• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biosynthesis of 4-hydroxyphenylpyruvic acid from L-tyrosine using recombinant Escherichia coli cells expressing membrane bound L-amino acid deaminase☆

    2018-05-25 19:07:04HuanruDingWeiruiZhaoChangjiangJunHuangShengHuShanjingYaoLeheMeiJinboWangJiaqiMei

    Huanru Ding ,Weirui Zhao ,Changjiang Lü,Jun Huang ,Sheng Hu ,Shanjing Yao ,Lehe Mei,*,Jinbo Wang ,Jiaqi Mei

    1 School of Biotechnology and Chemical Engineering,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,China

    2 Department of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    3 School of Biological and Chemical Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China

    4 Department of Chemical Engineering,The University of Utah,Salt Lake City 84102,America

    1.Introduction

    4-Hydroxyphenylpyruvic acid(4-HPPA),asα-keto acid compound,is an important intermediate in the metabolism of tyrosine[1,2].The presence of high concentration of 4-HPPA in body blood and urine could be regarded as an indicator of tyrosinemia[3,4].Owing to its special structure and properties,4-HPPA has reflected tremendous value in food,pharmaceutical and chemical industry.It could be used to produce hydroxy phenyllactic acid[5,6],which is used as an antimicrobial agent and food preservative compound.4-HPPA is also the intermediate of some drugs(such as benzylisoquinoline alkaloid and atromentin)[7-10],self-sustaining gel[11]and a series of industrial chemicals(such as 4-hydroxybenzaldehyde,4-hydroxymandelate and Watasenia preluciferin)[12-14].Moreover,4-HPPA has proved to be an inhibitor ofacetylcholinesterase and may be usefulin the treatmentofAlzheimer's disease recently[15].Currently,4-HPPA is mainly produced via chemical synthesis[14,16-18],which is usually a multistep process and uses harsh petrochemicals and causes environmentalpollution.Therefore,considerable interest can be generated in the development of eco-friendly technology for the production of 4-HPPA through biocatalysis.

    Fig.1.Functional mechanism of different enzymes catalyzing amino acids to α-keto acids.

    For economic,environmental and social bene fits,amino acids,derived from biomass,are considered to be promising materials as feedstocks to produce industrial chemicals because they contain chemical functionalities similar to conventional petrochemicals[19,20].This offers the possibility to circumvent process steps,energy and reagents compare with functionalizing the base petrochemicals[19,20].So preparing α-keto acids from amino acids through biocatalysis is relatively ideal.Three classes of amino acid-metabolizing enzymes can generate α-keto acids,namely,amino acid dehydrogenases,transferases and deaminases(Fig.1).Aminotransferases are notcost-effective formass production because another α-keto acid is needed as the essential amino acceptor[21,22].Amino acid dehydrogenases are NADH/NADPH-dependentenzymes,so a cofactor recycling systemis required to supply reducing equivalents[23].Compared with amino acid dehydrogenases and transferases,L-amino acid deaminases(L-AADs,EC 1.4.3.2)can catalyze the stereospecific oxidative deamination of natural L-amino acids to generate the corresponding α-keto acids,ammonia and hydrogen peroxide without coupling systems or cofactors[24].Mostof the microbial L-amino acid deaminases are secreted and the produced hydrogen peroxide in the catalyzed reaction would destroy the nascent α-keto acid[25,26].However,L-AADs from Proteus,Providencia and Morganella species are anchored to the outer side ofthe cytomembrane and employ a noncanonical catalytic mechanism without H2O2production during deamination[26,27].A widely accepted hypothesis is that the membrane-bound L-AADs(mL-AADs)are directly linked to the respiratory chain on the bacterial membrane,and electrons are transferred to cytochrome oxidases to reduce O2to H2O[27].Therefore,mL-AAD is the best choice for production of α-keto acids from L-amino acids.

    Most mL-AADs are single-pass transmembrane proteins,which are anchored to cytomembrane surface through their N-terminal transmembrane helixes[27,28].The twin-arginine translocation(Tat)signal peptides(Tat pathway)at mL-AADs'N-terminus are indispensable for facilitating mL-AADs to export to the periplasmic space and anchoring mL-AADs to the outer side of the cytomembrane[27,28].Owing to mL-AADs are anchored to the outer side ofthe cytomembrane,secretion of mL-AADs to periplasm efficiently is key important to prepare whole cell biocatalyst.The conserved secretory pathway(Sec,conducted by pelB signal peptide)and twin-arginine translocation path way(Tat,conducted by Tat signal peptide)are two common pathways used in protein secretion[29,30].When overexpressed of mL-AADs from different species in E.coli,their own Tat peptides were proved to be effective to facilitate the proteins secreting to periplasmic space[31-33].Meanwhile,some researchers also expressed the full length mL-AADs fused with pelB leader signal peptide(Sec secretion pathway)[26,28,34].However,there was no report focus on which expression strategy is more efficient and beneficialto prepare whole cell biocatalyst with high cell-associated mL-AAD activity.

    Each mL-AAD has its own particular substrate spectrum.The mL-AAD from Proteus vulgaris could be identified as candidates for 4-HPPAproduction because itshowshigh activity towards hydrophobic amino acids,such as tyrosine and leucine[31].In this work,we aimed to develop an environment friendly process for 4-HPPA production from L-tyrosine using a recombinant E.coli whole-cell biocatalyst expressing mL-AAD from P.vulgaris.To develop the whole-cell biocatalyst with high cell-associated mL-AAD activity,the secretory efficiency of mLAAD conducted by its own twin-arginine signal peptides(Tat pathway)and pelB signal peptide(Sec pathway)was investigated and compared firstly.After that,the suitable conditions for mL-AAD overexpression were determined.Finally,the reaction conditions of the biotrans formation process were optimized and the 4-HPPA was prepared under optimal condition.

    2.Experimental

    2.1.Materials,strains and vectors

    Plasmids,bacterial strains and the primers used in this study were presented in Table 1.Nco I and Bam H I were obtained from Takara Biotechnology Co.,Ltd.(Dalian,China).Fastpfu and T4 ligase were provided by Beijing TransGen Biotech Co.,Ltd.(China).4-HPPAstandard was purchased from Sigma-Aldrich(St.Louis,MO,USA).2,4-dinitrophenylhydrazine(DNP)and trichloroacetic acid(TCA)was acquired from China Medicine Co.Ltd.(China).L-tyrosine,is opropyl-β-D-thiogalactoside(IPTG),kanamycin,a mpicillin and chloram phenicol were provided by Shanghai Sangon Co.,Ltd.(China).Unless specified,all other chemicals were analytical grade or above.

