• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In fluence of Zr,Ce,and La on Co3O4 catalyst for CO2 methanation at low temperature☆

    2018-05-25 11:26:23YuwenZhouYuexiuJiangZuzengQinQinruoXieHongbingJi
    關(guān)鍵詞:運輸量人員傷亡運輸機

    Yuwen Zhou ,Yuexiu Jiang ,Zuzeng Qin ,2,*,Qinruo Xie ,Hongbing Ji,2,*

    1 SchoolofChemistry and ChemicalEngineering,GuangxiKey Laboratory ofPetrochemicalResource Processing and Process Intensi fication Technology,GuangxiUniversity,Nanning 530004,China

    2 School of Chemistry,Sun Yat-sen University,Guangzhou 510275,China

    3 School of Biology and Chemical Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China

    1.Introduction

    Over the past centuries,CO2has become the main carbon resource due to the decreases of limited resources such as coal,oil and natural gas[1,2].However,the CO2concentration in the atmosphere has consequently risen,which arguably contributes to the “greenhouse effect”,and increase the global temperatures and climate change[3,4],and it is high time that effective measures should be taken to decrease the emission of CO2.CO2methanation is a simple reaction and can generate methane under atmospheric pressure,and previous reports showed that the Ni catalysts used in the CO2hydrogenation have preferable activity on the CO2conversion and the CH4selectivity;however,the reaction requiresmuch highertemperatures[5–7],such as CO2methanation on Ni/La2O3at 350 °C and 1.5 MPa[8],Ni/HNaUSY at 400 °C[5],and the Ni/MOF at 320°C[6].Furthermore,carbon deposited could easily find on the Ni-based catalysts in a CO2methanation process[9,10],which would lead the inactivation of catalysts.

    In the other hand,Co-based catalysts were used in Fischer–Tropsch synthesis,which synthesized the syngas to liquid hydrocarbon,accomplished with a small amount CH4[11,12].Therefore,through adjusting the properties of COx/H2to control the products contribution,and using the Co-based catalyst in the CO2methanation reaction would be an effective catalyst,which was different from the conventional Ni-based catalyst[13,14]and exhibited better resistance to inactivation[15–17].However,the reaction temperature of CO2methanation was still higher,and the CO2conversion and CH4selectivity need to be further improved.At present,adding a promoter to the catalysts would efficiently improve the catalytic activity and reduce the reaction temperature,i.e.,the addition of a second metal(e.g.,Zr,Ce,or La)to the catalysts would obviously promote the metal dispersion,increase the reducibility of active metal,and reduce the crystallite size,which improved the activity of the catalysts[18–22].The Ce addition to Ni increased the dissociation and the hydrogenation activity of CO2and strengthened the interaction between Ce and Ni,resulting to highercatalytic activity of Ce-Ni/Al2O3[23].Mg was added by incipient wetness impregnation and ion exchange and improved the performance of the Ni-zeolite catalysts for CO2methanation;the important improvements of the catalytic performance(CO2conversion and CH4selectivity increased around 20%at 350–450 °C)were also found for the Mg-exchanged 5%Ni/zeolite[21].La,Ce,Pr,Eu&Gd were modi fied to Ni/γ-Al2O3by using aqueous incipient impregnation method[24],and 5%Pr-12%Ni/γ-Al2O3showed the highest CO2conversion of 98.2%with 100%CH4selectivity at 300°C for investigated reaction conditions.

    However,the effects of modi fiers on the catalyst properties and the CO2methanation activities on a Co-catalyst were seldom reported.In the present study,based on our previous study of the modi fied Cu-Fe catalysts for CO2hydrogenation to dimethyl ether[18–20],Zr-,Ce-,and La-modi fied Co3O4were prepared via a co-precipitation method and used for the catalytic hydrogenation of CO2to methane at a low temperature of 140–220 °C;the effects of the modi fier type on the catalysts structure and the catalytic activities of CO2methanation were investigated;the stability of the catalysts was also studied.

    2.Experimental

    2.1.Preparation of catalysts

    The Co3O4and Zr-,Ce-,and La-modi fied Co3O4catalysts were prepared via a co-precipitation method.The Co(NO3)2was prepared in the deionized water to a concentration of 0.2 mol·L-1,and based on the ZrO2amount that was 2 wt%of the Co3O4,the Zr(NO3)4was added to the Co(NO3)2aqueous solution to obtain a nitrate aqueous mixed solution.Subsequently,50 ml of Co(NO3)2and Zr(NO3)4mixture aqueous solutions and 0.5 mol·L-1of Na2CO3aqueous solution were added dropwise in the parallel flowing to 100 ml of deionized water at 70 °C until the pH=9,and a 400 r·min-1stiring,and aged for 4.0 h atambienttemperature to obtain the Zr-Co3O4precursor.The precursor was filtered and dried at 110 °C for 12 h,and calcined at 450 °C for 4.0 h.Finally,the 2-wt%Zr modi fied Co3O4powder was grounded to 20–40 meshes for the reaction,which was marked as Zr-Co3O4.The Co3O4,Ce-Co3O4,and La-Co3O4were prepared in the same method.

    2.2.Characterization of the catalysts

    The X-ray diffraction(XRD)was tested by using a Bruker D8 Advance X-ray diffractometer.The isotherm of nitrogen adsorption and desorption was measured by an ASAP 2000 physical adsorption instrument(Micromeritics Instrument Corp.),the catalyst surface area was calculated via Brunauer–Emmett–Teller(BET)method,and the pore size distribution curve was determined using the Barrett–Joyner–Halenda(BJH)model,which was based on the isotherm of desorption side.A Thermo ESCALAB 250X multifunction imaging electron spectrometer(Thermo Fisher Scientific Co.,Ltd.),which equipped with an Al Kαradiation source,was used to obtain the X-ray photoelectron spectrum(XPS)of catalysts,and the XPS analysis was conducted at 150 W with a pass energy of 40 eV.

    Temperature program reduction(H2-TPR)was determined using a DAS-7000 multifunction catalyst analysis system(China Hunan Huasi Technology Co.,Ltd.).The samples(50 mg)were purged with N2(30 ml·min-1)at 300 °C to remove physically adsorbed water followed by cooling to 50°C,and then reduced in a flow of 8%(by volume)H2/Ar(30 ml·min-1)at a heating rate of 10 °C·min-1up to 500 °C.Thermal conductivity detector(TCD)was used to monitor the consumption ofH2.

