·s?1

    ΔH≠activation enthalpy,kJ·mol?1

    h Planck constant,6.626196 × 10?34J·s

    K overall thermal conductivity,kJ·s?1·m?2·K?1

    k reaction rate constant,s?1(unimolecular reaction)or m3·mol?1·s?1(bimolecular reaction)

    kBBoltzmann constant,1.3806505 × 10?23J·K?1

    L length of the reaction tube,m

    Nkmolar flow rate of component k,mol·s?1

    P reaction pressure,Pa

    R ideal gas constant,8.314 J·mol?1·K?1

    rjreaction rate of reaction j,mol·m?3·s?1

    S cross-sectional area of tube,m2

    T temperature,K

    Tfflow temperature,K

    Twwall temperature,K

    Vmmolar volume,m3·mol?1

    βj,kstoichiometric coefficients of component k in reaction j

    Δυ≠molar change of active compounds

    κ(T) Wigner tunnel effect correct factor

    ρ fluid density,kg·m?3

    [1]D.H.Zhang,Calculation of ethylene yield for different naphtha feeds and directing evolutionary operation for cracking furnace,Petrochem.Technol.16(6)(1987)426–429.

    [2]G.H.Xiong,H.Hao,Y.Wang,S.Li,Calculation of ethylene yield by hydrocarbon pyrolysis,Chem.React.Eng.Technol.12(2)(1996)161–165.

    [3]W.Xu,J.S.Yu,Research of soft measurement for pyrolysis product yield with various model structures,Int.Instrum.Autom.8(3)(2004)40–42.

    [4]X.F.Zhuang,J.S.Yu,Modeling of depth of fragmentation and its application,Process Autom.Instrum.25(6)(2004)31–35.

    [5]S.M.Sadrameli,A.E.S.Green,Systematics and modeling representations of naphtha thermal cracking for olefin production,J.Anal.Appl.Pyrolysis 73(2)(2005)305–313.

    [6]P.Kumar,D.Kunzru,Modeling of naphtha pyrolysis,Ind.Eng.Chem.Process.Des.Dev.24(3)(1985)774–782.

    [7]Y.Y.Yang,Q.Q.Zeng,S.X.Xu,W.Huang,G.Z.Zou,Y.Y.Li,Pyrolysis model of heavy feedstock,Petrochem.Technol.15(1)(1986)1–9.

    [8]G.F.Fromet,Kinetics,reactor design in the thermal cracking for olefins production,Chem.Eng.Sci.47(9–11)(1992)2163–2177.

    [9]M.Watanabe,Overall rate constant of pyrolysis of n-alkanes at a low conversion level,Ind.Eng.Chem.Res.40(9)(2001)2027–2036.

    [10]K.He,D.R.Wu,Z.F.Ma,Optimization of molecule reaction kinetics model parameter in HVGO cracking reaction,Ethylene Ind.18(2)(2006)15–18.

    [11]F.O.Rice,The thermal decomposition of organic compounds from the start point of free radicals 4,the dehydrogenation of paraf fin hydrogenations and the strength of the c--c bond,Am.Chem.Soc.55(1933)4245–4247.

    [12]M.Dente,Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model,Comput.Chem.Eng.13(1979)61–75.

    [13]J.J.Dunkleman,L.F.Albright,Industrial and laboratory pyrolyses,in:L.F.Albright,B.L.Crynes(Eds.),ACS Symposium Series,32,American Chemical Societ,1976(Chap.14).

    [14]A.G.Goossens,M.E.Dente,E.Ranzi,Improve steam cracker operation,Hydrocarb.Process.57(9)(1978)227–236.

    [15]Zdenek Belohlav,The kinetic model of thermal cracking for olefins production,Chem.Eng.Process.42(2003)461–473.

    [16]X.C.Zeng,Y.Q.Zhang,Theory and Method of Chemical Reaction Thermodynamics,Chemical Industry Press,Beijing,2003.

    [17]H.Li,Z.B.Zhang,Calculation for chain initiation-termination reactions in thermal cracking:Cleavage-formation of C--H bond,Petrochem.Technol.35(2006)643–648.

