• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Partial pore blockage and polymer chain rigidification phenomena in PEO/ZIF-8 mixed matrix membranes synthesized by in situ polymerization☆

    2018-05-26 07:29:08XiaoliDingXuLiHongyongZhaoRanWangRunqingZhaoHongLiYuzhongZhang

    Xiaoli Ding *,Xu LiHongyong Zhao 4,*,Ran Wang Runqing Zhao Hong LiYuzhong Zhang

    1 State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes,Tianjin Polytechnic University,Tianjin 300387,China

    2 Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes,Tianjin Polytechnic University,Tianjin 300387,China

    3 Institute of Separation Material and Process Control,School of Material Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    4 School of Environmental and Chemical Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    1.Introduction

    Carbon dioxide separation is one of the important processes nowadays,not only for the purpose of environment protection(e.g.removal CO2from flue gas,CO2/N2separation)[1],but also for the purpose of the energy development(e.g.removal CO2from nature gas,CO2/CH4separation)[2]and so on.Therefore,the removal of CO2from the complex mixture is a formidable technological and scientific challenge which has received considerable attention for several years.Generally,CO2can be removed from the mixture by absorption,adsorption,cryogenic separation,membrane separation,etc.[3].Among them,CO2separation by membrane technology has been paid more and more attention due to its inherent advantages including the relatively low energy consumption,low investment and ease of operation[1,4].

    Membranes are fabricated mainly by organic polymer material and inorganic material.Organic polymer membranes occupy a main part in the membrane gas separation market with the advantages of easy manufacture and low cost etc.However,pure polymeric membrane separation is generally restricted by the famous trade-off between gas permeability and selectivity,termed Robeson upper bound[5,6].A substantial effort has been devoted to exceed the permeation–separation trade-off line to obtain the excellent performance material with high permeability and high selectivity.Currently,tremendous improvements have been achieved in tailoring organic polymers with special physical and chemical structure,such as facilitated transport membrane materials with carriers facilitating the transport of CO2in the membrane[7],polymers of intrinsic microporosity with special ladder structure contributing to high free volume and high surface areas[8],thermally rearranged polymers with tuned microvoids contributing to performance enhancement in the selective molecular transport[9],solubility selective membrane materials with polar groups enhancing the solubility selectivity[10,11].On the other hand,mixed matrix membrane(MMM)comprising organic polymer with dispersed inorganic filler has been developed to exceed the trade-offline.Inorganic membrane materials show high permeation–separation performance lying far beyond the trade-off line for the organic polymers.However,because of their vast expense and fragile structures,continuous and defect-free membranes are difficult to fabricate on a larger scale[12].MMMs combining the processing versatility of organic polymers with the permeation–separation characteristic of inorganic particles have been developed and considered to be an efficient way to suppress the limit of the trade-off line.

    During the last decades,different kinds of inorganic particles have been used as filler in MMMs,including zeolites,carbon molecularsieves,mesoporous material,non-porous nanoparticles,and graphene[13].The main challenge of successful application of MMMs is the poor compatibility between the inorganic filler and organic polymer matrix,especially when rigid glassy polymer is used as the continuous phase[14].The separation performance of MMMs fails due to the interfacial region with nonselective voids between the polymer and inorganic filler.The permeation performance fails due to the partial pore blockage and polymer chain rigidification[15].

    In recently years,zeolitic imidazolate frameworks(ZIFs),a new class of porous materials,has received wide attention.The partial organic character of ZIFs,as a consequence of the imidazolate links,makes them more compatible with organic polymer matrices used for the preparation of MMMs,which leads to the defect-free membranes without the need of high temperatures membrane processing or complex compatibilization protocols[16].ZIF-8 with excellent chemical and thermal stability[17],has a finite pore size of 0.34 nm allowing size exclusion of gas molecules due to the narrow size of six membered ring,which makes it as a good candidate for CO2/CH4separation[18,19].The intrinsic gas permeation–separation performance of ZIF-8 is presented in Table 1.While ZIF-8 based mixed matrix membrane also suffers from partial pore blockage and polymer chain rigidification.Shahid et al.[18]observed the polymer chain rigidification in Matrimid/ZIF-8 MMMs,Mueller et al.[20]observed the polymer chain rigidification in 6FDA-DAM/ZIF-8 MMMs,Fang et al.[21]observed the partial pore blockage and polymer chain rigidification in PDMS/ZIF-8 MMMs,and Xu et al.[19]observed the polymer chain rigidification in Pebax/ZIF-8 MMMs.While in mostcases,polymer chain rigidification was beneficialto separation performance,MMMs membranes presented improved permeation performance and separation performance by incorporation of ZIF-8[18,19,21].

    Table 1 The permeability and selectivity of the ZIF-8 and the polymer matrix

    Poly(ethylene oxide)(PEO)polymer is one of the promising materials for CO2separation which gets a lot of attention[23].In this study,polymer chain rigidification phenomenon in PEO polymer with soft segment was studied.The ZIF-8 based MMMs were synthesized with the multi-armed and star-like cross-linked PEO rubber as matrix,which was reported in previous works of our team[11].Unlike MMMs in the previous reports fabricated by the method of solution blending,MMMs based on ZIF-8 fabricated by in situ polymerization are reported in this work.The intrinsic gas permeation–separation performance is also presented in Table 1.The pre-polymerization solution composed of monomer,cross-linker,initiator and ZIF-8 was polymerized under UV irradiation,which is an efficient way to fabricate membrane with the advantages of short cycle and solvent free,etc.The partial pore blockage and polymer chain rigidification phenomena were studied.Glass transition temperature(Tg),d-spacing(d)and the permeation–separation performance of the MMM were also investigated to confirm the exist of two undesirable phenomena.

    2.Experimental

    2.1.Materials

    Poly(ethylene glycol)methyl ether acrylate(PEGMEA,Aldrich,Mn=480 g·mol?1),pentaerythritol triacrylate(PETA,Alfa Aesar),1-hydroxylcyclohexyl phenyl ketone(HCPK,J&K Chemical)and ZIF-8(PlasmaChem,25 nm)were used as received.The chemical structures

    Fig.1.The structures of the monomer and cross-linker.

    ofthe monomerand cross-linker are shown in Fig.1.Nitrogen,methane and carbon dioxide(Tianjin Xiqing Liufang high technology gas supply station,purity 99.99%)were used as received.