    Table 1 Oligonucleotide primers,plasmids and strains used in this study

    2.2.L-AAD Plasmids construction and transformation

    The mL-AAD gene from Proteus vulgaris(GenBank accession no.AB030003.1)with addition of Bam H I and Xho I restriction sites at the forward and reverse ends respectively was synthesized by GenScript Biotech Co.(Nanjing,China).By virtue of these two sites,the gene was inserted into expression vector pET-20b(+),generating pET20bmlaad.For cloning mlaad into pET28a(+),the mL-AAD gene was amplified with PCR by two primers(mL-AAD28F/R)displayed in Table 1.The puri fied PCR products were treated with Nco I and Bam H I and then were reassembled into expression vector pET-28a(+),generating pET-28a-mlaad.

    2.3.Preparation of the whole-cell biocatalyst

    For preparation of seed cultures,recombinant E.coli cells were grown in LB medium for 12 h at 200 r·min-1and 310 K.The seed cultures were then inoculated(2%,V/V)into 50 ml LB medium and cultivated at 310 K and 200 r·min-1in a 250 ml Erlenmeyer flask.When the culture optical density at 600 nm was in the range of 0.6-0.8,IPTG was added into the broth at a final concentration of 0.5 mmol·L-1(after optimized,IPTG final concentration was changed to 0.05 mmol·L-1).After 6 h induction at 150 r·min-1and 300 K,the cells were collected via centrifugation(10000 r·min-1,5 min and 277 K)and washed with 200 mmol·L-1sodium phosphate buffer.When required,the following antibiotics were added to the LB medium atthe corresponding concentrations:ampicillin,100μg·ml-1;kanamycin,50 μg·ml-1;and chloramphenicol,30 μg·ml-1.

    2.4.Biocatalytic activity assays

    To obtain cell-associated mL-AADactivity,reactions were carried out to catalyze 5 mmol·L-1tyrosine for 10 min at310 K and quenched with equal volume of 20%TCA solution.After centrifugation(10000 r·min-1,1 min),the supernatant was recovered for the measurement of 4-HPPA as described below.The cell-associated mL-AAD activity was calculated according to the following Eq.(1):

    The total cell-associated mL-AAD activity of cells in 1-L culture was calculated according to the following Eq.(2):

    where ν is the cell-associated mL-AAD activity(the amount of 4-HPPA formed by 1 g(dry cell mass)of cells per min,μmol·min-1·g-1);U is the total cell-associated mL-AAD activity of cells in one liter culture,μmol·min-1;n is the amount of 4-HPPA,μmol;mTis the dry cell mass in the reaction mixture,g;the reaction time t was 10 min and m is the dry cell mass in one liter culture,g.

    2.5.Optimization of L-tyrosine deamination reaction

    To optimize pH,the reaction was conducted at310 K,and pHranged from 5 to 10.For optimization of temperature,the pH was fixed at 9,with temperature varying from 293 K-328 K.Cell concentration modified from 0.12 to 1.23 g·L-1was performed to determine the optimal concentration of biocatalyst,under the conditions of 310 K,pH 9.

    2.6.Determination of 4-HPPA concentration

    Quantitative determination of 4-HPPA was performed by means of DNPs.Details:100 μl sample solution with appropriate dilution multiple,90 μl TCA(20%)and 40 μl DNP(20 mmol·L-1)were mixed in a 1.5 ml centrifuge tube.Hydrazone was generated from the reaction liquid after 15 min.Then 800 μl NaOH(0.8 mol·L-1)was added into the mixture.The absorbance was immediately detected by UV under 520 nm 15 min later.

    3.Results and Discussion

    3.1.Expression of mL-AAD via different secretion pathway

    In the practice of overexpressing of mL-AADs in E.coli,two expression strategies had been used[26,28,31-34].One was to express mL-AADs in their wild-type using their own Tat peptides(Tat secretory pathway)to facilitate the enzymes secreting to periplasmic space.The other,which was more widely adopted,expressed the full length mL-AADs fused with pelB peptides[26,28,34],which might help mL-AADs locate to the bacterial periplasm by virtue of both Tat and Sec secretory pathways[35](the original Tat signal peptide at the wild-type mL-AADcould not be removed in this case,because Tat signal peptide was essential not only for secreting mL-AADs into the periplasmic space,butalso foranchoring the proteins to the outerside ofthe cytomembrane[27],and deletion of Tat signal peptide would make the enzymes unable to bind to the cytomembrane normally[27]).However,there was no report focused on which strategy was more bene ficial for preparing whole-cell biocatalyst with high cell-associated mL-AAD activity.In order to determine and compare the expression efficiency of the two strategies,two pET systems(expression vector pET-28a(+)and pET-20b(+))were employed to express mL-AAD from P.vulgaris.Differences between these two vectors were attributed to whether they have pelB leader or not.In BL21(DE3)-pET-28a-mlaad,the wild-type mL-AAD was produced,obtained a folded conformation in the cytoplasm and secreted to periplasmic space through Tat pathway.While the fusion mL-AAD with pelB peptide was formed in BL21(DE3)-pET-20b-mlaad,the fusion protein might be secreted to periplasmic space through both Tat and Sec pathways[35].When Sec pathway way was used,the premature fusion proteins were exported to periplasmic space,where they were processed into mature proteins[29,30].The cell-associated mL-AAD activity and cell biomass of these two different recombinants were compared in Table 2.The cellassociated mL-AAD activity of recombinant BL21(DE3)-pET-28a-mlaad was 18.9%higher than that of BL21(DE3)-pET-20b-mlaad.In addition,the cell biomass of BL21(DE3)-pET-28a-mlaad was 33.3%higher than that of BL21(DE3)-pET-20b-mlaad.This indicated expression of mL-AAD in wild-type form using its own Tat signal peptide to secret to periplasmic space was more favorable to prepare whole cell biocatalyst with 4-HPPA transformation activity.Therefore,the recombinant BL21(DE3)-pET-28a-mlaad was used to explore the bioprocess for producing 4-HPPA.