    [18]H.Li,B.Z.Chen,M.B.Huang,CASPT2 investigation of ethane dissociation and methyl recombination using canonical Variational transition state theory,In.J.Chem.Kinet.40(2008)161–173.

    [19]W.Li,G.Q.Wang,Z.G.Du,Z.B.Zhang,L.J.Zhang,Research progress in methods for the estimation of rate constants in hydrocarbon pyrolysis,Ethylene Ind.21(2009)1–7.

    [20]Z.B.Zhang,H.Li,Y.G.Zhang,S.X.Xu,S.Chen,Q.Q.Zeng,Establishment and verification of free radical model for butane steam cracking,Petrochem.Technol.36(2007)44–48.

    [21]W.Li,Z.B.Zhang,C.Zhou,Y.G.Zhang,G.Q.Wang,Progress of study on free-radical mechanism model in cracking furnace tube,Ethylene Ind.22(2)(2010)1–6.

    [22]S.L.Xu,C Algorithms Commonly Used Procedures Set,Tsinghua University Press,Beijing,1994.

    [23]J.E.Blackemore,W.H.Corconan,Validity of the steady-state approximation applied to the pyrolysis of n-butane,Ind.Eng.Chem.Process.Des.Dev.8(2)(1969)206–209.

    [24]A.S.Tomlin,M.J.Polling,J.H.Merkin,Reduced mechanism for propane pyrolysis,Ind.Eng.Chem.Res.34(11)(1995)3749–3760.

    [25]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery,Numerical Recipes:the Art of Scientific Computing,Third edition Cambridge University Press,Cambridge,2007.

    [26]B.Chapman,G.Jost,R.van der Pas,Using OpenMP:Portable Shared Memory Parallel Programming,the MIT Press,Massachusetts,2007.

    [27]Z.B.Zhang,G.Q.Wang,Y.G.Zhang,S.X.Xu,Elementary study of team cracking feedstock optimization,Petrochem.Technol.37(1)(2008)8–11.