    2.2.Synthesis of cross-linked PEO rubber/ZIF-8 MMMs

    Cross-linked PEO/ZIF-8 MMMs were synthesized by in situ polymerization.The pre-polymerization solution of cross-linker PETA with tri-acrylate groups,monomer PEGMEA with mono-acrylate group,dispersed phase ZIF-8 were prepared with 0.1 wt%HCPK relative to the total amount of the cross-linker and monomer.The PETA and PEGMEA were mixed according to the mass rate of 8:2.ZIF-8 nanoparticles were added into the pre-polymerization solution,corresponding to the equation as follow:

    where mZIF-8,mmonomerand mcross-linkerare the mass of ZIF-8,monomer and cross-linker in the pre-polymerization solution,respectively.The fabrication process of MMMs,viz.polymerization was carried out under UV irradiation,the details had been described elsewhere previously[11].

    2.3.Characterization of cross-linked PEO rubber/ZIF-8 MMMs

    Fourier Transform infrared spectroscopy(FTIR)spectra were recorded on a Bruker Vector-22 spectroscope to determine the conversion of acrylate groups and the presence of the ZIF-8.For each measurement,the filmsample was scanned at4 cm?1resolution over400–4000 cm?1range.Scanning electron microscope(SEM,Hitach,Japan)was used to study the surface and cross-section morphologies.

    X-ray diffraction(XRD)patterns were obtained by using a Scintag theta–theta diffractometer(Bruker AXS,D8 Advanced,Germany)utilizing CuKαradiation.The generator was operated at 45 kV and 40 mA,at room temperature about 25°C.The samples were measured with a 2θscan from5 to 40°with 0.02°step.The d-spacing,corresponding to the position of the diffraction maximum,was calculated by Bragg's Law as follow:

    where λ is the wavelength of CuKαradiation(0.154 nm),and θ is the broad peak maximum(°).

    Thermal transitions were determined using a differential scanning calorimeter(DSC200F3,NETZSCH,Germany).Samples were initially quenched to ?90 °C and scanned at a heating rate of 20 °C·min?1to 40 °C under a dry N2purge flow rate of 50 ml·min?1.The midpoint of the heat capacity step change was taken as the glass transition temperature.

    The density of dry sample was determined by hydrostatic weighing using a precision balance(Model 4,Shaihai Hengping Scientific Instrument Co.,Ltd.,China)with a density determination kit.The density(ρm,g·cm?3)was calculated by using the following equation:where MAis the membrane mass in air(g),MLis the membrane mass in the auxiliary liquid(g),and ρ0is the density of the auxiliary liquid(g·cm?3).Hexane was used as the auxiliary liquid in our study,since poly(ethylene oxide)does not have an affinity for this alkane.

    2.4.Permeation–separation performance of cross-linked PEO rubber/ZIF-8 MMMs

    Pure gas permeability in MMMs was determined using the time-lag method by a constant-volume/variable-pressure apparatus at 35°C with a feed pressure of 0.2 MPa.The permeability was calculated from the pressure rise in a downstream vessel of known volume.In this study,all samples were partially masked using impermeable aluminum tape on the upstream.The o-ring in the permeation cell was in direct contact with the aluminum tape to avoid the damage of the film.After aluminum tape masking,the surface area of the sample available for gas transport was 3.14 cm2.After a sample was mounted in the system,both upstream and downstream volumes were exposed to vacuum overnight to degas the film.Permeant gas was then introduced into the upstream side,and the permeant pressure on the downstream side was monitored using a MKS-Baratron pressure transducer.The pressure increase in the downstream volume was determined by subtracting the effect of the leak.

    Permeability coefficient P(Barrer)was calculated from the steadystate rate of pressure increase in a fixed downstream volume:if xed upstream pressure and under vacuum(Pa·s?1),respectively.The ideal selectivity is defined as follows:

    where Vdis the downstream volume(cm3),l is the film thickness(cm),here the membrane thickness is about 0.02 cm,p2is the upstream absolute pressure(Pa),A is the film area available for gas transport(cm2),R is the gas constant(8.34 × 106cm3(STP)·Pa·mol?1·K?1),T is the absolute temperature for test(K),(d p1/d t)ssand(d p1/d t)leakare the steady-state rates of pressure rise in the downstream volume at a

    where the subscripts A and B refer to gas A and gas B,respectively.

    The apparent diffusion coefficient D(cm2·s?1)was obtained from the time-lag(θ′)as follows:

    where θ′(s)is the diffusivity time-lag and l(cm)is the thickness of membrane measured using a digital micrometer(Shanghai Chuanlu Measuring Tools Co.,Ltd.,China).

    The apparent solubility coefficient S(cm3(STP)·cm?3·Pa?1)was evaluated as follows:

    The diffusivity selectivity of gas A over gas B(SA/SB)is defined as the ratio of diffusion coefficient for gas A over diffusion coefficient for gas B.The solubility selectivity of gas A over gas B(DA/DB)is defined as the ratio of solubility coefficient for gas Aoversolubility coefficient for gas B.

    3.Results and Discussion

    3.1.Characterization of the MMMs

    Fig.2.Appearances of the pure polymer membrane and MMMs.

    Fig.3.FTIR spectra of PETA,PEGMEA,pure cross-linking polymer membrane and MMM with 7.5 wt%ZIF-8 loading.

    The membranes were changed from colorless and transparent to white gradually with the incorporation of ZIF-8 as shown in Fig.2.The white power,ZIF-8,led to the color change.FTIR spectra of PETA,PEGMEA,pure cross-linked polymer membrane and MMM with 7.5 wt%ZIF-8 loading are shown in Fig.3.The characteristic peaks for carbon–carbon double bond(atabout1635 cm?1)practically disappear in the spectra after cross-linking(pure polymer membrane spectrum and MMM spectrum).It indicates that the reaction conversion of PEGMEA and PETA were close to 100%.A strong C–N absorption band atabout1142 cm?1,representative ofZIF-8,appears in MMMspectrum[24].And the peak at 1585 cm?1can be assigned to the C=N stretch mode[25].The peak at 3539 cm?1assigned to–OH stretch variation in pure polymer membrane shifts to 3470 cm?1in MMMs accompanied with increase in peak width,which results from the H-bonding between ZIF-8 and the polymer matrix[26].