    Table 2 Effect of different secretion strategies on the whole-cell biocatalytic activity and biomass

    3.2.Determine the suitable conditions for mL-AAD expression

    Overexpression of membrane proteins often lead to insuf ficient ATP produced in E.coli cells,which would disturb cell growth and prevent biomass formation[36,37].So we determined whether the expression of mL-AAD of P.vulgaris affected cell growth,we compared the growth characteristics of BL21(DE3)-pET-28a-mlaad and non-transformed cells(Fig.2).Cell growth curves showed that the engineered mL-AAD-expressing strain grew at a much slower rate than the nontr ans formed strain,suggesting that the overexpression of mL-AAD in BL21(DE3)resulted in perturbing cell growth.In order to attenuate the toxicity of exogenous expression to the host,BL21(DE3)plysS is usually employed.So we also attempted to express mL-AAD in BL21(DE3)plysS.As expected,BL21(DE3)plysS-pET-28a-mlaad produced more biomass than BL21(DE3)-pET-28a-mlaad,but functioned with a lower cell-associated mL-AAD activity(Table 3).Balanced between cell biomass and the cell-associated mL-AAD activity,the BL21(DE3)-pET-28a-mlaad was more suitable to prepare whole cellbiocatalyst,because its total cell-associated mL-AAD activity in 1 L was much higher than that of BL21(DE3)plysS-pET-28a-mlaad.

    Fig.2.Cell growth profile of BL21(DE3)and BL21(DE3)-pET-28a-mlaad in LB after IPTG induction.(Induction conditions:0.5 mmol·L-1 IPTG,300 K,150 r·min-1 and 6 h).Data represent the mean±SD from three independent determinations.

    Table 3 Comparison of the whole-cell biocatalytic activity and biomass of BL21(DE3)-pET-28amlaad and BL21(DE3)plysS-pET-28a-mlaad

    Next,the effect of IPTG induction concentration on the cellassociated mL-AAD activity and cell biomass of BL21(DE3)-pET-28amlaad was investigated(Fig.3).The biomass of un-induced engineered BL21(DE3)-pET-28a-mlaad was higher than that of induced engineered cells,which further confirmed that the overexpression of mL-AAD had negative effect on the host strains.The highest cell-associated mL-AAD activity was obtained at 0.05 mmol·L-1.When the IPTG induction concentration was above 0.05 mmol·L-1,the activity had no obvious improvement along with the increase of IPTG induction concentration.In general,the lower inducer concentration(0.05 mmol·L-1)resulted in not only a more superior biocatalytic activity,but also a larger amount of cell biomass.Therefore,the IPTG concentration of 0.05 mmol·L-1was used to prepare whole cell biocatalyst.

    3.3.Optimization for mL-AAD catalyzed reaction

    In order to apply BL21(DE3)-pET-28a-mlaad to 4-HPPA production,the reaction conditions were optimized.The cell-associated mL-AAD activity under different pH conditions was analyzed in Na2HPO4-NaH2PO4buffers(Fig.4(a)).The highest biocatalyst activity was obtained at pH 9 and the activity retained more than 70%of its maximal activity between 8 and 10.When pH below 8,the biocatalyst activity experienced a sharply decrease.Next,the effect of reaction temperature on cellassociated mL-AAD activity was determined ranging from 293 to 328 K.Apparently,the highest biocatalyst activity appeared at 310 K with a value of 275.89 μmol·min-1·g-1(Fig.4(b)).Besides,when the temperature below 310 K,the activity experienced a slow increase with temperature rising,while the activity declined sharply when temperature above 310 K.The optimal biocatalyst concentration for biotransformation was also investigated(Fig.4(c)).4-HPPA production rate was optimal at 0.74 g·L-1and did not increase at higher cell concentrations,which was mainly owing to substrate and catalyst saturation.Because the poor water solubility of L-tyrosine(>5 mmol·L-1L-tyrosine was difficult to be dissolved in our reaction system),the amount of cell catalysts saturated by dissolved L-tyrosine was at low level in this study,higher cell density in reaction system was unnecessary and wasteful in economic view.Overall,the optimal conditions were as follows:0.74 g·L-1cell biomass,310 K and pH 9.

    3.4.Production of 4-HPPA using BL21(DE3)-pET-28a-mlaad

    4-HPPA was easily converted to 4-hydroxybenzaldehyde in alkaline condition,especially when pH ranged from 10 to 12[14].So we determined whether the 4-HPPA deteriorated under our optimized experiment condition firstly(pH 9,310 K,200 r·min-1)(Fig.5).Despite 4-HPPA concentration continued decreased consistently over time,there was still 92%4-HPPA left after 12 h(Fig.5).The results indicated that it was feasible to produce 4-HPPA in the optimized condition for a long run time.In addition,we tried to retard the deterioration of 4-HPPA through adding antioxidant(such as ascorbic acid,sodium sul fite)into the biocatalytic mixture.However,the reaction rates were seriously compromised(data was not shown).It might be largely because of the antioxidant reduced available oxygen the bioconversion needed.Ultimately,production of 4-HPPA was conducted without any additional antioxidants.

    Fig.3.Effect of different IPTG-induction concentration on biomass and cell-associated mL-AAD activity.Data represent the mean±SD from three independent determinations.

    Fig.4.In fluence of pH(a),temperature(b),cell concentration,(c)on whole cell biotransformation.Data representthe mean±SDfrom three independent determinations.

    Fig.5.Deterioration of 4-HPPA under optimized experimentcondition.Data represent the mean±SD from three independent determinations.

    Fig.6.Preparation of 4-HPPA from different amount of tyrosine.Data represent the mean±SD from three independent determinations.