    The CO2-TPD experiments of catalyst samples were taken in a DAS-7000 multifunction catalyst analysis system(China Hunan Huasi Technology Co.,Ltd.).Atypicalsample mass of100 mg was reduced at400°C with an H2(99.999%) flow of30 ml·min-1for 1 h and then cooled to 50°C with 30 ml·min-1of N2.Subsequently,the CO2was introduced at a flow rate of 30 ml·min-1for 1 h at 50 °C,and then the catalysts were purged with 30 ml·min-1of N2for 1 h to remove the physical adsorption of CO2.Until the TCD signal was stabilized,the reactor temperature was programmed to increase ata rate of10°C·min-1to 700 °C,and the amount of CO2in the effluent was measured via TCD and recorded as a function of temperature.

    The FTIR of adsorbed pyridine was conducted using a Tensor II FTIR spectrometer(Bruker Corporation),the samples were added into a diffuse sample cell,and the samples were evacuated at 150°C for 1 h to record the background spectrum,and subsequently saturated with pyridine and evacuated at 150°C for 1 h,and the Py-IR spectra were recorded at the spectrum resolution of 4 cm-1after subtracting the sample background.

    2.3.CO2 methanation on Co3O4 and Zr-,Ce-,and La-Co3O4

    The CO2methanation was carried outin a fixed-bed reactor,consisting of a stainless-steel reaction tube with an 8-mm inner diameter.A 100 mg catalyst was taken into the reactor and reduced at 400°C for 3 h with 40 ml·min-199.999%H2and cooled to the room temperature.Subsequently,the H2and CO2in a 4:1 molar ratio was fed into the reactor at 30 ml·min-1,a gaseous hourly space velocity(GHSV)of18,000 ml·-h-1,and the catalytic hydrogenation ofCO2to CH4was reacted at80–220°C and 0.5 MPa.The gas product amounts were tested by using an online gas chromatograph(Agilent 4890D)equipped with a thermal conductivity detector(TCD),the products of the reaction included CH4,CO,and C2H4at the reaction temperature in the present study,and the CO2conversion(XCO2)and the CH4selectivity(SCH4)were calculated by using Eqs.(1)and(2)based a peak area normalization method.

    where,XCO2was the CO2conversion(%);SCH4was the CH4selectivity(%),and the ACO2,ACO,ACH4,and AC2H4were the peak areas of CO2,CO,CH4,and C2H4,respectively.

    3.Results and Discussion

    3.1.XRD analysis

    The XRD patterns of Co3O4,Zr-,Ce-,and La-Co3O4were shown in Fig.1(a).The diffraction peaks at 31.4°,36.9°,45.0°,59.5°,and 65.5°were assigned to the cubic phase Co3O4(JCPDS 65-3103),which existed on all catalysts,and the diffraction peak at 2θ=28.5°in the Ce-Co3O4was attributed to the CeO2phase.Much weakerand broadened Co3O4diffraction peaks were observed on the modi fied catalysts compared to the Co3O4,indicating the crystallite size of Co3O4is smaller after being modified by Zr,Ce,or La.The crystallite sizes of the Co3O4(311)plane in the Co3O4,La-Co3O4,Ce-Co3O4,and Zr-Co3O4calculated by using the Sherrer equation[25]was 23.20,20.21,18.53,and 17.55 nm,respectively,indicating the addition Zr,Ce,and La decreased the crystallite size of Co3O4,which would promote the catalytic activity[26].On the other hand,regarding the XRDpatterns ofthe reduced catalysts in Fig.1,no Co3O4crystalline was observed.The diffraction peaks at 41.7°,44.4°,and 47.1°were the metallic Co-hcp(hexagonal close-packed),indicating the active site for CO2methanation was the metallic Co.In addition,a minor diffraction peak at 75.9°,corresponding to the CoO crystalline,was also observed,which was the partialoxidation ofcobaltwhile in the catalystpreparation process and during sample transfer in the XRD chamber.However,no crystalline Zr or La oxide phase was detected in the modi fied catalysts,which might be attributed to these elements presenting in small quantities or existing in an amorphous state[27].

    皮帶運輸機是礦山生產(chǎn)和開采之中的重要設(shè)備,它能節(jié)約人力成本,提高礦山生產(chǎn)的效率。皮帶運輸機以其自身的使用便捷、運輸量巨大等優(yōu)點,在很長一段時間內(nèi),都是礦山的重要設(shè)備。尤其是在煤礦生產(chǎn)之中,離不開皮帶運輸機的使用。但在實際應(yīng)用之中,因為種種因素的影響,皮帶運輸機也總會發(fā)生一些問題影響生產(chǎn)速度,有時還會造成人員傷亡。因此,皮帶運輸機中必須采用PLC控制技術(shù),保證皮帶運輸機安全高效運行。

    3.2.Nitrogen adsorption/desorption of catalysts

    Fig.2 showed the N2adsorption–desorption isotherms and pore size distribution profiles of the Co3O4,Zr-,Ce-,and La-Co3O4,which confirmed all catalysts were mesostructured materials[28].From Table 1,the specific surface areas of Co3O4,Zr-,Ce-,and La-Co3O4was 47,70,65,and 69 m2·g-1,respectively,which indicated the Zr modi fication would increase the dispersion of Co species in the Zr-Co3O4and would provide more activity sites for the CO2catalytic hydrogenation reaction.Furthermore,compared with the Ce-Co3O4and La-Co3O4,a smaller average pore diameter of Zr-Co3O4(16.13 nm)and a narrower pore size distribution[in Fig.2(b)]would provide favorable conditions for the adsorption and activation of CO2molecules[13],which would lead to a high CO2catalytic hydrogenation activity.

    Fig.1.XRD patterns of(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 calcined at 450 °C(a)and after H2-reduced at 400 °C(b).

    Fig.2.Nitrogen adsorption/desorption isotherms(a)and pore size distribution profiles(b)of(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 catalysts.

    Table 1 Textural properties of Co3O4,La-Co3O4,Ce-Co3O4,and Zr-Co3O4 catalysts

    3.3.H2-TPR analysis

    The H2-TPR profiles of the mentioned catalysts were shown in Fig.3,and three Gaussian fitting peaks(α,β,and γ)were shown within 200–450°C.The peak positions and their area were summarized in Table 2.Co3O4was reduced by hydrogen to obtain Co via a two-step reduction:Co3O4→CoO→Co0[13,29].In Fig.3,the low-temperature hydrogen consumption peaks α and β attributed to the reduction of the Co3O4to CoO and the CoO to the metallic cobalt on the catalysts surface,respectively;the peak γ occurred in the Zr,Ce,or La modi fied Co3O4would attribute to the reduction of Co3O4which interacted with ZrO2,CeO2,or La2O3[30].

    Fig.3.H2-TPR profiles for(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 catalysts.The solid curves are experimental curves,and the broken curves are Gaussian multipeak fitting curves.