    The surface morphologies of MMMs are shown in Fig.4,and the cross section morphologies are shown in Fig.5.The images show the incorporation of ZIF-8 particles into the polymer matrix.No visible phase separation can be observed in the surface,while some interface voids are found in cross section images.The surface images indicate the nano-particles disperse uniformly in the horizontal direction due to their increased interaction induced by the large surface area and the inorganic/organic hybrid nature of ZIF-8 nano-particles.Additionally,it is owing to the short fabricating time of UV-irradiation polymerization.While in vertically,we found the agglomeration phenomenon in MMM with 7.5%ZIF-8 loading.In cross section images,it can be found that some ZIF-8 lost,which was induced by the stress in manufacture process of SEM sample.Obvious stress cracking is shown in cross section images for MMMs with more than 1.5 wt%ZIF-8 loading.

    In addition to FTIR spectra and FESEM images,the existence of ZIF-8 in MMMs can also be confirmed by XRD,which is commonly used to investigate the presence of crystals of inorganic materials in amorphous matrixes.The effects of incorporated ZIF-8 on the crystallinity are usually considered to be from two aspects.On the one hand,the incorporated ZIF-8 in the polymer matrix may increase the free volume and decrease the crystallinity of membranes.On the other hand,with high ZIF-8 loading,the incorporated ZIF-8 may act as the nucleation site,which enhances the crystallinity of membranes.These two opposing effects determine whether the membrane crystallinity is increased or decreased with an increase in ZIF-8 loadings[25].The peak for the pure ZIF-8 is sharp with intensity due to the crystalline structure as shown in Fig.6(A),while the peak for the pure polymer,which is an amorphous material,is rather broad as shown in Fig.6(B).As observed,there is no obvious change for the XRD patterns of membranes with low ZIF-8 loading.And when a tiny amount of ZIF-8 loading(e.g.0.5 wt%),the peak in XRD is broad as that for the pure amorphous polymer.With the increase in ZIF-8 loading(1 wt%–7.5 wt%),the sharp peaks are observed gradually.The intensity of characteristic peaks of ZIF-8 at about 7.3°representing the plane(011)of ZIF-8 crystalline structure and being usually used as reference for the identification of ZIF-8,is increased with the increase in ZIF-8 loading in MMMs,which indicates that the polymer has not changed the crystallinity of the ZIF-8.The intensity ration(r)of the first and second peak area,at 7.3°and 10.3°respectively,was calculated,which was decreased from 8.3 for ZIF-8 to 1.0–1.5 for MMMs.This decrease can be explained by the penetration of polymer chains into the pore of ZIF-8[27].And this partial blockage exists in the MMMs synthesized by in site polymerization,since the monomer chain is more flexible than polymer.As seen from Fig.6(B),the peak intensity at 26.65°reflecting the ZIF-8 window size(0.34 nm)disappears or appears at high-value zone(26.8°),which also results from the partial blockage or coverage.

    In addition,the amorphous nature of the polymer in MMMs is revealed in the corresponding diffractogram,with the broad peak for the polymer centered at 2θ=20.55°being moved to the high-value zone of the reflection peak.The movement is consistent with the strong interaction between continuous and dispersed phases,which reduces the distance between polymer chains.This might imply the tightening of polymer chains,which is consistent with the DSC results as mentioned in the next paragraph.While the decrease of the d-spacing is independent with the ZIF-8 loading amount(Table 2),since ZIF-8 impacts d-spacing in two ways.On the one hand,the strong interaction between continuous and dispersed phases reduces the distance between polymer chains[28,29].On the other hand,the formation of some phases of polymer matrix around the fillers resulted in an increase of d-spacing,because of the capacity of fillers to alter the polymer chain packing[13,30,31].The two opposite effects led to the irregular decrease in d-spacing.Anyway,the d-spacings of MMMs are decreased compared with that of the pure polymer membrane.

    The glass transition temperature from DSC(Fig.7)is used to investigate the interaction between the polymer and filling particles.The DSC results of MMMs with different ZIF-8 loadings and pure polymer membrane are presented in Table 2.Single and clear Tgforall MMMs samples are observed,resulting from combination of filling particle and polymer matrix on molecular lever and formation of a new material.The addition of ZIF-8 to polymer increased Tgof material,and which was increased with the increase in the ZIF-8 loading.The increase in Tgis considered to be a result of concentration and interaction between filling particles and polymer matrix.In this study,the increase in Tgis a result of H-bonding between ZIF-8 and the polymer matrix[24,32],which also indicates that the polymer's segmental mobility is decreased.This might imply the tightening of polymer chains,which is consistent with the XRD result as mentioned in the previous paragraph.

    3.2.Gas permeation–separation performance of MMMs

    The Maxwell equation,which is suitable to predict the physiochemical properties of heterogeneous systems where particles are randomly dispersed in other continuous phases,has been extended to predict gas separation performance of MMMs as follows by many researchers[33]:

    Fig.4.SEM images of surface of MMMs.

    where Peffis the effective permeability of MMMs,Φ is the volume fraction,and the subscripts d and c refer to the dispersed and continuous phases,respectively.The permeabilities of MMMs predicted by the Maxwell equation and tested at 35°C and 0.2 MPa,are presented in Fig.8.It is obvious that the Maxwell equation provides fairly poor predictions in this study.The experimental permeability deviates from the predictions positively or negatively.And the predictions overestimated the ideal selectivity.Although the cross-linked PEO polymer is a lower-Tgrubber with high chain mobility,a polymer rigidification effectnear the polymer-sieve interface might also be significant in MMMs,causing a reduced permeability[33].Tgmeasurements indicating a Tgincrease for MMMs and d-spacing measurements indicating a d-spacing decrease for MMMs(Table 2)support this hypothesis.Since the chain mobility and d-spacing are both decreased with the incorporation of ZIF-8,the free volume fraction of MMMs is decreased.Furthermore,the penetration of polymer chains into the pore of ZIF-8,inducing the partial pore blockage confirmed by XRD result,led to the lower than-predicted permeability.While as shown in Fig.5,interface voids were formed in MMMs,which led to higher-than-predicted permeability.We also consider that the phenomenon of higher-than-predicted permeability is possibly owing to the deviation of intrinsic permeability for ZIF-8 between the tested value from dense film and the estimated value used in this study,which was estimated based on the composite membranes.

