• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on flow and heat transfer characteristics of corrugated tubes with non-uniform corrugation in turbulent flow

    2018-05-26 07:28:50DongweiZhangHanzhongTaoYuanXuZishuaiSun

    Dongwei Zhang ,Hanzhong Tao ,*,Yuan Xu ,Zishuai Sun

    1 College of energy science and engineering,Nanjing Tech University,Nanjing 211816,China

    2 The Corporation of Towngas,Changzhou 213000,China

    1.Introduction

    Shell-and-tube and double-pipe heat exchangers are used in various industry fields and the heat-exchange tubes are the core components of them.In order to reduce the energy consumption and increase the economic benefit,high-efficiency heat exchange units in the thermodynamic process are becoming more and more vital for many applications.Hydrodynamically and thermally fully developed turbulent flow in tubes is common in many industrial applications,which has been extensively investigated before.As to the heat-exchange tube,roughness enhancement method is one of the most effective way to improve the heat transfer performance although with the increase of pressure drop at developed turbulent flow condition.Nowadays,the corrugated tubes have been widely used in single-phase flow of commercial applications because of its low-cost manufacturing and large enhancement of heat transfer[1].The characteristics of pressure drop and heat transfer in laminar,transition and turbulent flow of the corrugated tube have been widely investigated in the past few decades.

    Many researchers have made a lot of experimental studies on the corrugated tubes.For example:Vicente et al.[1–3]experimentally investigated the heat transfer,pressure drop and friction factor of single-phase flow in the corrugated tube covered the Reynolds number ranging from 100 to 90000.Olivier[4]and Rainieri et al.[5]investigated the heat transfer performance of the smooth and corrugated tubes in laminar and transitional flow condition based on experiment method.However,there are also some researchers[6,7]who have attempted to study the corrugated tubes with numerical simulation method.For example:based on direct numerical simulation method,Piller[6]investigated the turbulent forced convection in a pipe with three different wall thermal conditions.Meanwhile,the separation characteristics of steady laminar flow between two parallel wavy surface plates were investigated numerically by Mahmuda et al.[7].

    There are also many available literatures concentrated on the performances of different types of corrugated tubes in different applications,such as the pressure drop,friction factor,heat transfer enhancement,and anti-fouling performance.For example:Xu et al.[8]experimentally investigated the corrugated tubes and found that the corrugated tubes have advantages over plain tubes in heat transfer and anti-fouling performance.Darzi et al.[9]numerically investigated the turbulent heat transfer of pure water and water–alumina nano fluid in the helically corrugated tubes with different corrugation pitch and height ratios with the Reynolds number ranging from 10000 to 40000.Laohalertdecha et al.[10,11]investigated the condensation heat transfer performances and flow characteristics of R-134a through the helically corrugated tubes experimentally.Zachár[12]numerically investigated the heat transfer enhancement of the helically coiled tube and found that the heat transfer rate is almost independent from the temperature between the inlet and outer surface.Rainieri et al.[13]also did similar research experimentally on the corrugated tube and found that both the curvature and corrugation can enhance the heat transfer performance.Liu et al.[14]introduced the spirally corrugated tubes into shell-and-tube heat exchanger and investigated the performance of heat exchanger based on the combination of numerical simulation and experiment method.

    The thermal performance and flow characteristics of axisymmetric corrugated tubes were also investigated in some literatures[15–17].For example:Han et al.[15,16]simplified the three-dimensional model to reduce the computation cost and numerically investigated the performance of the corrugated tubes with various structures to fit the nuclear plant design.Mohammed et al.[17]investigated the corrugated tubes by taking into account of the rectangular roughness.Based on experiments,Mac Nelly et al.[18,19]studied the cross-corrugated tubes with the helical corrugation applied in the opposite direction.On this basis,Harle ? et al.[20,21]extended these studies of Mac Nelly et al.[18,19]and made additional investigations of different geometrical configurations on the heat transfer and friction to achieve the optimal geometrical parameters of the cross-corrugated tubes.According to the performance evaluation criteria index,the use of pitch with a spacing of 0.5d is thermodynamically advantageous and the performance evaluation criteria index can be 1.06 when the Reynolds number is 5000.With the Reynolds number ranging from 20 to 20000,García et al.[22]investigated the performance of three types of enhanced tubes,including the wire coil insert,corrugated and dimpled tubes and they found that the roughness shape was the key factor in the selection of the roughened tubes in different Reynolds region.Chen et al.[23]and Li et al.[24]investigated the enhanced tubes with elliptical cross section both numerically and experimentally and found that the pressure drop of the enhanced tube with elliptical cross section is increased twice more than that of circular pipe in general.Li et al.[24]found that the Nusselt number of alternating elliptical axis tube is about 84%to 134%higher than that of the round tube.

    From above,it can be concluded that although there have been a great amount of works on the corrugated tubes,more data are required:(1)Obtain the pressure drop and heat transfer characteristics of the corrugated tubes with non-uniform corrugation.(2)Clarify the root of the heat transfer enhancementin the corrugated tubes.(3)Make integrated performance evaluation of different types of the corrugated tubes with non-uniform corrugation.So the object of the present investigation is to study the characteristics of pressure drop and heat transfer of the corrugated tubes based on numerical simulation method.

    2.Model Description

    The flow and heat transfer characteristics of the smooth and corrugated tubes with non-uniform corrugation are studied in the present investigation.The geometrical parameters and structure of the corrugated tubes are shown in Table 1 and Fig.1 respectively.Due to that the time scale of generation cycle is far less than the engineering application,the instability of the 3-dimentional vortex is neglected.Therefore,the 3-dimensional problem can be simplified to the 2-dimensional(axisymmetric)to decrease the cost of computation in both the smooth and corrugated tubes[17,25].