    Table 2 Temperatures and areas of the reduction peaks of Co3O4,La-,Ce-,and Zr-Co3O4 catalysts①

    From Table 2,the peak α and β of the Zr-,Ce-,and La-Co3O4were centered at 258 and 250 °C,257 and 318 °C,and 324 and 304 °C,respectively,which were slightly lower than that of the Co3O4,261°C and 324°C,respectively,indicating the reducibility ofthe Co3O4(peakα and β)would improve by the addition of Zr,Ce,and La.Furthermore,the peak γ of Zr-Co3O4was wider than that of the Co3O4,Ce-and La-Co3O4,which suggested a stronger interaction between Co3O4and ZrO2was formed[31,32],and the reduction of the Co-Zr species required a much higher temperature at low Zr amount,leading the Zr-Co3O4reduced difficulty.For the Zr-Co3O4,the ratio of α and β peaks was 1.4,which caused by the weak interaction between cobalt and zirconium,and the Co2+was not completely reduced to Co in the β peak accompanied with the beginning of the reduction in the γ peak;more Co would be reduced in the γ peak;furthermore,some of the cobalt ions would enter the zirconia lattice and formed Co-Zr clusters.In the present study,the Zr-Co3O4was reduced at 400°C,which led to a partial reduction of Co,and some Co2+existed in the catalysts,which might serve as the active site for CO2methanation,resulting in the optimal CO2conversion and CH4selectivity,which agree with the higher CH4selectivity thatwas observed in the Fischer–Tropsch synthesis when Co catalysts were not completely reduced[11,33].

    3.4.XPS analysis

    To clarify the oxidation states of the elements on the catalysts surface,the samples were characterized by XPS,and the results were shown in Fig.4.

    From the Co 2p spectrum of the calcined catalysts in Fig.4(a),the binding energy of Co 2p3/2in the Co3O4was 779.6 eV and 780.2 eV,along with the featured satellite peaks of approximately 789.7 eV,and the binding energy of Co 2p1/2was 794.8 eV and 795.3 eV along with the featured satellite peaks of approximately 804.5 eV,suggesting that Co occurred as the form of Co3+and Co2+in Co3O4[34].After being modi fied with Zr,Ce,and La,the Co 2p3/2and Co 2p1/2peaks red shifted by 0.42,0.21,and 0.18 eV,and 0.45,0.15,and 0.13 eV,respectively,which suggested that the Zr,Ce,and La exchanged electrons with the Co3O4,decreasing the outer-shell electron density of Co and slightly affecting the chemical combination state of Co3O4[35,36].A higher binding energy shift on the Zr-Co3O4compared to the La-and Ce-Co3O4which was attributed to a stronger interaction of Co3O4with ZrO2[32,37],which agreed with the H2-TPRresults.Moreover,from the XPS profile in Fig.4(b),(c),and(d),the Zr,Ce,and La existed in the catalysts as Zr4+,Ce3+/Ce4+,and La3+.Furthermore,the XPS spectra of Co 2p for the four mentioned catalysts reduced at 400°C were shown in Fig.5.Anew Co 2p3/2peak appeared at778.0 eV,attributing to the metallic cobalt[38],which agreed with the XRD results.The intensity and area of this peak increased after the addition of Zr,indicating more metallic Co on the catalyst surface.The peak and the satellite peaks for Co2+were detectable even when the catalyst was reduced at 400°C,which might had been caused by the partial oxidation during the preparation of the sample.

    Fig.5.XPS spectra of Co 2p regions for reduced(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,and(d)Zr-Co3O4 catalysts.

    3.5.Surface basicity and acidity analysis

    Fig.4.Co 2p(a),Zr 3d(b),Ce 3d(c)and La 3d(d)XPS spectra of the Co3O4,La-Co3O4,Ce-Co3O4 and Zr-Co3O4 catalysts.

    Fig.6.CO2-TPD profiles(a)and FT-IR spectra of pyridine adsorbed at a desorption temperature of 150°C(b)of the pre-reduced(a)Co3O4,(b)La-Co3O4,(c)Ce-Co3O4,(d)Zr-Co3O4 catalysts.

    The surface basicity of the four catalysts was analyzed by CO2-TPD;the CO2-TPD profiles of the pre-reduced Co3O4before and after being modi fied by Zr,Ce,and La were shown in Fig.6(a).Three peaks at 50–200°C,300–400°C,and 500–700 °C were observed in the fourcatalysts,which were assigned to the weak(α peak),medium(β peak)and strong(γ peak)basic sites,respectively[39].After the addition of Zr,the peak area of weak and medium basic sites for Zr-Co3O4exhibited much greater than that of Co3O4,La-,and Ce-Co3O4,indicating the adsorption amount of CO2was significantly improved by adding Zr,and more CO2molecular were activated at 100–200 °C on the Zr-Co3O4,which would increase the catalytic activity.On the contrary,the addition of Ce and La affected slightly on the surface basicity,and the strength of strong basic site decreased after adding Zr or Ce to Co3O4.Therefore,the enhanced basicity by adding Zr to the Co3O4would probably improve the adsorption and activation of CO2on the catalyst surface,resulting in an improvement on the catalytic activity.

    3.6.Hydrogenation of CO2 on Co3O4,Zr-,Ce-,and La-Co3O4

    After a one-hour reaction at the specified temperature,the catalytic CO2methanation on the Co3O4,and Zr-,Ce-,and La-Co3O4were shown in Fig.7.Obviously,the CO2conversion increased with the increasing reaction temperature from 80 to 220°C on all catalysts.Compared to the Co3O4,the Zr-Co3O4exhibited a higher CO2conversion and CH4selectivity,and the Ce-and La-modi fied Co3O4has insignificant effect on the catalytic activity,suggesting the addition of the Zr can improve the catalytic activity of the Co3O4for CO2methanation.Especially,the Zr-Co3O4exhibited a higher catalytic hydrogenation activity for CO2hydrogenation than the Ce-,and La-Co3O4catalysts,and had higher CH4selectivity under 180–220 °C.For the Co3O4,Ce-,and La-Co3O4,the CO2conversion and CH4selectivity at 200°C were 22.8%,26.1%,and 22.1%and 95.4%,95.3%,and 93.8%,respectively.While the CO2conversion on the Zr-Co3O4increased from 0.84%to 58.2%when the temperature increased from 80 °C to 200 °C,the CH4selectivity was retained at 100%at higher temperatures.Even when the temperature increased to 220°C,the CO2conversion and CH4selectivity was 66.3%and 97.4%,respectively.Therefore,the Zr-Co3O4was the optimal catalysts among the four mentioned catalysts for CO2methanation.In addition,the CO was not detected when reaction temperature was below 200°C;it was detected only when the reaction temperature was higher than 200°C,and the byproducts including small amount of C2H6were detected.