    Fig.5.SEM images of cross section of MMMs.

    The gas diffusivity coefficient and solubility coefficient of MMMs are summarized in Table 3.It is obvious that the incorporation of ZIF-8 produces a decrease in diffusion for CO2,and an increase for CH4in most cases.Generally,the incorporation of porous ZIF-8 increases the diffusivity coefficient,since ZIF-8 has a much great diffusivity coefficient than polymers[34].However,as mentioned earlier,the incorporation of ZIF-8 reduced the chain mobility and d-spacing,leading to the increase in diffusion resistance and the decrease in diffusivity coefficient,which influences the diffusion of the CO2(small molecule)greatly compared with CH4(large molecule).It is obvious that the latter dominated the changing trend for CO2.In the case of CH4,a fact should be considered that the effective aperture size of ZIF-8 is~0.40 nm,much larger than the crystallo-graphically determined aperture size due to the flopping motion of the ligand[35],which influences the diffusion of the CH4(large molecule)greatly compared with CO2(small molecule).The two opposite effects result in the increase in the diffusivity coefficient of CH4,and the highest diffusivity coefficients for all gases at the 1.5 wt%loading.In addition,the highest diffusivity coefficients are attributed partly to the defect in the polymer-sieve interface as mentioned in previous paragraph as shown in Fig.5.The incorporation of ZIf-8 also leads to two opposite effects on the solubility coefficient.On the one hand,the reduced chain mobility and d-spacing decrease the free volume fraction and then the solubility coefficient.On the other hand,the high sorption of ZIF-8 increases the solubility coefficient.The two opposite effects can be used to explain that the solubility coefficient is more or less independent of the ZIF-8 loading.

    Fig.6.X-ray diffraction patterns of ZIF-8(A),the MMMs with different ZIF-8 loadings and the pure polymer membrane(B)at room temperature.

    The diffusivity selectivity and solubility selectivity of MMMs are also presented in Table 3.It can be seen that the ideal selectivity depended on the solubility selectivity for all membranes,which indicates that the incorporation of ZIF-8 does notchange the nature of solubility selectivity.The diffusivity selectivity and solubility selectivity are more or less independent of the ZIF-8 loading.The change in selectivity was mainly caused by the two opposite effects:(1)The decrease in free volume fraction induced by the decrease in chain mobility and d-spacingtermed as polymer rigidification and the partial blockage of ZIF-8 pore increased the diffusion selectivity and solubility selectivity[36];(2)The intrinsically low diffusion selectivity and solubility selectivity for ZIF-8 decrease the diffusion selectivity and solubility selectivity.Fig.9 compares the permeation–separation performance with the 2008 Robeson upper bound.It can be seen that performances of MMMs are moved away from the upper bound compared with that of pure polymer membrane,which is different compared with predicted data.The slight decrease in selectivity is mainly caused by the incorporation of ZIF-8 because of the intrinsically low CO2/CH4selectivity.The change in permeability was mainly caused by the two opposite effects as mentioned above:(1)the decrease in free volume fraction induced by the decrease in chain mobility and d-spacing termed as polymer rigidification and the partial blockage of ZIF-8 pore;(2)the intrinsically high permeability for ZIF-8.Obviously,the former effect dominates the change tendency,that is to say,the partial pore blockage and polymer chain rigidification due to the corporation of ZIF-8 decreases the permeability.

    Table 2 The physical properties of MMMs,ZIF-8 and pure polymer membrane

    Fig.7.Differential scanning calorimetry thermo-grams of MMMs and the pure polymer membrane.

    Fig.8.A comparison between the Maxwell prediction and experimental data of pure gas transport performance for MMMs.

    Table 3 Gas diffusivity coefficient,solubility coefficient,diffusivity selectivity and solubility selectivity of MMMs

    Fig.9.CO2/CH4 permeation–separation performance of pure polymer membrane,ZIF-8 membrane,and MMMs in Robeson upper bound plot.

    4.Conclusions

    Cross-linked PEO rubber was used as matrix,MMMs incorporating different contents of ZIF-8 nano-particles were synthesized by in situ polymerization for CO2separation.The physical characteristic and permeation–separation performance were investigated.The following conclusion could be obtained from this study:

    (1)ZIF-8 nanoparticles were well dispersed in MMMS thought in situ polymerization,accompanied with some agglomeration in vertically;

    (2)XRDresults indicated a decrease in the d-spacing for MMMscompared with that of pure polymer.DSC results showed an increase in Tgwith the increasing of ZIF-8 loading,indicating a decrease in chain mobility.Both of them indicated the polymer rigidification effect around the ZIF-8.XRD results also indicated the partial blockage of ZIF-8 pore;

    (3)The improvement effort in permeation–separation performance by incorporation of ZIF-8 ended in failure.The polymer rigidification effect and partial pore blockage were significant in PEO rubber/ZIF-8 MMMs.In most cases,the increase in permeability induced by the incorporation of the high-permeability ZIF-8 was offset by the decrease in permeability induced by the polymer rigidification effect and partial pore blockage in this work.

    [1]R.Khalilpour,K.Mumford,H.B.Zhai,A.Abbas,G.Stevens,E.S.Rubin,Membrane based carbon capture from flue gas:A review,J.Clean.Prod.103(2015)286–300.

    [2]S.Faramawy,T.Zaki,A.A.E.Sakr,Natural gas origin,composition,and processing:A review,J.Nat.Gas Sci.Eng.34(2016)34–54.

    [3]K.Osman,C.Coquelet,D.Ramjugernath,Review of carbon dioxide capture and storage with relevance to the South African power sector,S.Afr.J.Sci.110(2014)1–12.

    [4]I.Sreedhar,R.Vaidhiswaran,B.M.Kamani,A.Venugopal,Process and engineering trends in membrane based carbon capture,Renew.Sust.Energ.Rev.68(Part 1)(2017)659–684.