    4-HPPA bioconversions were conducted in 50 ml tube under the optimized condition with different L-tyrosine substrate contents(100 to 300 mmol·L-1)within 10 ml reaction mixture(Fig.6).Because L-tyrosine is an aliphatic amino acid with poor water solubility,the reaction was conducted in L-tyrosine solution with solid powder(particles)suspended in the liquid.The L-tyrosine powder dissolved as L-tyrosine was consumed.In the case of100 mmol·L-1L-tyrosine,reaction mixture became clearat10 h,suggesting thatallsubstrate was almostconsumed,and 4-HPPA concentration reached(72.72 ± 3.81)mmol·L-1with a yield of 72.7%.For 200 mmol·L-1and 300 mmol·L-1L-tyrosine,the highest yield of 4-HPPA was obtained at 12 h,reaching(95.75±3.11)mmol·L-1and(84.71 ± 1.63)mmol·L-1respectively,with some amount of tyrosine unconverted.Both the reaction rate and the highest yield at 300 mmol·L-1substrate content were much lower than those of 100 mmol·L-1and 200 mmol·L-1,suggesting higher L-tyrosine content(300 mmol·L-1)reduced the mixing transfer efficiency and oxygen transfer rate.Considering the low price of L-tyrosine and the yields of 4-HPPA,the substrate concentration of 200 mmol·L-1might be suitable for industrialized production,albeit with the conversion rate at this substrate concentration was lower than that of 100 mmol·L-1substrate concentration.Besides,ESI MS was carried out to confirm 4-HPPA,and the proton peak at m/z=179.0347 in the mode of anion was obtained.

    With the expanding spectrum of 4-HPPA applications,developing efficient and economic methods for 4-HPPA production is an important challenge.Till now,several methods had been developed to synthesize 4-HPPA,most were chemical methods[14,16-18,38].For example,4-HPPA could be split from(5Z)-5-[(4-hydroxyphenyl)methylidene]imidazolidine-2,4-dione,which was prepared from p-hydroxybenzaldehyde and hydantoin[38,39].Albeit with almost 94%conversion rate could be obtained in this method,it not only consumed mass supported-reagents and took several steps and a long time,but also used harsh solvents and produced kinds of by-products.Although Alton Meister developed a biocatalytic method for 4-HPPA synthesis with much less process steps and environment pollution,which using coupling system of secreted L-AADs(sL-AADs)from venoms and catalases(4-HPPA with a yield of 55%in 12-18 h)[40],this method was not economical for actual application as follow reasons.First,H2O2,which was produced during the deamination reaction catalyzed by sL-AADs,could degrade 4-HPPA and denature the enzyme[26,41].Hence catalases should be used to remove H2O2,which would sharply raise the cost of 4-HPPA preparation.In addition,it was difficult to produce sL-AADs through gene engineering ways.When overexpression of sL-AADs in various expression hosts,the non-active form or low expression level of the enzyme were commonly be observed,which was mainly because H2O2was generated during expression process[24,33].So the high cost for L-AADs preparation could not be decreased.Thus,production of 4-HPPA in a large scale via this method was infeasible.In this study,4-HPPA was produced via recombinant mL-AADs E.coli cells with a high yield(72.7%).Compared with the sL-AADs,mL-AADs could be easily expressed in E.coli.Moreover,non-H2O2was produced during deamination reactions conducted by mL-AADs,which could avoid the degradation of 4-HPPA and denaturation of enzyme in the reaction process.Therefore,the way developed here is ideal and promising for industrial application.

    4.Conclusions

    In this study,we developed an eco-friendly and high-efficiency process for one-step production of 4-HPPA from inexpensive L-tyrosine using an E.coli whole-cell biocatalyst expressing mL-AAD from P.vulgaris.By using 0.71 g·L-1whole-cell biocatalyst,72.72 mmol·L-14-HPPA could be produced from 100 mmol·L-1L-tyrosine within 10 h.Based on the results,we conclude that the process developed here could replace the multi-step chemical processes and is promising for industrial production of 4-HPPA.To make the transformation more efficiently,the activity and stability of recombinant mL-AAD should be improved by directed evolution or rational design.

    [1]G.N.Chen,Y.W.Chi,X.P.Wu,J.P.Duan,N.B.Li,Chemical oxidation of p-hydroxyphenylpyruvic acid in aqueous solution by capillary electrophoresis with an electrochemiluminescence detection system,Anal.Chem.75(23)(2003)6602-6607.

    [2]Y.Huang,X.L.Zhang,L.J.Xu,H.Q.Chen,G.N.Chen,Characterization of keto-enol tautomerism of p-hydroxyphenylpyruvic acid using CE with amperometric detection and spectrometric analysis,J.Sep.Sci.32(23-24)(2009)4155-4160.

    [3]C.Y.Zhang,Chinese Medical Encyclopedia,Biochemistry,Shanghai Science and Technology Press,Shanghai,1989.

    [4]Y.W.Chi,J.P.Duan,X.Z.Qi,G.N.Chen,Electrochemical study on the ketoenol tautomerization of p-hydroxyphenylpyruvic acid in aqueous solution,Bioelectrochemistry 60(1-2)(2003)37-45.

    [5]W.M.Mu,S.H.Yu,L.J.Zhu,B.Jiang,T.Zhang,Production of 3-phenyllactic acid and 4-hydroxyphenyllactic acid by Pediococcus acidilactici DSM 20284 fermentation,Eur.Food Res.Technol.235(3)(2012)581-585.

    [6]W.M.Mu,Y.Yang,J.H.Jia,T.Zhang,B.Jiang,Production of 4-hydroxyphenyllactic acid by Lactobacillus sp SK007 fermentation,J.Biosci.Bioeng.109(4)(2010)369-371.

    [7]E.J.Lee,P.J.Facchini,Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy,Plant Physiol.157(3)(2011)1067-1078.

    [8]P.Schneider,S.Bouhired,D.Hoffmeister,Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete Tapinella panuoides,Fungal Genet.Biol.45(11)(2008)1487-1496.

    [9]A.S.Kende,J.Lan,J.F.Fan,Total synthesis of a dibromotyrosine alkaloid inhibitor of mycothiol S-conjugate amidase,Tetrahedron Lett.45(1)(2004)133-135.

    [10]Y.F.Bai,H.P.Bi,Y.B.Zhuang,C.Liu,T.Cai,X.N.Liu,X.L.Zhang,T.Liu,Y.H.Ma,Production of salidroside in metabolically engineered Escherichia coli,Sci.Rep.4(6640)(2014).