    Fig.7.Effects of temperature on catalytic CO2 hydrogenation to methane for Co3O4,La-Co3O4,Ce-Co3O4,Zr-Co3O4.Reaction conditions:T=80–220 °C,P=0.5 MPa,GHSV=18,000 ml··h-1,and V(H2)/V(CO2)=4.

    The higher catalytic activity of the Zr-Co3O4than that of La-Co3O4and Ce-Co3O4indicated that Zr plays an important role on improving the CH4synthesis.From a combination of N2adsorption/desorption results,the specific surface area was found to increase when the Zr,Ce,and La was added,and the Zr-Co3O4had a greater specific surface area of71 m2·g-1than thatofthe Co3O4,La-Co3O4,and Ce-Co3O4.Therefore,the increase in the specific surface area by the addition of Zr might be partially responsible forthe greatestimproved effecton the catalytic hydrogenation process.Combined with the XPS and H2-TPR results,modifying the Co3O4with Zr decreased the Co outer-shell electron density and changed the reduction degree of Co3O4by an interaction between Co3O4and ZrO2,and it seems more favorable for CO2methanation when Co3O4were not completely reduced,which would probably increase the CO2conversion and CH4selectivity.Furthermore,from the results of CO2-TPD and pyridine FT-IR spectra,the surface basicity of the catalysts were altered after the addition of Zr by increasing the intensity of the weak and medium basic sites,and the amount of Lewis acids along with the occurrence of Br?nsted acid were also enhanced,which would facilitate the activation of CO2under 200°C during the process of CO2hydrogenation,resulting in better catalytic activity.

    Moreover,the stabilities of Co3O4and Zr,Ce,or La modi fied Co3O4were carried out on stream for 20 h via CO2methanation at 200°C and 0.5 MPa,with a GHSV=18,000 ml··h-1and V(H2)/V(CO2)=4,as shown in Fig.8.The results showed that the Co3O4catalyst suffered from a large activity loss in 10 h,CO2conversion decreased from 22.5%to 11.4%.In contrast,the Zr-,Ce-,and La-Co3O4catalysts exhibited good catalytic stability,with CO2conversion decreasing from 57.9%,26.4%,and 23.2%to 52.9%,20.6%,and 15.7%in 20 h,indicating the stability of the Co3O4catalyst was improved by modi fied by Zr,Ce,or La.Among them,the Zr-Co3O4exhibited the superior stability.

    The higher catalytic activity of the Zr-Co3O4than that of La-Co3O4and Ce-Co3O4indicated that Zr plays an important role on the CH4synthesis.From a combination ofN2adsorption/desorption results,the specific surface area was found increasing when the Zr,Ce,and La was added,and the Zr-Co3O4had a higher specific surface area of 71 m2·g-1than that of other samples.Therefore,the increase in the specific surface area by the addition of Zr might be partially responsible for the improved effect on the catalytic hydrogenation.Combined with the XPS and H2-TPR results,Zr-modi fied on Co3O4decreased the Co outer-shell electron density and changed the reducibility of Co3O4by a stronger interaction between Co3O4and ZrO2,which was favorable for CO2methanation when Co3O4were not completely reduced,and would probably increase the CO2conversion and CH4selectivity.Furthermore,from the CO2-TPD results,the intensity of the weak and medium basic sites was increased after the Zr-addition,which would facilitate the CO2activation during the CO2hydrogenation,resulting in better catalytic activity.

    Fig.8.Effects of time on stream on CO2 conversion(A)and CH4 selectivity(B)for the Co3O4,La-Co3O4,Ce-Co3O4,and Zr-Co3O4 catalysts.

    4.Conclusions

    The Zr-,Ce-,and La-Co3O4catalysts were prepared and applied to the CO2methanation.The results indicated that adding Zr,Ce,or La to the Co3O4catalyst decreased the crystallite sizes of Co,the outer-shell electron density of Co3+,and increased the surface area.The H2-TPR results showed that the reducibility of Co3O4catalyst was significantly changed by adding Zr due to the interaction between Co3O4and ZrO2,which probably provided more active sites(Co2+/Co)for CO2methanation when the Co3O4were notreduced completely.Moreover,the introduction of Zr to the Co3O4catalyst increased the basic intensity of the weak and medium basic sites,as well as the amount of Lewis,and Br?nsted acid sites were also found on the Zr-Co3O4catalyst surface,while the Ce and La had little promotion effect on the basic intensity,which predicted that more CO2molecules would activate on the Zr-Co3O4,resulting to higher catalytic activity for CO2methanation.When using the optimalZr-Co3O4with 2.0-wt%ZrO2as the catalyst,and reacted at 200 °C and 0.5 MPa with a GHSV of 18,000 mlh-1,the CO2conversion and CH4selectivity was 58.2%and 100%,respectively.

    References

    [1]W.Wang,S.Wang,X.Ma,J.Gong,Recent advances in catalytic hydrogenation of carbon dioxide,Chem.Soc.Rev.40(2011)3703–3727.

    [2]T.Cantat,L.-N.He,Innovative methods in CO2conversion:a breath of fresh air?Curr.Opin.Green Sustain.Chem.3(2017)iii–iv.

    [3]X.D.Xu,J.A.Moulijn,Mitigation of CO2by chemical conversion:plausible chemical reactions and promising products,Energy Fuel 10(1996)305–325.

    [4]Q.-W.Song,Z.-H.Zhou,L.-N.He,Ef ficient,selective and sustainable catalysis of carbon dioxide,Green Chem.19(2017)3707–3728.

    [5]I.Graca,L.V.Gonzalez,M.C.Bacariza,A.Fernandes,C.Henriques,J.M.Lopes,M.F.Ribeiro,CO2hydrogenation into CH4on NiHNaUSY zeolites,Appl.Catal.B 147(2014)101–110.

    [6]W.Zhen,B.Li,G.Lu,J.Ma,Enhancing catalytic activity and stability for CO2methanation on Ni@MOF-5 via control of active species dispersion,Chem.Commun.51(2015)1728–1731.

    [7]J.Xu,Q.Lin,X.Su,H.Duan,H.Geng,Y.Huang,CO2methanation over TiO2–Al2O3binary oxides supported Ru catalysts,Chin.J.Chem.Eng.24(2016)140–145.

    [8]H.L.Song,J.Yang,J.Zhao,L.J.Chou,Methanation of carbon dioxide over a highly dispersed Ni/La2O3catalyst,Chin.J.Catal.31(2010)21–23.

    [9]F.Ocampo,B.Louis,L.Kiwi-Minsker,A.-C.Roger,Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2catalysts for carbon dioxide methanation,Appl.Catal.A 392(2011)36–44.