    [5]L.M.Robeson,Correlation of separation factor versus permeability for polymeric membranes,J.Membr.Sci.62(1991)165–185.

    [6]L.M.Robeson,The upper bound revisited,J.Membr.Sci.320(2008)390–400.

    [7]H.C.Ferraz,L.T.Duarte,M.Di Luccio,T.L.M.Alves,A.C.Habert,C.P.Borges,Recent achievements in facilitated transport membranes for separation processes,Braz.J.Chem.Eng.24(2007)101–118.

    [8]H.Y.Zhao,Q.Xie,X.L.Ding,J.M.Chen,M.M.Hua,X.Y.Tan,Y.Z.Zhang,High performance post-modified polymers of intrinsic microporosity(PIM-1)membranes based on multivalent metal ions for gas separation,J.Membr.Sci.514(2016)305–312.

    [9]H.B.Park,S.H.Han,C.H.Jung,Y.M.Lee,A.J.Hill,Thermally rearranged(TR)polymer membranes for CO2separation,J.Membr.Sci.359(2010)11–24.

    [10]H.Q.Lin,Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases(Ph.D.Thesis)The University of Texas at Austin,Austin,2005.

    [11]H.Y.Zhao,X.L.Ding,P.P.Yang,L.Y.Li,X.Li,Y.Z.Zhang,A novel multi-armed and starlike poly(ethylene oxide)membrane for CO2separation,J.Membr.Sci.489(2015)258–263.

    [12]G.Q.Lu,J.C.Diniz da Costa,M.Duke,S.Giessler,R.Socolow,R.H.Williams,T.Kreutz,Inorganic membranes for hydrogen production and purification:A critical review and perspective,J.Colloid Interface Sci.314(2007)589–603.

    [13]P.S.Goh,A.F.Ismail,S.M.Sanip,B.C.Ng,M.Aziz,Recent advances of inorganic fillers in mixed matrix membrane for gas separation,Sep.Purif.Technol.81(2011)243–264.

    [14]R.Mahajan,R.Burns,M.Schaeffer,W.J.Koros,Challenges in forming successful mixed matrix membranes with rigid polymeric materials,J.Appl.Polym.Sci.86(2002)881–890.

    [15]K.Mohammad Gheimasi,T.Mohammadi,O.Bakhtiari,Modification of ideal MMMs permeation prediction models:Effects of partial pore blockage and polymer chain rigidification,J.Membr.Sci.427(2013)399–410.

    [16]J.Ahmad,M.B.Hagg,Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane,Sep.Purif.Technol.115(2013)163–171.

    [17]J.Caro,M.Noack,P.K?lsch,R.Sch?fer,Zeolite membranes-state of their development and perspective,Microporous Mesoporous Mater.38(2000)3–24.

    [18]S.Shahid,K.Nijmeijer,Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures,J.Membr.Sci.470(2014)166–177.

    [19]L.W.Xu,L.Xiang,C.Q.Wang,J.Yu,L.X.Zhang,Y.C.Pan,Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals,Chin.J.Chem.Eng.25(2017)882–891.

    [20]R.Mueller,V.Hariharan,C.Zhang,R.Lively,S.Vasenkov,Relationship between mixed and pure gas self-diffusion for ethane and ethene in ZIF-8/6FDA-DAM mixed-matrix membrane by pulsed field gradient NMR,J.Membr.Sci.499(2016)12–19.

    [21]M.Q.Fang,C.L.Wu,Z.J.Yang,T.Wang,Y.Xia,J.D.Li,ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation:Experimental result and permeation model validation,J.Membr.Sci.474(2015)103–113.

    [22]L.Hao,P.Li,T.Yang,T.S.Chung,Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2capture,J.Membr.Sci.436(2013)221–231.

    [23]S.L.Liu,L.Shao,M.L.Chua,C.H.Lau,H.Wang,S.Quan,Recent progress in the design of advanced PEO-containing membranes for CO2removal,Prog.Polym.Sci.38(2013)1089–1120.

    [24]S.Hwang,W.S.Chi,S.J.Lee,S.H.Im,J.H.Kim,J.Kim,Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4gas separation,J.Membr.Sci.480(2015)11–19.

    [25]S.Zhao,X.C.Cao,Z.J.Ma,Z.Wang,Z.H.Qiao,J.X.Wang,S.C.Wang,Mixed-matrix membranes for CO2/N2separation comprising a poly(vinylamine)matrix and metal-organic frameworks,Ind.Eng.Chem.Res.54(2015)5139–5148.

    [26]J.H.Hu,X.F.Zheng,Practical Infrared Spectroscopy,Science Press,Beijing,2011.

    [27]S.Sorribas,B.Zornoza,C.Téllez,J.Coronas,Mixed matrix membranes comprising silica-(ZIF-8)core-shell spheres with ordered meso-microporosity for natural-and bio-gas upgrading,J.Membr.Sci.452(2014)184–192.

    [28]B.Zornoza,B.Seoane,J.M.Zamaro,C.Tellez,J.Coronas,Combination of MOFs and zeolites for mixed-matrix membranes,ChemPhysChem 12(2011)2781–2785.

    [29]B.Zornoza,C.Téllez,J.Coronas,Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation,J.Membr.Sci.368(2011)100–109.

    [30]M.J.C.Ordo?ez,K.J.Balkus Jr.,J.P.Ferraris,I.H.Musselman,Molecular sieving realized with ZIF-8/Matrimid? mixed-matrix membranes,J.Membr.Sci.361(2010)28–37.

    [31]S.Basu,A.Cano-Odena,I.F.J.Vankelecom,Asymmetric Matrimid?/[Cu3(BTC)2]mixed-matrix membranes for gas separations,J.Membr.Sci.362(2010)478–487.

    [32]V.Na fisi,M.-B.Hagg,Gas separation properties of ZIF-8/6FDA-durene diamine mixed matrix membrane,Sep.Purif.Technol.128(2014)31–38.

    [33]D.Q.Vu,W.J.Koros,S.J.Miller,Mixed matrix membranes using carbon molecular sieves:II.Modeling permeation behavior,J.Membr.Sci.211(2003)335–348.