    Fig.1.Geometrical structure of the corrugated tube.

    The investigation is carried out under turbulent flow conditions with nine different Reynolds numbers ranging from 6000 to 57000(see in Table 1).Air is used as the working fluid in consideration of the advantage of its small specific heat and low viscosity.On the one hand,the air is helpful to get the accuracy calculation because of larger temperature differences between air inlet and outlet.On the other hand,the vortex of air will occur easily near the corrugation region.

    For the numerical investigation,the assumptions followed are applied to the present study.

    (1)Buoyancy effect is neglected.

    (2)Air is assumed to be continuous,incompressible and Newtonian fluid.

    (3)The physical properties of air are assumed to be constant and the fundamental parameters are independent of the temperature.

    (4)The flow is considered to be turbulent,steady and fully developed both thermally and hydro-dynamically.

    The two-equation has become a widely used turbulence model in the engineering flow calculation since it was first proposed by Launder and Spalding[26]in 1974.The standard k-epsilon model with thermal enhanced wall treatment is applied to the calculation.The boundary conditions are defined as follows:the inlet and outlet of the model are defined as periodic condition,which is shown in Fig.1.Certain mass flow rate and upstream bulk temperature(273.15 K)are applied to the air inlet and the boundary condition of the symmetric axis is applied at the down edge of the model.The constant temperature(300 K)and no-slip boundary condition are applied to the tube wall and the discretized governing equations are solved by SIMPLE(Simi-Implicit Pressure Linked Equation)algorithm option for the pressure correction process.The convective and diffusive terms are discretized by the second order upwind scheme and central difference scheme respectively.

    3.Data Reduction

    Data reduction of the numerical results is summarized in the following procedures.

    Table 1 Geometrical parameters of the investigated tubes

    The Reynolds number is calculated by Eq.(1):

    where ρ is the density,μ is the dynamic viscosity,u is the average velocity of air and d is the diameter of the tube.

    The average convective heat transfer coefficient is calculated by Eq.(2)[25,27]:

    where,Q is the heat transfer rate defined in Eq.(3),Twis the temperature of the tube wall and Tave,ais the mass-weighted average temperature of air,which is defined as Eq.(4):

    where cPis the specific heat of air,Tiis the bulk temperature of air inlet,Tois the bulk temperature of air outlet and qmis the mass flow rate,which is calculated by Eq.(5):

    where A is the inside surface area of the test section,which is calculated as follows:

    where L is the length of the test tube between the periodic faces.

    Average Nusselt number is defined as Eq.(7):

    where λ is the thermal conductivity of air.

    The friction factor calculated for the smooth tube was in Eq.(8),which was proposed by Darcy[28]and Weisbach[29].

    where the velocity of the fluid is defined as:

    where Acis the cross-sectional area of the tube.

    4.Reliability of the Numerical Simulation

    Fig.2.Grid structure of the corrugated tube.

    Fig.3.Grid independence test result.

    In the present investigation,unstructured mesh of 15 boundary layer is applied,with the first of the unstructured mesh being 0.01 mm(see in Fig.2).In addition,the grid independence test is performed and it is found that an unstructured grid with 120000 meshes with 0.12 mm length on the wavy surface is sufficient for the present study(see in Fig.3).On the one hand,the numerical results of Nusselt vs.Reynolds number in the smooth tube are compared with the Gnielinski[30–33]and Dittus-Boelter correlations.The calculation formula of these correlations is determined by Eqs.(10)and(11)separately and the comparisons between numerical simulation and calculation results are shown in Fig.4.As can be also seen from the figure,the deviation between the present numerical data and the results of Gnielinski and Dittus-Boelter correlation is within 10%.On the other hand,the numerical friction factors of the smooth tube with different Reynolds numbers are compared with the calculation data of Filonenko equation,which is defined as Eq.(12).The comparisons of friction factor between numerical results and Eq.(12)are shown in Fig.5,which indicates that there is a good agreement(within a deviation of 5%)of friction factor between the numerical results and the Filonenko equation.Therefore it can be concluded that the numerical model used in the present study is credible enough.

    Fig.4.Comparisons of numerical results of Nusselt number with the data from Gnielinski[30–32]and Dittus-Boelter correlation for the smooth tube.

    Fig.5.Comparisons of numerical results of friction factor with the data from Filonenko correlation.

    5.Results and Discussion

    5.1.Pressure drop

    Pressure drop investigations are performed in one smooth tube and ten corrugated tubes with the Reynolds number ranging from 6000 to 57000.The calculation data of the pressure drop is reduced and the data is plotted as Fanning friction factors vs.Reynolds number in Fig.6,from which it can be concluded that the friction factors of the corrugated tubes are higher than those of the smooth tube.The augmentation value between 1.02 and 2.35 is obtained from the corrugation geometry(see in Fig.7).Fig.6 also shows that the friction factor decreases with the increase of Reynolds number ranging from 6000 to 57000,the value of which in the corrugated tubes with non-uniform corrugation(tube 03–10)are smaller than those with uniform corrugation(tube 01–02).

    Similarity friction law for roughness surfaces was developed by Nikuradse[33]for sand-grained tubes and was used successfully by Webb et al.[34]for artificial roughness surface and by Vicente et al.[1]for different types of the corrugated tubes.

    The roughness function R(h+)for the corrugated tubes with uniform corrugation is defined by Eq.(13).

    Fig.6.Friction factor vs.Reynolds number of one smooth tube and ten corrugated tubes.