    久久精品久久久久久噜噜老黄 | 日本黄色视频三级网站网址| 高清在线国产一区| 国产精品久久久久久人妻精品电影| 亚洲美女黄片视频| 特级一级黄色大片| 午夜激情欧美在线| 五月伊人婷婷丁香| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| 真人一进一出gif抽搐免费| 黄色女人牲交| 欧美日韩综合久久久久久 | 成人三级黄色视频| 看十八女毛片水多多多| xxxwww97欧美| 亚洲av电影在线进入| 国产白丝娇喘喷水9色精品| 天堂影院成人在线观看| 性欧美人与动物交配| 亚洲欧美激情综合另类| 成人性生交大片免费视频hd| 两人在一起打扑克的视频| 两人在一起打扑克的视频| 老司机午夜十八禁免费视频| 熟女人妻精品中文字幕| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久久久电影| 午夜激情欧美在线| 51国产日韩欧美| 成人性生交大片免费视频hd| 美女 人体艺术 gogo| 国产视频内射| 天堂av国产一区二区熟女人妻| 99视频精品全部免费 在线| 男人舔女人下体高潮全视频| 久久午夜福利片| 欧美另类亚洲清纯唯美| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 国产一区二区亚洲精品在线观看| 老司机午夜十八禁免费视频| 日本熟妇午夜| 欧美在线黄色| 老鸭窝网址在线观看| 国产v大片淫在线免费观看| 一本综合久久免费| 日韩欧美精品v在线| or卡值多少钱| 国内精品久久久久久久电影| 欧美日本视频| 亚洲精品一区av在线观看| 久久久久久大精品| 亚洲人成伊人成综合网2020| 国产熟女xx| 国产精品影院久久| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 99热精品在线国产| 欧美又色又爽又黄视频| 少妇裸体淫交视频免费看高清| aaaaa片日本免费| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久亚洲av鲁大| 在线观看美女被高潮喷水网站 | 一级黄色大片毛片| 91av网一区二区| 午夜亚洲福利在线播放| 内地一区二区视频在线| h日本视频在线播放| 草草在线视频免费看| 精品免费久久久久久久清纯| 在线播放国产精品三级| 在线观看免费视频日本深夜| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 国产高清三级在线| 三级国产精品欧美在线观看| 久久精品综合一区二区三区| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 亚洲美女黄片视频| 日本 欧美在线| 成熟少妇高潮喷水视频| 国产亚洲精品久久久久久毛片| 免费av毛片视频| 久久久久国内视频| 亚洲在线观看片| 永久网站在线| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| 色噜噜av男人的天堂激情| 久久6这里有精品| 国产欧美日韩一区二区精品| 亚洲欧美激情综合另类| 淫妇啪啪啪对白视频| 9191精品国产免费久久| 免费在线观看影片大全网站| 亚洲美女视频黄频| 亚洲国产欧美人成| 18美女黄网站色大片免费观看| 午夜精品久久久久久毛片777| 两人在一起打扑克的视频| 亚洲精品乱码久久久v下载方式| 又黄又爽又刺激的免费视频.| 99热这里只有是精品50| 校园春色视频在线观看| 嫩草影院入口| 久久精品综合一区二区三区| 久久久成人免费电影| 国产高清视频在线播放一区| 麻豆久久精品国产亚洲av| 少妇人妻一区二区三区视频| 精品午夜福利在线看| 亚洲国产欧美人成| 69av精品久久久久久| 午夜精品久久久久久毛片777| 国产精品久久久久久久久免 | 午夜两性在线视频| 国产一区二区在线观看日韩| 琪琪午夜伦伦电影理论片6080| 亚洲精品影视一区二区三区av| 午夜福利欧美成人| 国产毛片a区久久久久| 国产av在哪里看| 天堂动漫精品| 久久九九热精品免费| 高清在线国产一区| 中文字幕av在线有码专区| 在线观看66精品国产| 亚洲乱码一区二区免费版| 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 69av精品久久久久久| 欧美色欧美亚洲另类二区| 日本在线视频免费播放| 国产亚洲精品综合一区在线观看| 99国产精品一区二区三区| 激情在线观看视频在线高清| 亚洲一区二区三区色噜噜| 村上凉子中文字幕在线| 久久久久久久久久黄片| 国产精品精品国产色婷婷| 综合色av麻豆| 亚洲国产精品成人综合色| aaaaa片日本免费| 老女人水多毛片| 亚洲午夜理论影院| 欧美日韩综合久久久久久 | 老熟妇乱子伦视频在线观看| 午夜福利在线在线| 