    [10]H.C.Lee,K.W.Siew,M.R.Khan,S.Y.Chin,J.Gimbun,C.K.Cheng,Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming,J.Energy Chem.23(2014)645–656.

    [11]H.Zhu,R.Razzaq,L.Jiang,C.Li,Low-temperature methanation of CO in coke oven gas using single nanosized Co3O4catalysts,Catal.Commun.23(2012)43–47.

    [12]P.Munnik,P.E.de Jongh,K.P.de Jong,Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis,J.Am.Chem.Soc.136(2014)7333–7340.

    [13]G.Zhou,T.Wu,H.Xie,X.Zheng,Effects ofstructure on the carbon dioxide methanation performance of Co-based catalysts,Int.J.Hydrog.Energy 38(2013)10012–10018.

    [14]G.Zhou,T.Wu,H.Zhang,H.Xie,Y.Feng,Carbon dioxide Methanation on ordered mesoporous Co/KIT-6 catalyst,Chem.Eng.Commun.201(2014)233–240.

    [15]A.Y.Khodakov,W.Chu,P.Fongarland,Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels,Chem.Rev.107(2007)1692–1744.

    [16]S.L.Soled,E.Iglesia,R.A.Fiato,J.E.Baumgartner,H.Vroman,S.Miseo,Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts,Top.Catal.26(2003)101–109.

    [17]Y.Zhu,S.Zhang,Y.Ye,X.Zhang,L.Wang,W.Zhu,F.Cheng,F.Tao,Catalytic conversion of carbon dioxide to methane on ruthenium–cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances,ACS Catal.2(2012)2403–2408.

    [18]X.Zhou,T.Su,Y.Jiang,Z.Qin,H.Ji,Z.Guo,CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2for enhanced dimethyl ether synthesis,Chem.Eng.Sci.153(2016)10–20.

    [19]Z.Z.Qin,X.H.Zhou,T.M.Su,Y.X.Jiang,H.B.Ji,Hydrogenation of CO2to dimethyl ether on la-,Ce-modi fied Cu-Fe/HZSM-5 catalysts,Catal.Commun.75(2016)78–82.

    [20]R.-w.Liu,Z.-z.Qin,H.-b.Ji,T.-m.Su,Synthesis of dimethyl ether from CO2and H2using a Cu–Fe–Zr/HZSM-5 catalyst system,Ind.Eng.Chem.Res.52(2013)16648–16655.

    [21]M.C.Bacariza,I.Gra?a,S.S.Bebiano,J.M.Lopes,C.Henriques,Magnesiumas promoter of CO2Methanation on Ni-based USY zeolites,Energy Fuel 31(2017)9776–9789.

    [22]K.Ray,G.Deo,A potential descriptor for the CO2hydrogenation to CH4over Al2O3supported Ni and Ni-based alloy catalysts,Appl.Catal.B 218(2017)525–537.

    [23]C.E.Daza,O.A.Gamba,Y.Hernandez,M.A.Centeno,F.Mondragon,S.Moreno,R.Molina,High-stable mesoporous Ni-Ce/clay catalysts for syngas production,Catal.Lett.141(2011)1037–1046.

    [24]W.Ahmad,M.N.Younis,R.Shawabkeh,S.Ahmed,Synthesis of lanthanide series(La,Ce,Pr,Eu&Gd)promoted Ni/γ-Al2O3catalysts for methanation of CO2at low temperature under atmospheric pressure,Catal.Commun.100(2017)121–126.

    [25]S.Modak,M.Ammar,F.Mazaleyrat,S.Das,P.K.Chakrabarti,XRD,HRTEM and magnetic properties of mixed spinel nanocrystalline Ni-Zn-Cu-ferrite,J.Alloys Compd.473(2009)15–19.

    [26]M.Bahmani,B.Vasheghani Farahani,S.Sahebdelfar,Preparation of high performance nano-sized Cu/ZnO/Al2O3methanol synthesis catalyst via aluminum hydrous oxide sol,Appl.Catal.A 520(2016)178–187.

    [27]Y.Wang,R.Wu,Y.Zhao,Effect of ZrO2promoter on structure and catalytic activity of the Ni/SiO2catalyst for CO methanation in hydrogen-rich gases,Catal.Today 158(2010)470–474.

    [28]L.Samiee,F.Shoghi,A.Vinu,Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides,Appl.Surf.Sci.265(2013)214–221.

    [29]B.A.Sexton,A.E.Hughes,T.W.Turney,An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts,J.Catal.97(1986)390–406.

    [30]J.Li,N.J.Coville,Effect of boron on the sulfur poisoning of Co/TiO2Fischer–Tropsch catalysts,Appl.Catal.A 208(2001)177–184.

    [31]A.Feller,M.Claeys,E.van Steen,Cobalt cluster effects in zirconium promoted Co/SiO2Fischer-Tropsch catalysts,J.Catal.185(1999)120–130.

    [32]C.I.Ahn,Y.J.Lee,S.H.Um,J.W.Bae,Ordered mesoporous CoMOx(M=Al or Zr)mixed oxides for Fischer-Tropsch synthesis,Chem.Commun.52(2016)4820–4823.

    [33]S.Rojanapipatkul,B.Jongsomjit,Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide hydrogenation,Catal.Commun.10(2008)232–236.

    [34]J.-Y.Luo,M.Meng,X.Li,X.-G.Li,Y.-Q.Zha,T.-D.Hu,Y.-N.Xie,J.Zhang,Mesoporous Co3O4–CeO2and Pd/Co3O4–CeO2catalysts:synthesis,characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation,J.Catal.254(2008)310–324.

    [35]S.D.Jones,L.M.Neal,M.L.Everett,G.B.Ho flund,H.E.Hagelin-Weaver,Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3methanol steam reforming catalysts,Appl.Surf.Sci.256(2010)7345–7353.

    [36]P.Gao,F.Li,N.Zhao,F.K.Xiao,W.Wei,L.S.Zhong,Y.H.Sun,In fluence of modi fier(Mn,La,Ce,Zr and Y)on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2hydrogenation to methanol,Appl.Catal.A 468(2013)442–452.

    [37]L.T.Jia,K.G.Fang,J.G.Chen,Y.H.Sun,Cobalt loss from Co-ZrO2catalyst for Fischer-Tropsch synthesis in continuously stirred tank reactor,React.Kinet.Catal.Lett.93(2008)351–358.

    [38]T.Nowitzki,A.F.Carlsson,O.Martyanov,M.Naschitzki,V.Zielasek,T.Risse,M.Schmal,H.J.Freund,M.B?umer,Oxidation of alumina-supported Co and Co-Pd model catalysts for the Fischer-Tropsch reaction,J.Phys.Chem.C 111(2007)8566–8572.