    Fig.7.Friction factor augmentation(fa/fs)vs.Reynolds number of ten corrugated tubes.

    where h+is roughness Reynolds number,which is defined as:

    For the corrugated tubes with non-uniform corrugation,the roughness function is transformed to Eq.(15).

    where roughness Reynolds numberis defined as:

    The pressure drop results of ten corrugated tubes are presented in terms ofvs.in Fig.8,which indicates that the momentum roughness function does not only depend on the Reynolds number,but also on the geometry parameters of the corrugation.The momentum roughness functions in the corrugated tubes with pitch of 12.5 mm are bigger than those with 10 mm.This phenomenon has a good agreement with the results of the experiments in literature[1]and the momentum roughness functions in the corrugated tubes with nonuniform corrugation are bigger(tube 03–10)than those with uniform corrugation(tube 01–02).

    Fig.8.Momentum roughness functionvs.roughness Reynolds numberfor ten corrugated tubes.

    5.2.Heat transfer

    Heat transfer study under constant wall temperature condition is also carried out for all types of tubes.The Nusselt numbers changing with Reynolds numbers of different tubes are shown in Fig.9,from which it can be concluded that the Nusselt number increases with the increasing of Reynolds number,the values of which in the corrugated tubes are bigger than those in the smooth tube.The augmentation values between 1.7 and 2.2 are obtained and shown in Fig.10.

    Fig.9.Nusselt number vs.Reynolds number of one smooth tube and ten corrugated tubes.

    Fig.10.Nusselt number augmentation(Nu a/Nu s)vs.Reynolds number of ten corrugated tubes.

    The Nusselt number presents a maximum in tube(01)when the Reynolds number increases from 6000 to 13000 and presents a maximum in tube(07–08)when the Reynolds number increases from 13000 to 57000.That is to say the geometry parameters of tube(01)have advantages on heat transfer enhancement in low Reynolds number flow region(from 6000 to 13000)and tube(07–08)have advantages on heat transfer enhancement in high Reynolds number flow region(from 13000 to 57000).Meanwhile,the heat transfer enhancement of the corrugated tubes results from the turbulence in the near-wall region,where the local surface Nusselt number increases dramatically.

    In order to analyze the enhancement on heat transfer of the wall corrugation carefully,the local surface Nusselt number Nulocaldefined as Eq.(17)is adopted to clarify the heat transfer condition near the wall region and highlight the enhancement of the wall corrugation on the heat transfer.

    where,Lrefis the reference length,the value of which is equal to the tube diameter.The local surface heat transfer coefficient heffis defined as:

    where,Twis the wall temperature of the tube.Tave,airis the mass weighted average temperature of air(in Eq.(4)),which is chosen as the reference temperature Tref(in Eq.(19)).In the viscous sublayer of the turbulence flow,the Fourier's law is applied to calculate the heat transfer rate of fluid near the wall.The heat flux from a wall cell to the air defined as q(in Eq.(18))is computed by Eq.(20).

    where η is the local coordinate normal to the wall.

    Fig.11.Local surface Nusselt number vs.x position of one smooth tube and ten corrugated tubes.(a)p=10 mm(b)p=12.5 mm at Reynolds number of 10000.

    Local surface Nusselt number vs.x position of all types of tubes is presented in Fig.11,from which it can be concluded that most of the local surface Nusselt numbers in the near-wall region of the corrugated tubes are larger than that of the smooth tube and it presents the maximum value in front and top of the wavy surface.Comparing with the smooth tube,the maximum augmentation of the local surface Nusselt number in the corrugated tubes is 244 in Fig.11(a)and 238 in Fig.11(b).However,dead region exists near the root region of the corrugation,where the Nusselt number presents to zero.

    For an incompressible and isotropic Newtonian fluid,air,the wall shear stress in the near wall region can be defined as Eq.(21),the graph of which in the corrugated tubes are shown in Fig.12.

    Fig.12.Wall shear stress vs.x position of one smooth tube and ten corrugated tubes.(a)p=10 mm(b)p=12.5 mm at Reynolds number of 10000.

    The path lines and velocity profile contours of a type of corrugated tube(08)are shown in Fig.13,from which it can be seen that a vortex exists in the region between two adjacent corrugations.On the one hand,the existing vortex results in the mixture of air layers in the flow region,which leads to the heat transfer enhancement of air.On the other hand,the turbulence in the near-wall region is enhanced because of the vortex,which can destroy the boundary layer so that the thickness of the boundary layer becomes thinned and the wall shear stress is increased(see in Fig.12).The vortex,existed in each area between two adjacent corrugations called second flow region,is the root of the enhancement on heat transfer in the corrugated tubes.

    Fig.13.Path lines and velocity profile contours of tube(08)with Reynolds number of 10000.

    5.3.Performance evaluation

    Integrated performance evaluation is essential for the different types of the corrugated tubes.Some evaluation methods for the enhanced tubes have been presented in available literatures[1,35–37].The effectiveness factor e[35]defined as the proportion of the heat transfer to the friction factor increase ratio(in Eq.(22)),is adopted as a performance criterion for the corrugated tubes.

    The effectiveness factors of ten corrugated tubes with different Reynolds number are shown in Fig.14,from which it can be concluded that the effectiveness factor decreases with the increasing of Reynolds number.Even the effectiveness factor of the corrugated tubes with uniform corrugation(01–02)is less than 1,which means that the performance of these tubes is weaken in the high Reynolds number region.As can be seen in Fig.14,the performances of the corrugated tubes with pitch of 12.5 mm have advantages than these of 10 mm under the same corrugation geometric parameter.Also,the tube(06)presents the best performance when compared with the other nine tubes.The majority of the effectiveness factor can be 1.84 when the Reynolds number is 6000.That is to say notonly the Nusselt number increase ratio,but also the friction factor increase ratio of the corrugated tubes should be taken into consideration to improve the heat transfer enhancement.Higher Nusselt number and lower friction factor will lead to a better integrated performance of the corrugated tubes,and the corrugated tube with non-uniform corrugation of bigger corrugation pitch enhances the heat transfer effectively and the friction factor won't be increased dramatically simultaneously.So this type of corrugated tube(06)has the beat integrated performance.