    [11]R.Muzzarelli,P.Iari,W.S.Xia,M.Pinotti,M.Tomasetti,Tyrosinase-mediated quinone tanning of chitinous materials,Carbohydr.Polym.24(4)(1994)295-300.

    [12]M.Gunsior,J.Ravel,G.L.Challis,C.A.Townsend,Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation,Biochemistry-U.S.43(3)(2004)663-674.

    [13]S.Inoue,K.Okada,H.Tanino,H.Kakoi,A new synthesis of watasenia preluciferin by cyclization of 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine with p-hydroxyphenylpyruvic acid,Chem.Lett.9(3)(1980)299-300.

    [14]C.H.Doy,Alkaline conversion of 4-hydroxyphenylpyruvic acid to 4-hydroxybenzaldehyde,Nature 186(4724)(1960)529-531.

    [15]D.Szwajgier,Anticholinesterase activity of selected phenolic acids and flavonoidsinteraction testing in model solutions,Ann.Agric.Environ.Med.22(4)(2015)690-694.

    [16]S.N.Acerbo,W.J.Schubert,F.F.Nord,Investigations on lignins and lignification.XIX.*the mode of incorporation of p-hydroxyphenylpyruvic acid into lignin,J.Am.Chem.Soc.80(8)(1958)1990-1992.

    [17]H.S.Raper,A.Wormall,The tyrosinase-tyrosine reaction.II.The theory of deamination,Biochem.J.19(1)(1925)84-91.

    [18]G.C.Du,Y.Song,L.Liu,J.H.Li,J.Chen,Advances in production and application of α-keto acids,J.Food Sci.Biotechnol.32(11)(2013)1121-1127.

    [19]Y.L.Teng,E.L.Scott,A.V.Zeeland,J.Sander,The use of L-lysine decarboxylase as a means to separate amino acids by electrodialysis,Green Chem.13(3)(2011)624-630.

    [20]A.V.Pukin,C.G.Boeriu,E.L.Scott,J.Sanders,M.Franssen,An efficient enzymatic synthesis of 5-aminovaleric acid,J.Mol.Catal.B-Enzym.65(1-4SI)(2010)58-62.

    [21]P.Schadewaldt,F.Adelmeyer,Coupled enzymatic assay for estimation of branchedchain L-amino acid aminotransferase activity with 2-oxo acid substrates,Anal.Biochem.238(1)(1996)65-71.

    [22]T.N.Stekhanova,A novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia,Enzym.Microb.Technol.96(2017)127-134.

    [23]P.Odman,W.B.Wellborn,A.S.Bommarius,An enzymatic process to alphaketoglutarate from L-glutamate:the coupled system L-glutamate dehydrogenase/NADH oxidase,Tetrahedron-Asymmetry 15(18)(2004)2933-2937.

    [24]L.Liu,G.S.Hossain,H.D.Shin,J.H.Li,G.C.Du,J.Chen,One-step production of α-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis,J.Biotechnol.164(1)(2013)97-104.

    [25]P.Q.Niu,X.X.Dong,Y.C.Wang,L.M.Liu,Enzymatic production of alpha-ketoglutaric acid from L-glutamic acid via L-glutamate oxidase,J.Biotechnol.179(1)(2014)56-62.

    [26]G.S.Hossain,J.H.Li,H.D.Shin,G.C.Du,M.Wang,L.Liu,J.Chen,One-step biosynthesis of alpha-keto-gamma-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris,PloS One 9(e114291)(2014).

    [27]Y.C.Ju,S.L.Tong,Y.X.Gao,W.Zhao,Q.Liu,Q.Gu,J.Xu,L.W.Niu,M.K.Teng,H.H.Zhou,Crystal structure of a membrane-bound L-amino acid deaminase from Proteus vulgaris,J.Struct.Biol.195(3)(2016)306-315.

    [28]G.S.Hossain,J.H.Li,H.D.Shin,R.R.Chen,G.C.Du,L.Liu,J.Chen,Bioconversion of L-glutamic acid to alpha-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis,J.Biotechnol.169(2014)112-120.

    [29]A.Q.Zhao,X.Q.Hu,Y.Li,C.Chen,X.Y.Wang,Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production,AMB Express 6(55)(2016).

    [30]Z.X.Dong,J.Zhang,G.C.Du,J.Chen,H.Z.Li,B.H.Lee,Periplasmic export of bile salt hydrolase in Escherichia coli by the twin-arginine signal peptides,Appl.Biochem.Biotechnol.177(2)(2015)458-471.

    [31]E.Takahashi,K.Ito,T.Yoshimoto,Cloning of L-amino acid deaminase gene from Proteus vulgaris,Biosci.Biotechnol.Biochem.63(12)(1999)2244-2247.

    [32]J.O.Baek,J.W.Seo,O.Kwon,S.I.Seong,I.H.Kim,C.H.Kim,Expression and characterization of a second L-amino acid deaminase isolated from Prstructureoteus mirabilis in Escherichia coli,J.Basic Microbiol.51(2)(2011)129-135.

    [33]Y.Song,J.H.Li,H.D.Shin,G.C.Du,L.Liu,J.Chen,One-step biosynthesis of αketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris,Sci.Rep.5(12614)(2015).

    [34]Y.Hou,G.S.Hossain,J.H.Li,H.D.Shin,L.Liu,G.C.Du,Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis:comparison of enzymatic and whole-cell biotransformation approaches,Appl.Microbiol.Biotechnol.99(20)(2015)8391-8402.

    [35]F.J.Tooke,M.Babot,G.Chandra,G.Buchanan,T.Palmer,A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways,eLIFE 6(e26577)(2017).

    [36]S.Wagner,L.Baars,A.J.Ytterberg,A.Klussmeier,C.S.Wagner,O.Nord,P.A.Nygren,K.J.V.Wijk,J.W.D.Gier,Consequence of membrane protein overexpression in Escherichia coli,Mol.Cell.Proteomics 6(9)(2007)1527-1550.

    [37]S.Wagner,M.M.Klepsch,S.Schlegel,A.Appel,R.Draheim,M.Tarry,M.Hogbom,K.J.V.Wijk,D.J.Slotboom,J.O.Persson,J.W.D.Gier,Tuning Escherichia coli for membrane protein overexpression,Proc.Natl.Acad.Sci.U.S.A.105(38)(2008)14371-14376.