    [39]R.Razzaq,C.Li,M.Usman,K.Suzuki,S.Zhang,A highly active and stable Co4N/γ-Al2O3catalyst for CO and CO2methanation to produce synthetic natural gas(SNG),Chem.Eng.J.262(2015)1090–1098.

    [40]G.Busca,Spectroscopic characterization of the acid properties of metal oxide catalysts,Catal.Today 41(1998)191–206.

    [41]F.Benaliouche,Y.Boucheffa,P.Ayrault,S.Mignard,P.Magnoux,NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag-and Cu-exchanged X zeolites,Microporous Mesoporous Mater.111(2008)80–88.

    [42]G.R.Johnson,A.T.Bell,Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts,J.Catal.338(2016)250–264.

    [43]X.Tang,J.Li,L.Sun,J.Hao,Origination of N2O from NO reduction by NH3over β-MnO2and α-Mn2O3,Appl.Catal.B 99(2010)156–162.

    [44]R.W.Stevens Jr.,S.S.C.Chuang,B.H.Davis,In situ infrared study ofpyridine adsorption/desorption dynamics over sulfated zirconia and Pt-promoted sulfated zirconia,Appl.Catal.A 252(2003)57–74.

    猜你喜歡
    運輸量人員傷亡運輸機
    2023年民航共完成旅客運輸量6.2億人次
    祖國(2024年1期)2024-01-23 11:08:08
    國內(nèi)客運恢復(fù)快速 航司第一季度虧損程度收窄
    大飛機(2021年4期)2021-07-19 04:41:16
    約旦大力神運輸機
    軍事文摘(2020年15期)2020-08-15 08:40:02
    40T刮板運輸機尾輥的修復(fù)與應(yīng)用
    C-17運輸機
    9月份中國民航旅客運輸量同比增長7.9%
    人民交通(2018年16期)2018-03-27 01:10:28
    精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 久久精品成人免费网站| 一级毛片电影观看| 91精品伊人久久大香线蕉| 女性被躁到高潮视频| 亚洲专区国产一区二区| 女人高潮潮喷娇喘18禁视频| 99国产综合亚洲精品| 国产国语露脸激情在线看| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 国产av一区二区精品久久| 久久精品国产亚洲av高清一级| 午夜日韩欧美国产| 日本五十路高清| 黄色一级大片看看| 午夜av观看不卡| 免费av中文字幕在线| 欧美 亚洲 国产 日韩一| 韩国精品一区二区三区| 精品国产一区二区三区久久久樱花| av福利片在线| 高清不卡的av网站| 亚洲av成人不卡在线观看播放网 | av网站免费在线观看视频| 18禁裸乳无遮挡动漫免费视频| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品第一综合不卡| 久久中文字幕一级| 一级片'在线观看视频| 亚洲精品国产av成人精品| 国产在线一区二区三区精| 岛国毛片在线播放| 99香蕉大伊视频| 脱女人内裤的视频| 亚洲 国产 在线| 黄色一级大片看看| 桃花免费在线播放| 国产片特级美女逼逼视频| 亚洲第一av免费看| 久久免费观看电影| 欧美精品av麻豆av| 免费在线观看影片大全网站 | 高清av免费在线| 老司机深夜福利视频在线观看 | 精品久久久久久久毛片微露脸 | 国产精品免费大片| 国产亚洲av高清不卡| 午夜福利一区二区在线看| 大型av网站在线播放| xxx大片免费视频| 我要看黄色一级片免费的| 丁香六月天网| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 日本欧美国产在线视频| 国产午夜精品一二区理论片| 青草久久国产| 91精品国产国语对白视频| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜一区二区| 午夜老司机福利片| 老司机亚洲免费影院| 日韩视频在线欧美| 日韩av在线免费看完整版不卡| 丰满人妻熟妇乱又伦精品不卡| 精品福利观看| 深夜精品福利| bbb黄色大片| 99国产精品99久久久久| 老熟女久久久| 日本a在线网址| 色综合欧美亚洲国产小说| 2021少妇久久久久久久久久久| 在线观看人妻少妇| 交换朋友夫妻互换小说| 久久国产精品人妻蜜桃| 男人舔女人的私密视频| 亚洲七黄色美女视频| 国产男人的电影天堂91| 亚洲中文字幕日韩| 国产成人一区二区在线| 精品国产一区二区久久| 咕卡用的链子| 日本欧美视频一区| 十八禁人妻一区二区| 黄片播放在线免费| 精品人妻1区二区| 香蕉丝袜av| 精品欧美一区二区三区在线| 日韩一区二区三区影片| 大香蕉久久网| 国产麻豆69| 王馨瑶露胸无遮挡在线观看| av欧美777| 麻豆av在线久日| 9色porny在线观看| 丝瓜视频免费看黄片| 国产精品av久久久久免费| 久久久久久亚洲精品国产蜜桃av| 丝袜脚勾引网站| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 国产在视频线精品| 国产主播在线观看一区二区 | 91字幕亚洲| 免费高清在线观看日韩| 欧美+亚洲+日韩+国产| 成人亚洲欧美一区二区av| e午夜精品久久久久久久| 色婷婷久久久亚洲欧美| 国产一卡二卡三卡精品| 日韩伦理黄色片| 99国产精品99久久久久| 国产淫语在线视频| 制服诱惑二区| 91九色精品人成在线观看| 丝袜喷水一区| 大香蕉久久成人网| 丰满少妇做爰视频| 久久久欧美国产精品| 欧美成狂野欧美在线观看| 高清不卡的av网站| 国产精品香港三级国产av潘金莲 | 丝瓜视频免费看黄片| 欧美日韩亚洲综合一区二区三区_| 少妇的丰满在线观看| 手机成人av网站| 国产精品久久久人人做人人爽| 国产精品国产三级专区第一集| 欧美日韩视频高清一区二区三区二| 三上悠亚av全集在线观看| 国产三级黄色录像| 自拍欧美九色日韩亚洲蝌蚪91| 黄色视频在线播放观看不卡| 看免费成人av毛片| 一级片'在线观看视频| 国产日韩欧美视频二区| 成在线人永久免费视频| 国产精品一区二区在线不卡| 日本五十路高清| 99国产精品一区二区蜜桃av | 夫妻性生交免费视频一级片| 激情五月婷婷亚洲| 韩国精品一区二区三区| 男女边摸边吃奶| xxxhd国产人妻xxx| 