    Fig.14.Performance evaluation vs.Reynolds number.

    6.Conclusions

    Based on finite volume method,the pressure drop and heat transfer characteristics of one smooth tube and ten different axisymmetric corrugated tubes,including two with uniform corrugation and eight with non-uniform corrugation,have been studied.Numerical simulations are carried out to explore the fully developed turbulent flow in different types of tubes.The agreement is excellent on the Nusselt number and friction factor of the smooth tube between numerical simulation results and experiments.Based on the reliability of the numerical simulation through grid independence test,the simulation investigations are carried out at the developed turbulent flow with Reynolds number ranging from6000 to 57000.Based on above conditions,several conclusions can be drawn as follows:

    (1)The friction factor decreases with the increase of Reynolds number ranging from 6000 to 57000,the value of which in the corrugated tubes with non-uniform corrugation(tube 03–10)are smaller than those with uniform corrugation(tube 01–02).

    (2)The Nusselt number presents a maximum in tube(01)when the Reynolds number increases from 6000 to 13000 and presents a maximum in tube(07–08)when the Reynolds number increases from 13000 to 57000.That is to say the geometry parameters of tube(01)have advantages on the heat transfer enhancement in low Reynolds number flow region(from 6000 to 13000)and tube(07–08)have advantages on heat transfer enhancement in high Reynolds number flow region(from 13000 to 57000).

    (3)On the one hand,the existing vortex results in the mixture of air layers in the flow region,which leads to the heat transfer enhancement of air.On the other hand,the turbulence in the near-wall region is enhanced because of the vortex,which can destroy the boundary layer so that the thickness of the boundary layer becomes thinned and the wall shear stress is increased(see in Fig.12).The vortex,existed in each area between two adjacent corrugations called second flow region,is the root of the enhancement on heat transfer in the corrugated tubes.

    (4)The effectiveness factor decreases with the increasing of Reynolds number and the performances of the corrugated tubes with pitch of 12.5 mm have advantages than these of 10 mm under the same corrugation geometric parameter.

    Nomenclature

    A area

    cpspecific heat of air

    d diameter of tube

    e effectiveness factor

    f Fanning friction factor

    h average convective heat transfer coefficient

    h+roughness of Reynolds number

    L length of test section of tube

    Nu Nusselt number

    Pr Prandtl number

    ΔP pressure drop across the test section

    p pitch

    Q heat transfer rate

    qmmass flux of air

    R(h+) momentum transfer roughness function

    Re Reynolds number

    T temperature

    u average velocity of air in tube

    η the coordinate normal to the wall

    λ thermal conductivity

    μ dynamic viscosity

    ρ air density

    Subscripts

    a corrugated tube,air

    a–n corrugated tube with non-uniform corrugation

    c cross section

    i tube inlet

    local local surface region

    o tube outlet

    ref reference value

    w tube wall

    lfuid flow inside two parallel plates with wavy surface,Int.J.Eng.Sci.40(13)(2002)1495–1509.

    [8]Z.Xu,Z.Zhang,Experimental investigation of the applied performance of several typical enhanced tubes,J.Enhanc.Heat Transf.17(4)(2010)331–341.

    [9]A.A.R.Darzi,M.Farhadi,K.Sedighi,S.Aallahyari,M.A.Delavar,Turbulent heat transfer of Al2O3–water nano fluid inside helically corrugated tubes:Numerical study,Int.Commun.Heat Mass Transf.41(2013)68–75.

    [10]S.Laohalertdecha,S.Wongwises,The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube,Int.J.Heat Mass Transf.53(13–14)(2010)2924–2931.

    [11]S.Laohalertdecha,S.Wongwises,Condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes,Int.J.Heat Mass Transf.54(11–12)(2011)2673–2682.

    [12]A.Zachár,Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall,Int.J.Heat Mass Transf.53(19–20)(2010)3928–3939.

    [13]S.Rainieri,F.Bozzoli,L.Cattani,G.Pagliarini,Compound convective heat transfer enhancement in helically coiled wall corrugated tubes,Int.J.Heat Mass Transf.59(2013)353–362.

    [14]L.Liu,X.Ling,H.Peng,Analysis on flow and heat transfer characteristics of EGR helical baf fled cooler with spiral corrugated tubes,Exp.Thermal Fluid Sci.44(2013)275–284.

    [15]H.Z.Han,B.X.Li,B.Y.Yu,Y.R.He,F.C.Li,Numerical study of flow and heat transfer characteristics in outward convex corrugated tubes,Int.J.Heat Mass Transf.55(2012)7782–7802.

    [16]H.Z.Han,B.X.Li,F.C.Li,Y.R.He,RST model for turbulent flow and heat transfer mechanism in an outward convex corrugated tube,Comput.Fluids 91(2014)107–129.

    [17]H.A.Mohammed,A.K.Abbas,J.M.Sheriff,In fluence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes,Int.Commun.Heat Mass Transf.44(2013)116–126.

    [18]S.Mac Nelly,W.Nieratschker,M.Nadler,D.Raab,A.Delgado,Experimental and numerical investigation of the pressure drop and heat transfer coefficient in corrugated tubes,Chem.Eng.Technol.38(12)(2015)2279–2290.

    [1]P.G.Vicente,A.García,A.Viedma,Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers,Int.J.Heat Mass Transf.47(4)(2004)671–681.