有码 亚洲区| 给我免费播放毛片高清在线观看| 舔av片在线| 露出奶头的视频| 亚洲欧美日韩高清专用| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 97人妻精品一区二区三区麻豆| АⅤ资源中文在线天堂| 最好的美女福利视频网| 97超视频在线观看视频| 九色成人免费人妻av| 两个人视频免费观看高清| 国产淫片久久久久久久久 | 国产色爽女视频免费观看| 国内精品一区二区在线观看| 身体一侧抽搐| 国产精品久久久久久精品电影| 超碰av人人做人人爽久久| 国产麻豆成人av免费视频| 亚洲在线自拍视频| 久久99热6这里只有精品| 久久天躁狠狠躁夜夜2o2o| 午夜免费激情av| 非洲黑人性xxxx精品又粗又长| 又爽又黄a免费视频| 最近最新免费中文字幕在线| 亚洲精品久久国产高清桃花| 久9热在线精品视频| 亚洲av免费高清在线观看| 性欧美人与动物交配| 人妻丰满熟妇av一区二区三区| 在线观看66精品国产| 成人av一区二区三区在线看| 久久久久久久久大av| 在线观看美女被高潮喷水网站 | 国产精品伦人一区二区| 亚洲在线自拍视频| 757午夜福利合集在线观看| 精品国产亚洲在线| 亚洲综合色惰| 亚洲黑人精品在线| 黄色丝袜av网址大全| 国产成+人综合+亚洲专区| 少妇人妻一区二区三区视频| 在现免费观看毛片| 看十八女毛片水多多多| 亚洲av日韩精品久久久久久密| 成人鲁丝片一二三区免费| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 免费观看人在逋| 在线免费观看不下载黄p国产 | 热99在线观看视频| 老司机午夜十八禁免费视频| 色哟哟哟哟哟哟| 国产精品女同一区二区软件 | 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 亚洲在线自拍视频| 午夜福利欧美成人| bbb黄色大片| 精品福利观看| 99在线人妻在线中文字幕| 色综合欧美亚洲国产小说| 精品一区二区三区视频在线观看免费| 丝袜美腿在线中文| 搡老熟女国产l中国老女人| 我的女老师完整版在线观看| 美女高潮的动态| 日本黄色视频三级网站网址| 两个人视频免费观看高清| 免费人成在线观看视频色| av国产免费在线观看| 麻豆国产av国片精品| 国产毛片a区久久久久| 三级毛片av免费| 日本 欧美在线| 高清在线国产一区| 精品一区二区三区人妻视频| 国产国拍精品亚洲av在线观看| 日本一二三区视频观看| 99久久成人亚洲精品观看| 国产探花极品一区二区| 婷婷精品国产亚洲av在线| 黄色视频,在线免费观看| 99精品久久久久人妻精品| 国产大屁股一区二区在线视频| 波多野结衣巨乳人妻| 悠悠久久av| 久久99热这里只有精品18| 天美传媒精品一区二区| 99久国产av精品| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 亚洲av.av天堂| 午夜老司机福利剧场| 亚洲精品影视一区二区三区av| 一进一出抽搐动态| 午夜精品一区二区三区免费看| 在线观看66精品国产| 在线观看一区二区三区| 亚洲五月天丁香| 色尼玛亚洲综合影院| 久久香蕉精品热| 国产精品,欧美在线| 天美传媒精品一区二区| 成人av在线播放网站| 九色成人免费人妻av| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 亚洲av.av天堂| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 国产国拍精品亚洲av在线观看| 久久久久九九精品影院| 久久精品国产亚洲av天美| 一级黄色大片毛片| 五月玫瑰六月丁香| 麻豆成人午夜福利视频| 国产高清三级在线| 999久久久精品免费观看国产| 宅男免费午夜| 久久久色成人| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| 亚洲最大成人av| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 亚洲片人在线观看| 亚洲成av人片免费观看| 色综合婷婷激情| 久久这里只有精品中国| 一级作爱视频免费观看| 特大巨黑吊av在线直播| av天堂中文字幕网| 亚洲精品粉嫩美女一区| 国产成人aa在线观看| 国产成+人综合+亚洲专区| 久久久久久久久大av| 别揉我奶头~嗯~啊~动态视频| 国产成+人综合+亚洲专区| 人人妻人人澡欧美一区二区| 欧美一区二区亚洲| 欧美中文日本在线观看视频| 亚洲无线观看免费| 深夜a级毛片| 欧美成人一区二区免费高清观看| 国产又黄又爽又无遮挡在线| 91久久精品电影网| a级毛片a级免费在线| 色视频www国产| 精品一区二区三区av网在线观看| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 色综合站精品国产| 日本黄色片子视频| 婷婷亚洲欧美| 长腿黑丝高跟| xxxwww97欧美| 午夜日韩欧美国产| 国产真实伦视频高清在线观看 | 久久久精品欧美日韩精品| 国产日本99.