亚洲欧美色中文字幕在线| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 精品一品国产午夜福利视频| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 国产在线视频一区二区| 午夜激情久久久久久久| 中文字幕制服av| 你懂的网址亚洲精品在线观看| 国产成人啪精品午夜网站| 性色av一级| 日韩熟女老妇一区二区性免费视频| 欧美黄色淫秽网站| 久久久精品区二区三区| 国产有黄有色有爽视频| 青青草视频在线视频观看| 亚洲av成人不卡在线观看播放网 | 国产亚洲午夜精品一区二区久久| 自线自在国产av| 高清黄色对白视频在线免费看| 欧美久久黑人一区二区| 久久国产精品男人的天堂亚洲| 久久天躁狠狠躁夜夜2o2o | 性色av乱码一区二区三区2| 国产精品欧美亚洲77777| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜制服| 久久精品久久精品一区二区三区| 精品一品国产午夜福利视频| 18禁黄网站禁片午夜丰满| 久久精品亚洲熟妇少妇任你| 国产三级黄色录像| 国产视频首页在线观看| 精品人妻一区二区三区麻豆| 亚洲精品日韩在线中文字幕| 天天躁日日躁夜夜躁夜夜| 久久亚洲精品不卡| 操出白浆在线播放| 国产视频一区二区在线看| 女人久久www免费人成看片| 久久久久视频综合| 美女视频免费永久观看网站| 老鸭窝网址在线观看| 校园人妻丝袜中文字幕| 日韩欧美一区视频在线观看| 久9热在线精品视频| 不卡av一区二区三区| 午夜福利,免费看| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合一区二区三区| 国产有黄有色有爽视频| av国产精品久久久久影院| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 麻豆乱淫一区二区| 精品免费久久久久久久清纯 | 黑丝袜美女国产一区| 欧美少妇被猛烈插入视频| 天天躁夜夜躁狠狠躁躁| 一区二区三区精品91| 亚洲欧美一区二区三区久久| 国产在线视频一区二区| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美| 亚洲精品久久久久久婷婷小说| 99久久综合免费| 考比视频在线观看| 爱豆传媒免费全集在线观看| 狠狠精品人妻久久久久久综合| 在线看a的网站| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| 69精品国产乱码久久久| 一级黄色大片毛片| 99精国产麻豆久久婷婷| av国产精品久久久久影院| 精品视频人人做人人爽| 亚洲免费av在线视频| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 青青草视频在线视频观看| 亚洲欧美色中文字幕在线| 国产精品一国产av| 亚洲欧美一区二区三区国产| 亚洲九九香蕉| 国产成人a∨麻豆精品| 精品人妻在线不人妻| 精品熟女少妇八av免费久了| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 男女国产视频网站| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 99热全是精品| 欧美精品一区二区大全| 丝袜美足系列| www.av在线官网国产| 日本猛色少妇xxxxx猛交久久| 日韩制服丝袜自拍偷拍| 日本午夜av视频| 丝袜脚勾引网站| 午夜福利在线免费观看网站| 日本av手机在线免费观看| 国产精品香港三级国产av潘金莲 | avwww免费| 国产成人av教育| 亚洲中文字幕日韩| 日韩人妻精品一区2区三区| 99九九在线精品视频| 18禁国产床啪视频网站| 操出白浆在线播放| 在现免费观看毛片| 男人添女人高潮全过程视频| 久久99精品国语久久久| 一区二区三区乱码不卡18| 男女边吃奶边做爰视频| 成人国语在线视频| 一级黄色大片毛片| 欧美老熟妇乱子伦牲交| 国产精品成人在线| av国产久精品久网站免费入址| 人人妻,人人澡人人爽秒播 | 国产熟女午夜一区二区三区| 午夜日韩欧美国产| 亚洲少妇的诱惑av| 久久中文字幕一级| 欧美中文综合在线视频| 亚洲五月色婷婷综合| 日韩,欧美,国产一区二区三区| 国产精品一国产av| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 黄色视频不卡| 日韩制服骚丝袜av| 热99国产精品久久久久久7| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 中文字幕最新亚洲高清| 蜜桃国产av成人99| 国产精品.久久久| 99热网站在线观看| 97人妻天天添夜夜摸| 91麻豆精品激情在线观看国产 | 国产三级黄色录像| 中文字幕色久视频| 久久久久国产精品人妻一区二区| 午夜福利乱码中文字幕| 视频在线观看一区二区三区| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 色精品久久人妻99蜜桃| 热re99久久国产66热| 天天躁狠狠躁夜夜躁狠狠躁| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频| 国产不卡av网站在线观看| 色婷婷av一区二区三区视频| 国产精品免费视频内射| 亚洲av日韩精品久久久久久密 | 99九九在线精品视频| 国产在线观看jvid| 日韩大码丰满熟妇| 91精品国产国语对白视频| 久久亚洲精品不卡| 两性夫妻黄色片| 国语对白做爰xxxⅹ性视频网站| 成人午夜精彩视频在线观看| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| 亚洲国产看品久久| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| 午夜福利一区二区在线看| 日本一区二区免费在线视频| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸 | 天天躁夜夜躁狠狠久久av| 亚洲,一卡二卡三卡| 欧美在线黄色| 久久九九热精品免费| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 侵犯人妻中文字幕一二三四区| 国产精品.