    [2]P.G.Vicente,A.García,A.Viedma,Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow,Int.J.Heat Mass Transf.45(26)(2002)5091–5105.

    [3]P.G.Vicente,A.García,A.Viedma,Mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow,Int.Commun.Heat Mass Transf.31(5)(2004)651–662.

    [4]J.A.Olivier,Single-phase heat transfer and pressure drop of water cooled at a constant wall temperature inside horizontal circular smooth and enhanced tubes with different inlet configurations in the transitional flow regime,Ph D Thesis,University of Pretoria,Pretoria,2009.

    [5]S.Rainieri,G.Pagliarini,Convective heat transfer to temperature dependent property fluids in the entry region of corrugated tubes,Int.J.Heat Mass Transf.45(2002)4525–4536.

    [6]M.Piller,Direct numerical simulation of turbulent forced convection,Int.J.Numer.Methods Fluid 49(2005)583–602.

    [7]S.Mahmuda,A.K.M.S.Islamb,M.A.Hasan Mamuna,Separation characteristics of

    [19]S.Mac Nelly,W.Nadler,M.Nieratschker,K.Künster,A.Delgado,Experimentelle und numerische Untersuchung von wandnahen Str?mungen in profilierten Rohren,in:J.Czarske(Ed.),Proceedings der 23,Fachtagung Lasermethoden in der Str?mungsmesstechnik,GALA,Karlsruhe,2015.

    [20]A.Harle?,E.Franz,M.Breuer,Heattransfer and friction characteristics of fully developed gas flow in cross-corrugated tubes,Int.J.Heat Mass Transf.107(2017)1076–1084.

    [21]A.Harle?,E.Franz,M.Breuer,Experimental investigation of heat transfer and friction characteristic of fully developed gas flow in single-start and three-start corrugated tubes,Int.J.Heat Mass Transf.103(2016)538–547.

    [22]A.García,J.P.Solano,P.G.Vicente,A.Viedma,The in fluence of artificial roughness shape on heat transfer enhancement:Corrugated tubes,dimpled tubes and wire coils,Appl.Therm.Eng.35(2012)196–201.

    [23]W.L.Chen,Z.Guo,C.K.Chen,A numerical study on the flow over a novel tube for heat-transfer enhancement with a linear Eddy-viscosity model,Int.J.Heat Mass Transf.47(14–16)(2004)3431–3439.

    [24]B.Li,B.Feng,Y.L.He,W.Q.Tao,Experimental study on friction factor and numerical simulation on flow and heat transfer in an alternating elliptical axis tube,Appl.Therm.Eng.26(17–18)(2006)2336–2344.

    [25] ?.A?ra,H.Demir,?.?.Atay?lmaz,F.Kanta?,A.S.Dalk?l??,Numerical investigation of heat transfer and pressure drop in enhanced tubes,Int.Commun.Heat Mass Transf.38(10)(2011)1384–1391.

    [26]B.E.Launder,D.B.Spalding,The numerical computation of turbulent flows,Comput.Methods Appl.Mech.Eng.3(1974)269–289.

    [27]M.Rahimi,S.R.Shabanian,A.A.Alsaira fi,Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts,Chem.Eng.Process.Process Intensif.48(3)(2009)762–770.

    [28]H.Darcy,Recherches experimentales relatives au mouvement de l'Eau dans les Tuyaux,Mallet-Bachelier,Paris,1857.

    [29]J.Weisbach,Lehrbuch der Ingenieur und Maschinen-Mechanik,Braunschwieg,1845.

    [30]V.Gnielinski,New equations for heat mass transfer in turbulent pipe and channel flow,Int.J.Chem.React.Eng.16(1976)359–368.

    [31]V.Gnielinski,Turbulent heat transfer in annular spaces—A new comprehensive correlation,Heat Transf.Eng.36(9)(2014)787–789.

    [32]V.Gnielinski,Corrigendum to “on heat transfer in tubes”[International Journal of Heat and Mass Transfer 63(2013)134–140],Int.J.Heat Mass Transf.81(2015)638.

    [33]J.Nikuradse,Laws of F l o w in R ough P ipes,Technical Report Archive&Image Library,(1950).

    [34]R.L.Webb,R.G.Eckert,R.J.Goldstein,Heat transfer and friction in tubes with repeated-rib roughness,Int.J.Heat Mass Transf.14(1971)601–617.

    [35]Y.Wang,Y.L.He,Y.G.Lei,J.Zhang,Heat transfer and hydrodynamics analysis of a novel dimpled tube,Exp.Thermal Fluid Sci.34(8)(2010)1273–1281.

    [36]V.D.Zimparov,V.M.Petkov,A.E.Bergles,Performance characteristics of deep corrugated tubes with twisted-tape inserts,J.Enhanc.Heat Transf.19(1)(2012)1–11.

    [37]V.Zimparov,Extended performance evaluation criteria for enhanced heat transfer surfaces:Heat transfer through ducts with constant wall temperature,Int.J.Heat Mass Transf.43(2000)3137–3155.