免费观看| 国产成+人综合+亚洲专区| 一区福利在线观看| 午夜免费激情av| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 国产一区二区三区视频了| 色哟哟·www| 一本精品99久久精品77| 我的女老师完整版在线观看| 国产又黄又爽又无遮挡在线| 精品乱码久久久久久99久播| 国产大屁股一区二区在线视频| 最新中文字幕久久久久| 久久精品国产亚洲av天美| 色噜噜av男人的天堂激情| 久久草成人影院| 免费看a级黄色片| 国产麻豆成人av免费视频| 91久久精品电影网| bbb黄色大片| 欧美一区二区精品小视频在线| 亚洲av免费高清在线观看| 夜夜看夜夜爽夜夜摸| 久久久久国内视频| 亚洲电影在线观看av| 成人无遮挡网站| 欧美最新免费一区二区三区 | 91在线观看av| 国产精品自产拍在线观看55亚洲| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 9191精品国产免费久久| 中文字幕熟女人妻在线| 亚洲,欧美,日韩| 90打野战视频偷拍视频| 国产精品不卡视频一区二区 | 国产乱人伦免费视频| 欧美zozozo另类| 欧美绝顶高潮抽搐喷水| 亚洲av第一区精品v没综合| 国产免费男女视频| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 日本免费a在线| 国产成+人综合+亚洲专区| 欧美一区二区亚洲| 搞女人的毛片| 最近中文字幕高清免费大全6 | av福利片在线观看| 一区二区三区免费毛片| 亚洲电影在线观看av| 欧美乱妇无乱码| 国产美女午夜福利| 欧美日韩黄片免| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 亚洲成av人片免费观看| 99久久久亚洲精品蜜臀av| 国产真实乱freesex| 99久久久亚洲精品蜜臀av| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 欧美日韩福利视频一区二区| 91久久精品电影网| 老司机午夜十八禁免费视频| 亚洲自拍偷在线| 一级av片app| www日本黄色视频网| 成人亚洲精品av一区二区| 久久精品久久久久久噜噜老黄 | 婷婷亚洲欧美| 久久久久国内视频| 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 午夜福利高清视频| 在线免费观看不下载黄p国产 | 听说在线观看完整版免费高清| 在线国产一区二区在线| 性色av乱码一区二区三区2| 日本熟妇午夜| 久久午夜福利片| 欧美最新免费一区二区三区 | 亚洲最大成人中文| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 精品人妻熟女av久视频| 此物有八面人人有两片| 男人狂女人下面高潮的视频| 少妇人妻一区二区三区视频| 人妻久久中文字幕网| 午夜福利欧美成人| 国产av一区在线观看免费| 99久久精品热视频| 欧美国产日韩亚洲一区| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 成年女人永久免费观看视频| 丁香六月欧美| 丰满乱子伦码专区| 亚洲国产日韩欧美精品在线观看| 欧美zozozo另类| 久久国产精品影院| 久久久色成人| 日韩精品青青久久久久久| 免费在线观看成人毛片| 久久精品国产自在天天线| 欧美国产日韩亚洲一区| 深夜精品福利| 少妇的逼水好多| 亚洲av一区综合| 欧美激情久久久久久爽电影| 久久久久九九精品影院| 一区二区三区高清视频在线| 美女高潮的动态| 一级a爱片免费观看的视频| 久久草成人影院| 色噜噜av男人的天堂激情| 国产在视频线在精品| 日本精品一区二区三区蜜桃| 欧美高清成人免费视频www| 观看美女的网站| 少妇高潮的动态图| 欧美乱妇无乱码| 91字幕亚洲| 国产单亲对白刺激| 国产精品av视频在线免费观看| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 免费观看精品视频网站| 我要搜黄色片| 白带黄色成豆腐渣| 国产精华一区二区三区| 大型黄色视频在线免费观看| 一级av片app| 中文字幕人成人乱码亚洲影| 黄色丝袜av网址大全| 天堂√8在线中文| 欧美日本视频| 日本 欧美在线| 色哟哟哟哟哟哟| av视频在线观看入口| 老司机午夜福利在线观看视频| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 