    [38]A.J.Cooper,J.Z.Ginos,A.Meister,Synthesis and properties of the alpha-keto acids,Chem.Rev.83(3)(1983)321-358.

    [39]G.Billek,Eine neue synthese der 4-hydroxyphenylbrenztraubensaure.2.zur synthese der phenylbrenztraubensauren,Monatsh.Chem.92(2)(1961)335-342.

    [40]A.Meister,Enzymatic preparation of alpha-keto acids,J.Biol.Chem.197(1)(1952)309-317.

    [41]C.A.Bunton,Oxidation of alpha-diketones and alpha-keto-acids by hydrogen peroxide,Nature(London)163(1949)444.

    成人特级av手机在线观看| 国产极品精品免费视频能看的| 免费无遮挡裸体视频| 在线天堂最新版资源| 国产成人精品久久久久久| 日韩欧美精品v在线| 久久久久久久久久黄片| 男女边吃奶边做爰视频| 欧美日韩乱码在线| videossex国产| 18禁裸乳无遮挡免费网站照片| 欧美xxxx黑人xx丫x性爽| 99riav亚洲国产免费| 国产美女午夜福利| 久久午夜亚洲精品久久| 秋霞在线观看毛片| 久久久国产成人免费| 亚州av有码| 欧美一区二区国产精品久久精品| 午夜亚洲福利在线播放| 舔av片在线| 99国产极品粉嫩在线观看| av免费在线看不卡| 成人漫画全彩无遮挡| 高清毛片免费观看视频网站| 啦啦啦啦在线视频资源| 久久久精品大字幕| 日韩国内少妇激情av| 国产高清不卡午夜福利| 此物有八面人人有两片| АⅤ资源中文在线天堂| 国产黄片视频在线免费观看| 久99久视频精品免费| 高清毛片免费看| 国产亚洲av片在线观看秒播厂 | 美女脱内裤让男人舔精品视频 | 久久韩国三级中文字幕| 日韩欧美精品免费久久| 亚洲av成人av| 国产高清视频在线观看网站| 天美传媒精品一区二区| 日韩av在线大香蕉| 卡戴珊不雅视频在线播放| 男人和女人高潮做爰伦理| 国产老妇伦熟女老妇高清| 精品人妻熟女av久视频| 国内久久婷婷六月综合欲色啪| 欧美日本视频| 插逼视频在线观看| 两个人的视频大全免费| 黄片无遮挡物在线观看| 国产高清激情床上av| 婷婷色综合大香蕉| 搡女人真爽免费视频火全软件| 国产一区亚洲一区在线观看| a级毛片a级免费在线| 淫秽高清视频在线观看| 免费大片18禁| 亚洲五月天丁香| 久久久色成人| 亚洲人与动物交配视频| 精品久久久久久成人av| 亚洲天堂国产精品一区在线| 啦啦啦韩国在线观看视频| 午夜免费男女啪啪视频观看| 在线a可以看的网站| 高清午夜精品一区二区三区 | 国产探花在线观看一区二区| 国产色婷婷99| 国内精品宾馆在线| 国产精品一及| 国产一区二区亚洲精品在线观看| 丰满乱子伦码专区| 69av精品久久久久久| 日本一二三区视频观看| 51国产日韩欧美| 午夜福利在线观看吧| 91在线精品国自产拍蜜月| 久久婷婷人人爽人人干人人爱| 97超视频在线观看视频| 天堂√8在线中文| 欧美一区二区亚洲| 最近手机中文字幕大全| 国产视频内射| 久久精品国产鲁丝片午夜精品| 欧美潮喷喷水| 亚洲在久久综合| 欧美变态另类bdsm刘玥| 久久久欧美国产精品| 久久久欧美国产精品| 三级经典国产精品| 日韩欧美 国产精品| 久久国产乱子免费精品| 男女做爰动态图高潮gif福利片| 美女黄网站色视频| 中文字幕熟女人妻在线| 好男人视频免费观看在线| 日韩 亚洲 欧美在线| 久久久国产成人精品二区| 真实男女啪啪啪动态图| kizo精华| 99视频精品全部免费 在线| 日本色播在线视频| 美女xxoo啪啪120秒动态图| 午夜激情欧美在线| 看片在线看免费视频| av在线蜜桃| 国产亚洲5aaaaa淫片| 亚洲av成人av| 在线观看午夜福利视频| 亚洲欧美精品综合久久99| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| av国产免费在线观看| 九九热线精品视视频播放| 午夜激情欧美在线| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 变态另类丝袜制服| 能在线免费看毛片的网站| 成年av动漫网址| 两性午夜刺激爽爽歪歪视频在线观看| 国内精品美女久久久久久| 99久久中文字幕三级久久日本| 午夜亚洲福利在线播放| 能在线免费观看的黄片| 又黄又爽又刺激的免费视频.| 看免费成人av毛片| 在线观看av片永久免费下载| 久久这里只有精品中国| 淫秽高清视频在线观看| 国产精华一区二区三区| 内地一区二区视频在线| 特级一级黄色大片| 精品熟女少妇av免费看| 精品国产三级普通话版| 噜噜噜噜噜久久久久久91| 男插女下体视频免费在线播放| 欧美丝袜亚洲另类| 男女那种视频在线观看| 国产白丝娇喘喷水9色精品| 深夜a级毛片| 欧美性感艳星| 最近的中文字幕免费完整| 久久久精品大字幕| 亚洲一区二区三区色噜噜| 亚洲av.av天堂| 插阴视频在线观看视频| 又黄又爽又刺激的免费视频.| 人妻制服诱惑在线中文字幕| 免费观看精品视频网站| 两个人视频免费观看高清| 免费人成视频x8x8入口观看| 啦啦啦啦在线视频资源| 人人妻人人看人人澡| 两个人的视频大全免费| 美女国产视频在线观看| 卡戴珊不雅视频在线播放| 干丝袜人妻中文字幕| 中文资源天堂在线| 只有这里有精品99| 午夜老司机福利剧场| 成人欧美大片| 久久精品久久久久久噜噜老黄 | 国产真实乱freesex| 欧美人与善性xxx| 丰满的人妻完整版| 一级黄片播放器| 亚洲最大成人中文| 有码 亚洲区| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 色综合站精品国产| 中文字幕人妻熟人妻熟丝袜美| 午夜福利高清视频| 久久韩国三级中文字幕| 在线播放无遮挡| 成人三级黄色视频| 欧美日韩乱码在线| 在线观看午夜福利视频| 国产三级在线视频| 一边亲一边摸免费视频| 禁无遮挡网站| 国内久久婷婷六月综合欲色啪| 国产精品99久久久久久久久| 久久精品人妻少妇| 亚洲av成人av| 国产亚洲精品久久久com| 国产又黄又爽又无遮挡在线| 欧美区成人在线视频| 大型黄色视频在线免费观看| av.