    久久国产亚洲av麻豆专区| 制服丝袜大香蕉在线| 久久久久久久久久黄片| 在线观看一区二区三区| 日韩精品免费视频一区二区三区| 亚洲成人精品中文字幕电影| 男人舔奶头视频| 波多野结衣高清无吗| 久久久久久九九精品二区国产 | 国产又爽黄色视频| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 麻豆一二三区av精品| 国产午夜福利久久久久久| 精品国产美女av久久久久小说| 日韩视频一区二区在线观看| 久9热在线精品视频| 九色国产91popny在线| 精品福利观看| 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 人妻久久中文字幕网| 好看av亚洲va欧美ⅴa在| 身体一侧抽搐| 男人舔女人的私密视频| 午夜福利18| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 成人一区二区视频在线观看| 天天躁夜夜躁狠狠躁躁| 免费高清视频大片| 精品欧美国产一区二区三| 欧美中文综合在线视频| 中文亚洲av片在线观看爽| 麻豆久久精品国产亚洲av| 欧美性长视频在线观看| 一本大道久久a久久精品| 韩国精品一区二区三区| 极品教师在线免费播放| 免费看日本二区| 国产成+人综合+亚洲专区| 性欧美人与动物交配| netflix在线观看网站| 国产高清视频在线播放一区| a级毛片a级免费在线| 女警被强在线播放| 欧美日本视频| 搡老岳熟女国产| 制服丝袜大香蕉在线| 欧美丝袜亚洲另类 | 日韩av在线大香蕉| 亚洲avbb在线观看| 国产精品1区2区在线观看.| 日韩欧美一区视频在线观看| 久久精品91无色码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 女同久久另类99精品国产91| 99在线人妻在线中文字幕| 久久午夜亚洲精品久久| 高潮久久久久久久久久久不卡| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 午夜福利视频1000在线观看| 我的亚洲天堂| 好男人电影高清在线观看| 欧美激情极品国产一区二区三区| 国内精品久久久久久久电影| 天堂影院成人在线观看| 精品国产国语对白av| 午夜激情av网站| 亚洲第一av免费看| 亚洲aⅴ乱码一区二区在线播放 | 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| 久久香蕉激情| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 中国美女看黄片| 久久人妻av系列| 精品一区二区三区视频在线观看免费| 99在线人妻在线中文字幕| 欧美日韩福利视频一区二区| 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| 国产精品av久久久久免费| 国产亚洲欧美98| av电影中文网址| 免费看a级黄色片| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 少妇熟女aⅴ在线视频| 欧美在线黄色| 最近最新免费中文字幕在线| 级片在线观看| 日本黄色视频三级网站网址| 国产av不卡久久| 欧美日韩福利视频一区二区| 日韩国内少妇激情av| 在线观看一区二区三区| 好男人在线观看高清免费视频 | 一夜夜www| 欧美黄色淫秽网站| 亚洲熟女毛片儿| 他把我摸到了高潮在线观看| 久久香蕉激情| 女性被躁到高潮视频| 亚洲片人在线观看| 欧美色视频一区免费| 久久 成人 亚洲| 久久欧美精品欧美久久欧美| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 少妇粗大呻吟视频| 成人午夜高清在线视频 | 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| 天天一区二区日本电影三级| 久久中文看片网| av福利片在线| 亚洲午夜精品一区,二区,三区| 草草在线视频免费看| a在线观看视频网站| 91老司机精品| 午夜影院日韩av| 两个人视频免费观看高清| 亚洲欧洲精品一区二区精品久久久| 日本黄色视频三级网站网址| 欧美激情高清一区二区三区| 黑人欧美特级aaaaaa片| 亚洲精品一区av在线观看| 精品免费久久久久久久清纯| 国产久久久一区二区三区| 国产99白浆流出| 视频区欧美日本亚洲| 欧美黄色淫秽网站| 妹子高潮喷水视频| videosex国产| 欧美中文日本在线观看视频| 日韩中文字幕欧美一区二区| 成在线人永久免费视频| 欧美一级毛片孕妇| 999精品在线视频| 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 丝袜在线中文字幕| а√天堂www在线а√下载| √禁漫天堂资源中文www| 亚洲中文字幕一区二区三区有码在线看 | 亚洲第一欧美日韩一区二区三区| 日韩精品中文字幕看吧| 久久精品影院6| 精品一区二区三区四区五区乱码| 国语自产精品视频在线第100页| 亚洲成人国产一区在线观看| bbb黄色大片| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影 | 色在线成人网| 这个男人来自地球电影免费观看| 国产激情偷乱视频一区二区| 亚洲国产毛片av蜜桃av| 听说在线观看完整版免费高清| 十八禁网站免费在线| 成人欧美大片| 亚洲一区二区三区色噜噜| 中文字幕人妻丝袜一区二区| 母亲3免费完整高清在线观看| www国产在线视频色| 亚洲av成人一区二区三| 国产高清视频在线播放一区| 午夜免费观看网址| 国产精品久久视频播放| 在线国产一区二区在线| 午夜免费观看网址| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看 | 欧美日韩乱码在线| 欧美大码av| 男人舔女人的私密视频| 午夜免费激情av| 久久久久久久久中文| 一区二区日韩欧美中文字幕| 免费在线观看成人毛片| 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 亚洲av片天天在线观看| 99热只有精品国产| 欧美黄色淫秽网站| 日韩免费av在线播放| 久久精品国产亚洲av高清一级| 日韩欧美国产在线观看| 亚洲美女黄片视频| 男人的好看免费观看在线视频 | av中文乱码字幕在线| 亚洲黑人精品在线| 精品卡一卡二卡四卡免费| av欧美777| 