日韩精品中文字幕看吧| 亚洲最大成人av| 日本三级黄在线观看| 国产色爽女视频免费观看| 欧美在线黄色| 两人在一起打扑克的视频| 日本免费一区二区三区高清不卡| 久久久久九九精品影院| 欧美最新免费一区二区三区 | 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 99久久无色码亚洲精品果冻| 白带黄色成豆腐渣| 欧美在线一区亚洲| 18+在线观看网站| 色综合站精品国产| av专区在线播放| 一二三四社区在线视频社区8| 国产色爽女视频免费观看| 高清日韩中文字幕在线| 久久久久精品国产欧美久久久| 日本 av在线| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 欧美中文日本在线观看视频| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| www.色视频.com| 日韩大尺度精品在线看网址| 一级毛片久久久久久久久女| 亚洲成人免费电影在线观看| 国产日本99.免费观看| 草草在线视频免费看| 可以在线观看毛片的网站| 天美传媒精品一区二区| 成年女人看的毛片在线观看| 最新在线观看一区二区三区| 宅男免费午夜| 日日摸夜夜添夜夜添av毛片 | 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 亚洲最大成人中文| 好男人在线观看高清免费视频| 日本与韩国留学比较| 国产在视频线在精品| 午夜福利免费观看在线| 一个人看的www免费观看视频| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产| 国产成人a区在线观看| 深爱激情五月婷婷| 成人特级黄色片久久久久久久| 国内精品久久久久久久电影| 丰满的人妻完整版| 久久久久久久久中文| 免费人成视频x8x8入口观看| 12—13女人毛片做爰片一| 如何舔出高潮| 少妇的逼好多水| 老司机深夜福利视频在线观看| www.www免费av| 亚洲精品亚洲一区二区| 色尼玛亚洲综合影院| 丰满乱子伦码专区| av天堂中文字幕网| 久久久久性生活片| 国产私拍福利视频在线观看| 精品久久久久久久久久免费视频| 长腿黑丝高跟| 韩国av一区二区三区四区| 午夜福利在线观看吧| 久久精品人妻少妇| 欧美极品一区二区三区四区| 九色成人免费人妻av| 99国产精品一区二区三区| 岛国在线免费视频观看| 国产探花极品一区二区| 51午夜福利影视在线观看| 好看av亚洲va欧美ⅴa在| 美女黄网站色视频| 成熟少妇高潮喷水视频| 日韩中字成人| 欧美高清性xxxxhd video| 精品一区二区免费观看| 老女人水多毛片| 国产av不卡久久| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 99国产精品一区二区三区| 91久久精品国产一区二区成人| 小说图片视频综合网站| 欧美成狂野欧美在线观看| 最近最新中文字幕大全电影3| 国产高清激情床上av| 日韩欧美国产在线观看| 97超视频在线观看视频| 久久人妻av系列| avwww免费| 色av中文字幕| 亚洲精品成人久久久久久| 成人亚洲精品av一区二区| 99久久精品热视频| 精品人妻一区二区三区麻豆 | 免费观看的影片在线观看| 欧美国产日韩亚洲一区| 欧美在线黄色| 色尼玛亚洲综合影院| 床上黄色一级片| 在线观看舔阴道视频| 国内毛片毛片毛片毛片毛片| 两性午夜刺激爽爽歪歪视频在线观看| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 欧美中文日本在线观看视频| 亚洲激情在线av| 少妇的逼水好多| 深爱激情五月婷婷| 日韩精品中文字幕看吧| 啪啪无遮挡十八禁网站| 免费av不卡在线播放| 亚洲欧美清纯卡通| 国产乱人视频| 午夜福利成人在线免费观看| 国产私拍福利视频在线观看| 国产色爽女视频免费观看| 欧美精品国产亚洲| 欧美高清成人免费视频www| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| 精品欧美国产一区二区三| 神马国产精品三级电影在线观看| 欧美高清性xxxxhd video| 久久精品影院6| 老司机深夜福利视频在线观看| 俺也久久电影网| 久久久久久九九精品二区国产| 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 一级毛片久久久久久久久女| 成人国产综合亚洲| 亚洲欧美清纯卡通| 日韩精品青青久久久久久| 欧美成人免费av一区二区三区| 亚洲激情在线av| 真人做人爱边吃奶动态| 我要搜黄色片| 欧美最新免费一区二区三区 | 中文字幕高清在线视频| 男女之事视频高清在线观看|