在线天堂| 亚洲av男天堂| 最后的刺客免费高清国语| 久久精品久久久久久久性| 欧美日韩综合久久久久久| 女的被弄到高潮叫床怎么办| 伊人久久精品亚洲午夜| 国产精品久久久久久亚洲av鲁大| 久久精品综合一区二区三区| 春色校园在线视频观看| 别揉我奶头 嗯啊视频| 伊人久久精品亚洲午夜| av在线观看视频网站免费| 亚洲内射少妇av| 午夜爱爱视频在线播放| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 内射极品少妇av片p| 97超视频在线观看视频| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看| 亚洲欧美日韩高清专用| 国产老妇女一区| 国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| 久久久午夜欧美精品| 99riav亚洲国产免费| 日韩成人伦理影院| 国产成人精品婷婷| 亚洲国产精品久久男人天堂| 91aial.com中文字幕在线观看| 亚洲精品国产av成人精品| 日日摸夜夜添夜夜添av毛片| 亚洲av免费在线观看| 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线 | 只有这里有精品99| 亚洲国产精品成人久久小说 | 1024手机看黄色片| 日本成人三级电影网站| 舔av片在线| av在线老鸭窝| 男女做爰动态图高潮gif福利片| 麻豆乱淫一区二区| 22中文网久久字幕| 国产成人精品婷婷| av黄色大香蕉| 日韩中字成人| 99热6这里只有精品| 在线a可以看的网站| 舔av片在线| 国产成人a区在线观看| 黄片wwwwww| 国产成人aa在线观看| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 在线播放国产精品三级| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 最好的美女福利视频网| 非洲黑人性xxxx精品又粗又长| 在线天堂最新版资源| 岛国在线免费视频观看| 尾随美女入室| 91久久精品国产一区二区三区| 99久久成人亚洲精品观看| av在线观看视频网站免费| 老司机影院成人| 国产精品1区2区在线观看.| 我要看日韩黄色一级片| 99久久精品一区二区三区| 免费av毛片视频| 久久草成人影院| 午夜福利高清视频| av女优亚洲男人天堂| h日本视频在线播放| 中国国产av一级| 国产在线精品亚洲第一网站| www日本黄色视频网| 中文字幕精品亚洲无线码一区| 午夜福利在线观看免费完整高清在 | 啦啦啦韩国在线观看视频| av在线播放精品| 午夜免费男女啪啪视频观看| 国产一区二区激情短视频| 午夜久久久久精精品| 精品人妻视频免费看| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 午夜免费激情av| 免费无遮挡裸体视频| 欧美一区二区亚洲| 亚洲三级黄色毛片| 黑人高潮一二区| 精品久久久久久成人av| 黄片wwwwww| 色视频www国产| 国内少妇人妻偷人精品xxx网站| 日韩欧美精品免费久久| av天堂中文字幕网| 亚洲五月天丁香| 18+在线观看网站| 亚洲熟妇中文字幕五十中出| 观看免费一级毛片| 久久亚洲精品不卡| 欧美高清性xxxxhd video| 国产三级在线视频| 成年免费大片在线观看| 亚洲真实伦在线观看| 能在线免费观看的黄片| 午夜福利高清视频| 国产精品美女特级片免费视频播放器| av在线蜜桃| 午夜免费激情av| 亚洲av二区三区四区| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添av毛片| 黄色视频,在线免费观看| 欧美最黄视频在线播放免费| av又黄又爽大尺度在线免费看 | 天堂av国产一区二区熟女人妻| 黑人高潮一二区| 中文字幕人妻熟人妻熟丝袜美| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 亚洲国产精品sss在线观看| 久久精品夜色国产| 男人舔奶头视频| 亚洲精品影视一区二区三区av| 国产欧美日韩精品一区二区| 亚洲精华国产精华液的使用体验 | 女同久久另类99精品国产91| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人中文| 99热只有精品国产| 久久精品国产亚洲网站| 少妇高潮的动态图| 亚洲国产欧洲综合997久久,| 免费看av在线观看网站| 高清午夜精品一区二区三区 | 日日摸夜夜添夜夜添av毛片| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 国产精品1区2区在线观看.| 亚洲国产欧美人成| 国产久久久一区二区三区| 日韩av不卡免费在线播放| av卡一久久| 欧美高清成人免费视频www| 精品午夜福利在线看| 午夜福利成人在线免费观看| 男女啪啪激烈高潮av片| 久久久久网色| 国产高潮美女av| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 三级国产精品欧美在线观看| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 老司机影院成人| 亚洲一区二区三区色噜噜| 在现免费观看毛片| 国产高潮美女av| 成人av在线播放网站| 精品一区二区三区人妻视频| 国产真实乱freesex| 国产高潮美女av| 人妻少妇偷人精品九色| 亚洲av中文av极速乱| 99热6这里只有精品| 2022亚洲国产成人精品| 免费看日本二区| 美女大奶头视频| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 欧美潮喷喷水| 综合色av麻豆| 一个人看视频在线观看www免费| 一个人免费在线观看电影| 国产免费男女视频| 免费搜索国产男女视频| 你懂的网址亚洲精品在线观看 | 国内精品久久久久精免费| 亚洲国产欧美在线一区| 国产精品野战在线观看| 深爱激情五月婷婷| 大香蕉久久网| 日韩高清综合在线| 悠悠久久av| 国产精品美女特级片免费视频播放器| 亚洲真实伦在线观看| 欧美3d第一页| 久久亚洲精品不卡| 国产高清三级在线| 久久久久久久午夜电影| 中文资源天堂在线| 亚洲aⅴ乱码一区二区在线播放| 伦理电影大哥的女人| 一区二区三区免费毛片| 永久网站在线| 精品无人区乱码1区二区| 国产三级在线视频| 亚洲久久久久久中文字幕| 精品一区二区免费观看| 黄色欧美视频在线观看| 国产一区二区三区在线臀色熟女| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 麻豆国产av国片精品| 日韩一本色道免费dvd| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 激情 狠狠 欧美| 欧美+日韩+精品| 狠狠狠狠99中文字幕| 国产精品1区2区在线观看.