国产极品粉嫩免费观看在线| 婷婷精品国产亚洲av| 欧美激情极品国产一区二区三区| 亚洲男人的天堂狠狠| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 九色国产91popny在线| 男女午夜视频在线观看| 1024手机看黄色片| 777久久人妻少妇嫩草av网站| 亚洲熟妇熟女久久| 丰满人妻熟妇乱又伦精品不卡| 97碰自拍视频| 禁无遮挡网站| 成人国产综合亚洲| 亚洲九九香蕉| 久久午夜综合久久蜜桃| 日韩 欧美 亚洲 中文字幕| 欧美人与性动交α欧美精品济南到| 窝窝影院91人妻| 丁香六月欧美| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 美女高潮到喷水免费观看| 可以免费在线观看a视频的电影网站| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 国产区一区二久久| 久久久久免费精品人妻一区二区 | 哪里可以看免费的av片| 午夜精品在线福利| 亚洲人成网站高清观看| 久久久久久免费高清国产稀缺| 91av网站免费观看| 精品久久久久久久久久免费视频| 日韩欧美国产一区二区入口| 国产亚洲欧美在线一区二区| 亚洲人成电影免费在线| 午夜福利成人在线免费观看| 国产精品国产高清国产av| 老汉色av国产亚洲站长工具| 国产精品永久免费网站| 精品国产一区二区三区四区第35| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 欧美激情久久久久久爽电影| 国内毛片毛片毛片毛片毛片| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 日韩一卡2卡3卡4卡2021年| 日本成人三级电影网站| 香蕉丝袜av| 高潮久久久久久久久久久不卡| av欧美777| 免费在线观看亚洲国产| 黄色 视频免费看| 69av精品久久久久久| 国产精品电影一区二区三区| 亚洲,欧美精品.| 狂野欧美激情性xxxx| 精品电影一区二区在线| 午夜精品在线福利| 一区二区三区激情视频| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 长腿黑丝高跟| 欧美一级a爱片免费观看看 | 久久久久九九精品影院| 亚洲av五月六月丁香网| 亚洲精品中文字幕一二三四区| 精品久久久久久久人妻蜜臀av| 日韩欧美一区二区三区在线观看| 国产成人啪精品午夜网站| 婷婷精品国产亚洲av在线| 青草久久国产| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 亚洲中文日韩欧美视频| 久久精品影院6| 国产高清videossex| 在线观看舔阴道视频| 亚洲国产精品999在线| 麻豆国产av国片精品| 侵犯人妻中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| 欧美黑人欧美精品刺激| 午夜福利成人在线免费观看| 91成人精品电影| 国产真实乱freesex| 女同久久另类99精品国产91| 欧美成人一区二区免费高清观看 | 久久国产亚洲av麻豆专区| 男女做爰动态图高潮gif福利片| 欧美中文日本在线观看视频| 色在线成人网| 男人操女人黄网站| 高清在线国产一区| 在线观看免费视频日本深夜| 色在线成人网| 免费看美女性在线毛片视频| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| netflix在线观看网站| 日韩欧美一区视频在线观看| 国产av又大| 熟妇人妻久久中文字幕3abv| 香蕉av资源在线| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 国产蜜桃级精品一区二区三区| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 免费av毛片视频| 日韩有码中文字幕| 真人做人爱边吃奶动态| 熟女少妇亚洲综合色aaa.| 看黄色毛片网站| 久久婷婷成人综合色麻豆| 亚洲av日韩精品久久久久久密| 免费在线观看亚洲国产| 99国产精品一区二区三区| 久久久国产精品麻豆| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 一本精品99久久精品77| 欧美黄色片欧美黄色片| 久久久久精品国产欧美久久久| 99re在线观看精品视频| 国产亚洲欧美精品永久| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 18禁黄网站禁片免费观看直播| 中文字幕人妻熟女乱码| 美国免费a级毛片| 国产不卡一卡二| 欧美乱妇无乱码| 熟妇人妻久久中文字幕3abv| 国产黄色小视频在线观看| 亚洲午夜理论影院| 听说在线观看完整版免费高清| 波多野结衣巨乳人妻| 哪里可以看免费的av片| 一区二区三区国产精品乱码| 一区二区日韩欧美中文字幕| 一级作爱视频免费观看| 亚洲一区二区三区不卡视频| 久久天堂一区二区三区四区| 观看免费一级毛片| 亚洲第一青青草原| 午夜免费鲁丝| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久| 91成人精品电影| 久久午夜亚洲精品久久| 亚洲一区二区三区不卡视频| 十八禁网站免费在线| 99热这里只有精品一区 | 一级片免费观看大全| 精品第一国产精品| 久久国产乱子伦精品免费另类| 成人三级做爰电影| 亚洲最大成人中文| 国产午夜精品久久久久久| 国产亚洲欧美精品永久| 日韩欧美 国产精品| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 熟妇人妻久久中文字幕3abv| 1024香蕉在线观看| xxxwww97欧美| 亚洲中文字幕日韩| 欧美激情高清一区二区三区| 人妻丰满熟妇av一区二区三区| 日韩成人在线观看一区二区三区| 一级作爱视频免费观看| 亚洲国产精品合色在线| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 999久久久国产精品视频| 男女视频在线观看网站免费 | 丰满人妻熟妇乱又伦精品不卡| 亚洲成人久久性| 免费人成视频x8x8入口观看| 日本一本二区三区精品| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产av国片精品| 国产精品99久久99久久久不卡| 在线天堂中文资源库| 