    [34]Y.C.Pan,W.Liu,Y.J.Zhao,C.Q.Wang,Z.P.Lai,Improved ZIF-8 membrane:Effect of activation procedure and determination of diffusivities of light hydrocarbons,J.Membr.Sci.493(2015)88–96.

    [35]H.Li,L.H.Tuo,K.Yang,H.-K.Jeong,Y.Dai,G.Y.He,W.Zhao,Simultaneous enhancement of mechanical properties and CO2selectivity of ZIF-8 mixed matrix membranes:Interfacial toughening effect of ionic liquid,J.Membr.Sci.511(2016)130–142.

    [36]V.I.Bondar,B.D.Freeman,I.Pinnau,Gas sorption and characterization of poly(etherb-amide)segmented block copolymers,J.Polym.Sci.B Polym.Phys.37(1999)2463–2475.

    熟女人妻精品中文字幕| 国产探花在线观看一区二区| 国产亚洲精品久久久久久毛片| 亚洲精品一区av在线观看| 美女高潮喷水抽搐中文字幕| 欧美成人一区二区免费高清观看| 亚洲avbb在线观看| 又黄又爽又免费观看的视频| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 无人区码免费观看不卡| 欧美高清成人免费视频www| ponron亚洲| 黄色女人牲交| 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| netflix在线观看网站| 亚洲专区中文字幕在线| 波多野结衣高清作品| 一本久久中文字幕| 国产精品一区二区免费欧美| 人妻夜夜爽99麻豆av| 久久久久久久久久黄片| 午夜精品久久久久久毛片777| 精品久久久久久久久久免费视频| 亚洲成人久久性| 欧美黑人欧美精品刺激| 好男人在线观看高清免费视频| 男女那种视频在线观看| 日韩中文字幕欧美一区二区| 久久精品影院6| 欧美色视频一区免费| 精品一区二区三区av网在线观看| 在线观看av片永久免费下载| 国产三级黄色录像| 成人av在线播放网站| 欧美一级a爱片免费观看看| 日本黄色视频三级网站网址| 99热只有精品国产| 别揉我奶头~嗯~啊~动态视频| 午夜精品一区二区三区免费看| 日本黄色视频三级网站网址| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 亚洲国产日韩欧美精品在线观看 | 午夜福利成人在线免费观看| 日本成人三级电影网站| 五月玫瑰六月丁香| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看 | 亚洲男人的天堂狠狠| 久久久久国产精品人妻aⅴ院| 五月伊人婷婷丁香| 亚洲黑人精品在线| 亚洲天堂国产精品一区在线| 久久久久久人人人人人| 丰满乱子伦码专区| 久久草成人影院| 在线十欧美十亚洲十日本专区| 美女大奶头视频| 男女之事视频高清在线观看| 亚洲第一电影网av| 日本黄大片高清| 国产高清视频在线观看网站| 精品无人区乱码1区二区| 亚洲午夜理论影院| av欧美777| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3| 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 亚洲精品456在线播放app | 亚洲成av人片在线播放无| 免费看a级黄色片| 亚洲av一区综合| 国产日本99.免费观看| 久久精品国产综合久久久| 日本五十路高清| 欧美一区二区亚洲| 欧美中文综合在线视频| 亚洲专区国产一区二区| 哪里可以看免费的av片| 狂野欧美白嫩少妇大欣赏| 少妇的逼水好多| 99国产极品粉嫩在线观看| 亚洲性夜色夜夜综合| 国产69精品久久久久777片| 国产精品99久久久久久久久| 午夜福利18| 18禁美女被吸乳视频| 熟女少妇亚洲综合色aaa.| 日韩精品中文字幕看吧| 天堂动漫精品| 成人鲁丝片一二三区免费| 在线十欧美十亚洲十日本专区| 男女下面进入的视频免费午夜| 日本 欧美在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99国产极品粉嫩在线观看| 日韩欧美免费精品| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 国产精品日韩av在线免费观看| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 亚洲激情在线av| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 欧美在线黄色| 99在线视频只有这里精品首页| 久久久久久久久中文| 亚洲精品一区av在线观看| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 我的老师免费观看完整版| h日本视频在线播放| av国产免费在线观看| 欧美成人a在线观看| 制服人妻中文乱码| 波多野结衣高清无吗| 51午夜福利影视在线观看| 日韩欧美在线二视频| 久久国产精品影院| 嫩草影院精品99| 91麻豆av在线| 人妻夜夜爽99麻豆av| 中文字幕熟女人妻在线| 午夜福利成人在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 两个人视频免费观看高清| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线观看免费| 90打野战视频偷拍视频| 久久久久精品国产欧美久久久| 色哟哟哟哟哟哟| 嫩草影院精品99| e午夜精品久久久久久久| 国产精品国产高清国产av| 国产精品一及| 国产69精品久久久久777片| h日本视频在线播放| 深夜精品福利| 免费在线观看亚洲国产| www日本在线高清视频| 国产精品久久久久久精品电影| 欧美色视频一区免费| 91九色精品人成在线观看| 色噜噜av男人的天堂激情| 十八禁人妻一区二区| 国产激情偷乱视频一区二区| 亚洲美女视频黄频| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 美女高潮喷水抽搐中文字幕| aaaaa片日本免费| 婷婷亚洲欧美| 一二三四社区在线视频社区8| 很黄的视频免费| 少妇高潮的动态图| 久久久久久大精品| 成人亚洲精品av一区二区| 日韩中文字幕欧美一区二区| 91在线精品国自产拍蜜月 | 国产亚洲欧美在线一区二区| 精品人妻一区二区三区麻豆 | 美女cb高潮喷水在线观看| 少妇的逼水好多| 男女下面进入的视频免费午夜| 欧美乱妇无乱码| 亚洲国产日韩欧美精品在线观看 | 国产探花在线观看一区二区| 一级a爱片免费观看的视频| 亚洲五月婷婷丁香| 在线播放无遮挡| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 久久草成人影院| 国产极品精品免费视频能看的| 国内毛片毛片毛片毛片毛片| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 18美女黄网站色大片免费观看| 免费一级毛片在线播放高清视频| 18禁国产床啪视频网站| 99热6这里只有精品| 少妇高潮的动态图| 国产三级黄色录像| 法律面前人人平等表现在哪些方面| 日韩欧美 国产精品| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 99riav亚洲国产免费| 美女被艹到高潮喷水动态| 欧美在线黄色| 欧美色欧美亚洲另类二区| 亚洲精品一卡2卡三卡4卡5卡| 久久精品综合一区二区三区| 内地一区二区视频在线| 久久人人精品亚洲av| 亚洲精品久久国产高清桃花| 天天一区二区日本电影三级| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 好男人电影高清在线观看| 亚洲黑人精品在线| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| 亚洲精品乱码久久久v下载方式 | 丰满人妻熟妇乱又伦精品不卡| 此物有八面人人有两片| 在线观看午夜福利视频| 亚洲最大成人中文| 国产精品自产拍在线观看55亚洲| 欧美一级a爱片免费观看看| 国产真人三级小视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看| 在线观看美女被高潮喷水网站 | 国产成+人综合+亚洲专区| 黄片小视频在线播放| 欧美3d第一页| 成人国产一区最新在线观看| 国产亚洲精品久久久com| 熟妇人妻久久中文字幕3abv| 一个人免费在线观看的高清视频| 精品人妻一区二区三区麻豆 | 国产成人av教育| 波野结衣二区三区在线 | 一级毛片女人18水好多| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片| 欧美日韩黄片免| 超碰av人人做人人爽久久 | 久久婷婷人人爽人人干人人爱| 国内精品久久久久久久电影| 波野结衣二区三区在线 | 丁香六月欧美| 他把我摸到了高潮在线观看| 亚洲男人的天堂狠狠| 欧美又色又爽又黄视频| 午夜精品久久久久久毛片777| 老司机在亚洲福利影院| 日本免费a在线| 精品国内亚洲2022精品成人| 他把我摸到了高潮在线观看| 国产单亲对白刺激| 亚洲精品一区av在线观看| 一本一本综合久久| 精品不卡国产一区二区三区| 免费观看人在逋| av专区在线播放| 久久99热这里只有精品18| 美女高潮的动态| 麻豆久久精品国产亚洲av| 久久亚洲真实| 日本熟妇午夜| 免费大片18禁| 亚洲午夜理论影院| 国产午夜精品久久久久久一区二区三区 | 制服丝袜大香蕉在线| 国内精品久久久久精免费| 日本 av在线| 在线看三级毛片| 国产极品精品免费视频能看的| 日韩av在线大香蕉| 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯| 一本综合久久免费| 黄色视频,在线免费观看| 中文字幕久久专区| 国产成年人精品一区二区| 亚洲国产中文字幕在线视频| 色噜噜av男人的天堂激情| aaaaa片日本免费| 免费在线观看影片大全网站| 给我免费播放毛片高清在线观看| 国产精品久久久久久久电影 | 色哟哟哟哟哟哟| 午夜福利在线观看吧| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 97超视频在线观看视频| 欧美国产日韩亚洲一区| 一区福利在线观看| 亚洲av电影不卡..在线观看| 18禁黄网站禁片免费观看直播| 非洲黑人性xxxx精品又粗又长| 老汉色∧v一级毛片| 日韩高清综合在线| av福利片在线观看| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 欧美一区二区亚洲| netflix在线观看网站| 有码 亚洲区| 99热这里只有是精品50| 99精品欧美一区二区三区四区| 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 国产精品久久电影中文字幕| 亚洲片人在线观看| 亚洲国产中文字幕在线视频| 亚洲美女视频黄频| www.熟女人妻精品国产| 久久这里只有精品中国| 久久伊人香网站| 国产不卡一卡二| 欧美3d第一页| 91av网一区二区| 美女高潮的动态| 神马国产精品三级电影在线观看| 99热6这里只有精品| 国产高清视频在线播放一区| 人妻夜夜爽99麻豆av| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 欧美成人a在线观看| 亚洲国产精品合色在线| 日韩av在线大香蕉| 婷婷亚洲欧美| 亚洲五月天丁香| 成人国产综合亚洲| 欧美黑人巨大hd| 欧美日韩瑟瑟在线播放| 女人十人毛片免费观看3o分钟| 国产成+人综合+亚洲专区| 亚洲狠狠婷婷综合久久图片| 在线播放无遮挡| 久久久久久大精品| 中文资源天堂在线| 超碰av人人做人人爽久久 | 有码 亚洲区| 精品国内亚洲2022精品成人| 国产三级黄色录像| 亚洲国产欧美网| 久久久久久大精品| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看 | 白带黄色成豆腐渣| 18美女黄网站色大片免费观看| 网址你懂的国产日韩在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 搞女人的毛片| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 免费搜索国产男女视频| 亚洲专区国产一区二区| 禁无遮挡网站| 久久久久久人人人人人| 国产成人aa在线观看| 大型黄色视频在线免费观看| 51国产日韩欧美| 国产三级中文精品| 欧美黄色淫秽网站| 国产一区二区在线观看日韩 | 日本与韩国留学比较| 美女高潮的动态| 日韩欧美精品v在线| 欧美3d第一页| 国产精品香港三级国产av潘金莲| 色尼玛亚洲综合影院| 久久久成人免费电影| 丰满人妻熟妇乱又伦精品不卡| 丰满的人妻完整版| 天堂网av新在线| 天堂动漫精品| 午夜视频国产福利| 极品教师在线免费播放| 日韩国内少妇激情av| 性色av乱码一区二区三区2| 内射极品少妇av片p| 日日干狠狠操夜夜爽| 岛国在线观看网站| 中国美女看黄片| 国产精品久久久久久久电影 | 午夜福利18| 老司机午夜福利在线观看视频| 亚洲精品成人久久久久久| 熟女少妇亚洲综合色aaa.| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久久久久| 色吧在线观看| av专区在线播放| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 精品免费久久久久久久清纯| av福利片在线观看| 精品欧美国产一区二区三| 老汉色∧v一级毛片| 国产精品美女特级片免费视频播放器| 日本五十路高清| 国产单亲对白刺激| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 亚洲熟妇熟女久久| 国产亚洲精品综合一区在线观看| 男女之事视频高清在线观看| av福利片在线观看| 最近在线观看免费完整版| 精品电影一区二区在线| 97超级碰碰碰精品色视频在线观看| 国产午夜精品久久久久久一区二区三区 | 久久精品亚洲精品国产色婷小说| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 精品欧美国产一区二区三| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色| 啦啦啦免费观看视频1| svipshipincom国产片| 久久中文看片网| 国产探花在线观看一区二区| 俄罗斯特黄特色一大片| 国产乱人伦免费视频| 精品熟女少妇八av免费久了| 国产av在哪里看| 亚洲第一欧美日韩一区二区三区| 黄色女人牲交| 99精品在免费线老司机午夜| 欧美一区二区亚洲| 黄色日韩在线| 最近在线观看免费完整版| 欧美又色又爽又黄视频| 欧美极品一区二区三区四区| 国产私拍福利视频在线观看| 午夜视频国产福利| 在线观看66精品国产| 美女cb高潮喷水在线观看| 国产高清视频在线播放一区| 欧美中文日本在线观看视频| 99久久精品热视频| 中文字幕久久专区| 香蕉丝袜av| 国产黄片美女视频| 一级作爱视频免费观看| 午夜影院日韩av| 亚洲不卡免费看| 波多野结衣高清作品| 国产亚洲精品综合一区在线观看| 免费人成视频x8x8入口观看| 精品一区二区三区人妻视频| 97超级碰碰碰精品色视频在线观看| eeuss影院久久| 亚洲天堂国产精品一区在线| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av涩爱 | 高清在线国产一区| 亚洲国产欧美人成| 国内精品一区二区在线观看| 成年人黄色毛片网站| 成人国产一区最新在线观看| 校园春色视频在线观看| 亚洲av免费在线观看| 色综合婷婷激情| 久久6这里有精品| 全区人妻精品视频| x7x7x7水蜜桃| 草草在线视频免费看| 久久久久久久亚洲中文字幕 | 桃色一区二区三区在线观看| 久久精品国产亚洲av香蕉五月| 啦啦啦观看免费观看视频高清| 欧美性猛交╳xxx乱大交人| 亚洲av五月六月丁香网| 亚洲国产色片| 啦啦啦免费观看视频1| xxx96com| 18禁在线播放成人免费| 波野结衣二区三区在线 | 亚洲成人免费电影在线观看| 精品无人区乱码1区二区| 男女下面进入的视频免费午夜| 亚洲在线观看片| 深爱激情五月婷婷| 久久国产精品影院| 午夜激情福利司机影院| 国产精品香港三级国产av潘金莲| 国产探花在线观看一区二区| 亚洲七黄色美女视频| 亚洲精品在线美女| 欧美3d第一页| 精品乱码久久久久久99久播| netflix在线观看网站| 最近最新免费中文字幕在线| 91字幕亚洲| 精品久久久久久成人av| 九九久久精品国产亚洲av麻豆| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产 | 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美98| 国产三级中文精品| 久久久久性生活片| 香蕉av资源在线| 99久久99久久久精品蜜桃| 国产精品 国内视频| 中文字幕av成人在线电影| 精品久久久久久成人av| 久久久久久国产a免费观看| 亚洲av五月六月丁香网| 国产美女午夜福利| 日本 av在线| 真人做人爱边吃奶动态| 最近最新免费中文字幕在线| 波多野结衣高清无吗| 国产av一区在线观看免费| 久久精品综合一区二区三区| 亚洲色图av天堂| 国产精品美女特级片免费视频播放器| 国内揄拍国产精品人妻在线| 麻豆一二三区av精品| 99久久无色码亚洲精品果冻| 欧美+亚洲+日韩+国产| 欧美国产日韩亚洲一区| 国产一区二区三区在线臀色熟女| 九九在线视频观看精品| 国产视频内射| 丰满人妻一区二区三区视频av | 一进一出抽搐gif免费好疼| 欧美色视频一区免费| av在线蜜桃| 国产精品美女特级片免费视频播放器| 日韩 欧美 亚洲 中文字幕| 成人一区二区视频在线观看| 啪啪无遮挡十八禁网站| 日韩精品青青久久久久久| 久久久久精品国产欧美久久久| 久久久精品欧美日韩精品| 欧美区成人在线视频| 亚洲成a人片在线一区二区| 精品乱码久久久久久99久播| 日韩国内少妇激情av| 99在线视频只有这里精品首页| 欧美bdsm另类| 小蜜桃在线观看免费完整版高清| 成人无遮挡网站| 国产av在哪里看| 国产精品一区二区免费欧美| 狂野欧美激情性xxxx| 99久久精品热视频| 91九色精品人成在线观看| 毛片女人毛片| 丁香欧美五月| 窝窝影院91人妻| 中亚洲国语对白在线视频| 欧美又色又爽又黄视频| 国产色爽女视频免费观看| 18禁美女被吸乳视频| 国产爱豆传媒在线观看| 在线播放国产精品三级| 听说在线观看完整版免费高清| 国产视频一区二区在线看| 久久久国产成人精品二区| 哪里可以看免费的av片| 国产精品1区2区在线观看.| 老司机午夜十八禁免费视频| 岛国视频午夜一区免费看| 天天一区二区日本电影三级| 操出白浆在线播放| 午夜免费观看网址| 99国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 男女做爰动态图高潮gif福利片| 国产亚洲精品av在线| 午夜精品在线福利| av欧美777| 中文资源天堂在线| 麻豆国产av国片精品| 搡女人真爽免费视频火全软件 | 十八禁网站免费在线| 欧美日韩瑟瑟在线播放| 少妇人妻精品综合一区二区 | 一夜夜www| 国内少妇人妻偷人精品xxx网站| 久久久久精品国产欧美久久久| 制服丝袜大香蕉在线| 日本免费一区二区三区高清不卡| 级片在线观看| 日日干狠狠操夜夜爽| 亚洲av成人不卡在线观看播放网| 国产在线精品亚洲第一网站| 欧美在线一区亚洲| av中文乱码字幕在线| 免费在线观看日本一区| 色精品久久人妻99蜜桃| 亚洲欧美日韩无卡精品| 看片在线看免费视频| 国产精华一区二区三区| 少妇丰满av| 好看av亚洲va欧美ⅴa在| av女优亚洲男人天堂| 久久久久久久久大av| www日本在线高清视频| 在线免费观看不下载黄p国产 |