| 亚洲精品国产av成人精品| 国产免费一级a男人的天堂| 国产真实乱freesex| 欧美又色又爽又黄视频| 老司机福利观看| 美女国产视频在线观看| 国产精品电影一区二区三区| 一级毛片久久久久久久久女| 国产精品一区二区在线观看99 | 久久精品影院6| 国产成人午夜福利电影在线观看| 免费观看人在逋| 国产白丝娇喘喷水9色精品| 亚洲va在线va天堂va国产| 寂寞人妻少妇视频99o| 欧美最新免费一区二区三区| 99热这里只有是精品在线观看| 天天躁夜夜躁狠狠久久av| 久久精品夜色国产| 婷婷色综合大香蕉| 真实男女啪啪啪动态图| 九九热线精品视视频播放| 欧美激情国产日韩精品一区| 欧美xxxx黑人xx丫x性爽| 久久精品91蜜桃| 国产美女午夜福利| 五月伊人婷婷丁香| 久久人妻av系列| 亚洲欧洲日产国产| 麻豆成人av视频| 国产精品久久久久久av不卡| 夜夜夜夜夜久久久久| 亚洲,欧美,日韩| 嫩草影院入口| 三级经典国产精品| av卡一久久| 搞女人的毛片| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 亚洲国产色片| 九九在线视频观看精品| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 国产精品永久免费网站| av免费观看日本| 99热这里只有是精品在线观看| 国产精品综合久久久久久久免费| 最近手机中文字幕大全| h日本视频在线播放| 国产黄片视频在线免费观看| 色5月婷婷丁香| 我要看日韩黄色一级片| 看黄色毛片网站| 久久精品影院6| 国产成人精品一,二区 | 国产又黄又爽又无遮挡在线| 国内揄拍国产精品人妻在线| 插逼视频在线观看| 国产高清激情床上av| 欧美另类亚洲清纯唯美| 日韩中字成人| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 蜜桃亚洲精品一区二区三区| 美女大奶头视频| 国产精品一二三区在线看| 2021天堂中文幕一二区在线观| 久久久国产成人精品二区| 亚洲成人中文字幕在线播放| 国产一级毛片在线| 最新中文字幕久久久久| 99久国产av精品| 少妇被粗大猛烈的视频| 久久草成人影院| 少妇丰满av| 精品久久久久久成人av| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 啦啦啦啦在线视频资源| 中文欧美无线码| 91精品国产九色| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 男女做爰动态图高潮gif福利片| 日本黄色片子视频| 联通29元200g的流量卡| 五月玫瑰六月丁香| 天堂网av新在线| a级毛片免费高清观看在线播放| 成人永久免费在线观看视频| 少妇猛男粗大的猛烈进出视频 | 黄片wwwwww| 亚洲第一电影网av| 亚洲国产欧洲综合997久久,| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 国产伦精品一区二区三区四那| 中国国产av一级| 亚洲最大成人中文| 亚洲国产精品成人综合色| 夜夜看夜夜爽夜夜摸| 可以在线观看的亚洲视频| 亚洲乱码一区二区免费版| 晚上一个人看的免费电影| 日韩制服骚丝袜av| 国产综合懂色| 一边亲一边摸免费视频| 99久久精品一区二区三区| 我要看日韩黄色一级片| 亚洲最大成人中文| 国模一区二区三区四区视频| 国产午夜福利久久久久久| 亚洲欧美日韩高清专用| 精品一区二区三区人妻视频| 午夜爱爱视频在线播放| 亚洲精品自拍成人| 夜夜夜夜夜久久久久| av国产免费在线观看| 亚洲不卡免费看| 国产精品国产三级国产av玫瑰| 黄色欧美视频在线观看| 国产一区二区激情短视频| 97超碰精品成人国产| 观看美女的网站| 伦理电影大哥的女人| 性插视频无遮挡在线免费观看| 黄色日韩在线| 一级毛片我不卡| 亚洲中文字幕一区二区三区有码在线看| 午夜爱爱视频在线播放| 亚洲精品久久久久久婷婷小说 | 99久国产av精品国产电影| 身体一侧抽搐| 久99久视频精品免费| 日本五十路高清| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 精品久久久久久久久久免费视频| 少妇的逼好多水| 日韩在线高清观看一区二区三区| 我要搜黄色片| 晚上一个人看的免费电影| 久久人人精品亚洲av| 久久久国产成人精品二区| 少妇被粗大猛烈的视频| 99久久人妻综合| 爱豆传媒免费全集在线观看| 成人综合一区亚洲| 国产av不卡久久| 在线播放无遮挡| 欧美激情在线99| 国产亚洲精品久久久久久毛片| 亚洲欧美清纯卡通| 日韩人妻高清精品专区| 国产69精品久久久久777片| 日韩精品有码人妻一区| 又黄又爽又刺激的免费视频.| 成年女人永久免费观看视频| 麻豆成人av视频| 18禁在线无遮挡免费观看视频| 99久久久亚洲精品蜜臀av| 久久精品久久久久久久性| 精品一区二区免费观看| 久久这里有精品视频免费| 一级毛片久久久久久久久女| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 国产精品久久久久久久电影| 热99在线观看视频| 久久久久性生活片| 热99在线观看视频| 中文字幕久久专区| 一级毛片电影观看 | 午夜激情欧美在线| 波多野结衣巨乳人妻| av在线天堂中文字幕| 一级黄色大片毛片| 美女 人体艺术 gogo| 少妇丰满av| 麻豆一二三区av精品| 嫩草影院入口| 日韩人妻高清精品专区| 如何舔出高潮| 又粗又硬又长又爽又黄的视频 | 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 91av网一区二区| 国产久久久一区二区三区| 色综合站精品国产|