色尼玛亚洲综合影院| 妹子高潮喷水视频| 黄频高清免费视频| 久久青草综合色| 男女做爰动态图高潮gif福利片| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 人成视频在线观看免费观看| 国产亚洲精品av在线| 免费av毛片视频| 欧美中文日本在线观看视频| 国产精品综合久久久久久久免费| 亚洲精华国产精华精| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 高清在线国产一区| 97人妻精品一区二区三区麻豆 | 黄色毛片三级朝国网站| 十八禁网站免费在线| 国产激情偷乱视频一区二区| 免费高清在线观看日韩| 在线观看舔阴道视频| 亚洲av第一区精品v没综合| 岛国在线观看网站| 欧美成人一区二区免费高清观看 | 久久精品国产综合久久久| 99热只有精品国产| 精品午夜福利视频在线观看一区| ponron亚洲| 欧美乱妇无乱码| 成人国产综合亚洲| or卡值多少钱| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 色播在线永久视频| 欧美黑人欧美精品刺激| 午夜成年电影在线免费观看| cao死你这个sao货| www日本在线高清视频| 国产精品久久视频播放| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 精华霜和精华液先用哪个| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区| 一本大道久久a久久精品| 久久亚洲真实| 免费在线观看影片大全网站| 欧美丝袜亚洲另类 | 精品第一国产精品| 免费在线观看影片大全网站| 俺也久久电影网| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| а√天堂www在线а√下载| 看黄色毛片网站| 欧美激情极品国产一区二区三区| 国产又黄又爽又无遮挡在线| 丁香欧美五月| 国产成人一区二区三区免费视频网站| 精品电影一区二区在线| 精品久久蜜臀av无| 在线免费观看的www视频| 国产激情欧美一区二区| 香蕉丝袜av| 一级黄色大片毛片| 亚洲人成电影免费在线| 18禁黄网站禁片免费观看直播| 国产人伦9x9x在线观看| videosex国产| 老司机在亚洲福利影院| 一级作爱视频免费观看| 搡老岳熟女国产| 成人18禁高潮啪啪吃奶动态图| 亚洲av日韩精品久久久久久密| 欧美精品啪啪一区二区三区| 给我免费播放毛片高清在线观看| 神马国产精品三级电影在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 午夜亚洲福利在线播放| 国产精品亚洲一级av第二区| 亚洲成人久久爱视频| 搡老岳熟女国产| 最近最新中文字幕大全电影3 | 人人澡人人妻人| 黑丝袜美女国产一区| 又黄又爽又免费观看的视频| 欧美乱妇无乱码| 国产三级在线视频| 最新美女视频免费是黄的| 露出奶头的视频| 美女国产高潮福利片在线看| 久久香蕉激情| 日韩 欧美 亚洲 中文字幕| 国产成人av激情在线播放| 久久中文字幕人妻熟女| 午夜两性在线视频| 亚洲成a人片在线一区二区| 少妇被粗大的猛进出69影院| 人人妻人人看人人澡| 夜夜爽天天搞| 18禁观看日本| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频不卡| 亚洲av五月六月丁香网| 操出白浆在线播放| 国产又爽黄色视频| 啦啦啦韩国在线观看视频| 日韩欧美免费精品| 动漫黄色视频在线观看| 国产成人欧美在线观看| 中文字幕人妻丝袜一区二区| 欧美性长视频在线观看| 99在线视频只有这里精品首页| 国产在线观看jvid| 中文字幕久久专区| 99国产精品一区二区蜜桃av| 午夜视频精品福利| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 在线视频色国产色| 高潮久久久久久久久久久不卡| 国产黄色小视频在线观看| 精品一区二区三区视频在线观看免费| 国产成人欧美在线观看| 亚洲av成人av| 曰老女人黄片| 无人区码免费观看不卡| 久热这里只有精品99| 精品高清国产在线一区| 免费看十八禁软件| 2021天堂中文幕一二区在线观 | 天天添夜夜摸| 夜夜看夜夜爽夜夜摸| xxxwww97欧美| 日本黄色视频三级网站网址| www国产在线视频色| www.999成人在线观看| 色婷婷久久久亚洲欧美| 可以在线观看的亚洲视频| av在线播放免费不卡| 国产又黄又爽又无遮挡在线| 国产精品精品国产色婷婷| 日韩中文字幕欧美一区二区| 狂野欧美激情性xxxx| АⅤ资源中文在线天堂| 不卡av一区二区三区| 欧美色视频一区免费| 一a级毛片在线观看| 精品久久久久久久人妻蜜臀av| 中亚洲国语对白在线视频| 国产精品影院久久| 亚洲第一电影网av| 啦啦啦 在线观看视频| 久久久久国产精品人妻aⅴ院| 日韩有码中文字幕| 日韩欧美一区二区三区在线观看| 欧美乱码精品一区二区三区| 午夜免费激情av| 亚洲美女黄片视频| 免费在线观看日本一区| 国产成人精品久久二区二区91| 国内少妇人妻偷人精品xxx网站 | 国产黄a三级三级三级人| 看黄色毛片网站| 日本免费a在线| 欧美激情久久久久久爽电影| 中国美女看黄片| 国产成人欧美| 免费在线观看亚洲国产| 在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 免费人成视频x8x8入口观看| 国产精品影院久久| 91老司机精品| 免费搜索国产男女视频| av中文乱码字幕在线| 91老司机精品| 人成视频在线观看免费观看| 久久久久亚洲av毛片大全| 亚洲天堂国产精品一区在线| 18禁美女被吸乳视频| 天天躁夜夜躁狠狠躁躁| 精品久久久久久成人av| 黄片小视频在线播放| 中文字幕高清在线视频| 视频在线观看一区二区三区| 波多野结衣av一区二区av| 级片在线观看| 久久久国产精品麻豆| 欧美激情久久久久久爽电影| 免费在线观看黄色视频的| 香蕉av资源在线| 亚洲最大成人中文| 国产成人一区二区三区免费视频网站| 黄片小视频在线播放| 国产精品国产高清国产av| 老司机午夜十八禁免费视频| 国产精品一区二区三区四区久久 | 极品教师在线免费播放| 悠悠久久av| 国产高清videossex| 亚洲七黄色美女视频| 18禁观看日本| 男女那种视频在线观看| 国产精品久久久久久人妻精品电影| 亚洲真实伦在线观看| 99精品在免费线老司机午夜| 日韩高清综合在线|