久久久| 国产男人的电影天堂91| 老汉色∧v一级毛片| 国产精品av久久久久免费| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 18在线观看网站| 亚洲精品国产av成人精品| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 国产精品久久久久久精品古装| 香蕉丝袜av| 色视频在线一区二区三区| 亚洲第一av免费看| 中文字幕人妻熟女乱码| 国产精品熟女久久久久浪| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 男人爽女人下面视频在线观看| 80岁老熟妇乱子伦牲交| 青草久久国产| 午夜福利视频精品| 自线自在国产av| 黑丝袜美女国产一区| 在线av久久热| 国产精品一区二区精品视频观看| av欧美777| 久久99精品国语久久久| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 国产免费现黄频在线看| 在线观看免费午夜福利视频| 国产99久久九九免费精品| 人人妻,人人澡人人爽秒播 | 丝袜人妻中文字幕| 国产高清videossex| 欧美 日韩 精品 国产| 国产欧美日韩精品亚洲av| 日本色播在线视频| 国产av国产精品国产| 国产精品久久久av美女十八| 中文字幕人妻丝袜制服| 伦理电影免费视频| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 波多野结衣av一区二区av| 满18在线观看网站| 欧美另类一区| 精品亚洲乱码少妇综合久久| 香蕉国产在线看| netflix在线观看网站| 亚洲精品一二三| 少妇人妻 视频| 侵犯人妻中文字幕一二三四区| 大香蕉久久网| 成人国产av品久久久| 你懂的网址亚洲精品在线观看| 青春草亚洲视频在线观看| 国产野战对白在线观看| 制服诱惑二区| 下体分泌物呈黄色| 久久精品国产综合久久久| 国产一卡二卡三卡精品| 爱豆传媒免费全集在线观看| 丝袜在线中文字幕| 国产成人精品无人区| 国产成人精品久久二区二区免费| 免费在线观看完整版高清| 大片电影免费在线观看免费| 久久久久久人人人人人| 满18在线观看网站| 99久久综合免费| 国产精品一区二区在线观看99| 欧美乱码精品一区二区三区| 精品免费久久久久久久清纯 | 青草久久国产| 天天躁夜夜躁狠狠躁躁| 国产精品亚洲av一区麻豆| 巨乳人妻的诱惑在线观看| 大片电影免费在线观看免费| 1024香蕉在线观看| 日日夜夜操网爽| 波野结衣二区三区在线| 2021少妇久久久久久久久久久| 纵有疾风起免费观看全集完整版| 午夜两性在线视频| 在线观看免费午夜福利视频| 亚洲成人免费av在线播放| 18禁裸乳无遮挡动漫免费视频| 男女无遮挡免费网站观看| www.熟女人妻精品国产| 捣出白浆h1v1| 精品久久久精品久久久| av网站免费在线观看视频| 国产日韩欧美视频二区| 99热国产这里只有精品6| 人人妻,人人澡人人爽秒播 | 国产亚洲精品第一综合不卡| 一边亲一边摸免费视频| 午夜福利,免费看| 日日爽夜夜爽网站| 狠狠婷婷综合久久久久久88av| 手机成人av网站| 超色免费av| 在线亚洲精品国产二区图片欧美| 日韩大片免费观看网站| 国产精品久久久人人做人人爽| 人人澡人人妻人| 看十八女毛片水多多多| 免费日韩欧美在线观看| 十八禁人妻一区二区| 少妇粗大呻吟视频| 国产精品亚洲av一区麻豆| 午夜福利乱码中文字幕| 高潮久久久久久久久久久不卡| 成人亚洲精品一区在线观看| 在线 av 中文字幕| 久久青草综合色| 又紧又爽又黄一区二区| 欧美亚洲 丝袜 人妻 在线| 欧美日韩亚洲高清精品| 国产成人av教育| 日本91视频免费播放| 国产成人啪精品午夜网站| 久久av网站| 91精品伊人久久大香线蕉| 免费观看av网站的网址| 秋霞在线观看毛片| 国产国语露脸激情在线看| tube8黄色片| 狂野欧美激情性xxxx| 老熟女久久久| 国产极品粉嫩免费观看在线| 日日摸夜夜添夜夜爱| 在线 av 中文字幕| 精品久久久久久久毛片微露脸 | 国产成人精品久久二区二区91| 大片免费播放器 马上看| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 宅男免费午夜| 男女高潮啪啪啪动态图| 日韩欧美一区视频在线观看| 亚洲精品国产一区二区精华液| 久久久国产欧美日韩av| 欧美在线一区亚洲| 人人妻人人添人人爽欧美一区卜| 免费看不卡的av| 久久久国产一区二区| 精品一区二区三卡| √禁漫天堂资源中文www| 日韩电影二区| 国产精品免费大片| 亚洲精品久久成人aⅴ小说| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 国产麻豆69| 亚洲精品国产av蜜桃| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 久久九九热精品免费| 热re99久久精品国产66热6| 嫁个100分男人电影在线观看 | 色网站视频免费| 亚洲国产欧美网| 黄色一级大片看看| 高潮久久久久久久久久久不卡| 国产伦理片在线播放av一区| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| 中国国产av一级| 宅男免费午夜| √禁漫天堂资源中文www| 人妻 亚洲 视频| www.熟女人妻精品国产| 另类亚洲欧美激情| 精品一区在线观看国产| 亚洲人成网站在线观看播放| 国产片内射在线| kizo精华| 黄片播放在线免费| www.999成人在线观看| av在线播放精品| 国产三级黄色录像| 99国产精品99久久久久| 国产免费现黄频在线看| av国产久精品久网站免费入址| 国产亚洲精品久久久久5区| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 久久亚洲国产成人精品v| 丰满少妇做爰视频| 只有这里有精品99| 无遮挡黄片免费观看| 亚洲情色 制服丝袜| 大陆偷拍与自拍| 亚洲欧美激情在线| 99久久精品国产亚洲精品| 国产91精品成人一区二区三区 | 亚洲色图综合在线观看| 欧美在线一区亚洲| 男人舔女人的私密视频| 欧美另类一区| 成人亚洲欧美一区二区av| 欧美成人午夜精品| 十分钟在线观看高清视频www| 亚洲,欧美精品.| 最近手机中文字幕大全| 成年人黄色毛片网站| 搡老岳熟女国产| 校园人妻丝袜中文字幕| 天天影视国产精品| 精品一区二区三区av网在线观看 | 日韩视频在线欧美| 啦啦啦在线免费观看视频4| 大型av网站在线播放| 三上悠亚av全集在线观看| 亚洲国产中文字幕在线视频| 国产免费现黄频在线看| 精品少妇一区二区三区视频日本电影| 操美女的视频在线观看| 高清视频免费观看一区二区| 老司机亚洲免费影院| 欧美日韩一级在线毛片| 精品一品国产午夜福利视频| 午夜日韩欧美国产| 嫁个100分男人电影在线观看 | 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 欧美日韩黄片免| 大片电影免费在线观看免费| 日韩熟女老妇一区二区性免费视频| 少妇 在线观看| 欧美精品一区二区免费开放| 飞空精品影院首页| 多毛熟女@视频| 成在线人永久免费视频| 久久久久久免费高清国产稀缺| 自拍欧美九色日韩亚洲蝌蚪91| 大香蕉久久网| 99热全是精品| 精品久久蜜臀av无| av有码第一页| 亚洲欧美激情在线| 亚洲国产欧美在线一区| 岛国毛片在线播放| 秋霞在线观看毛片| 狂野欧美激情性xxxx| www.av在线官网国产| 一级黄色大片毛片| 久久久久视频综合| 国产三级黄色录像| 一边摸一边做爽爽视频免费| 最新在线观看一区二区三区 | 黑人猛操日本美女一级片| 色网站视频免费| 999精品在线视频| 多毛熟女@视频| 久久人妻福利社区极品人妻图片 | 国产成人欧美在线观看 | 亚洲一区中文字幕在线| 久久这里只有精品19| 亚洲男人天堂网一区| 亚洲国产精品成人久久小说| 亚洲伊人久久精品综合| 99re6热这里在线精品视频| 欧美日韩精品网址| 女人精品久久久久毛片| 亚洲国产日韩一区二区| 一级黄色大片毛片| 久久久久国产一级毛片高清牌| 视频区欧美日本亚洲| 久久久精品区二区三区| 午夜久久久在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美 日韩 精品 国产| 国产人伦9x9x在线观看|