• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and characterization of H4SiW12O40@MIL-100(Fe)and its catalytic performance for synthesis of 4,4′-MDA☆

    2018-05-25 19:07:36YunhuanKongXiaomengChengHualiangAnXinqiangZhaoYanjiWang

    Yunhuan Kong,Xiaomeng Cheng,Hualiang An,Xinqiang Zhao*,Yanji Wang

    Hebei Provincial Key Lab of Green Chemical Technology and Efficient Energy Saving,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130,China

    1.Introduction

    4,4′-Methylenedianiline(4,4′-MDA)is not only a key intermediate for the manufacture of methylene diphenyl diisocyanate(MDI),but also extensively applied in the production of epoxy resin tough curing agent,chain extender,organic dyes and so on[1].The synthesis of 4,4′-MDA from aniline and formaldehyde is a typical acid-catalyzed reaction.At present,the industrial manufacture of 4,4′-MDA usually utilizes hydrochloric acid as catalyst,suffering from some drawbacks,e.g.,corrosiveness of equipment and emission of a lot of acid waste water[2].In order to overcome these drawbacks,a lot of efforts have been made in the research on solid acid catalysts[3-8]mainly including acidic clay,molecular sieves,ion exchange resin,metal compound and so on.Some good results have been achieved but there still exists poor catalyst stability and low selectivity.Nafziger et al.[9]selected acid ion exchange resins to catalyze the synthesis of 4,4′-MDA and got a 4,4′-MDA yield of 75%with a selectivity of 85%at 120 °C.However,acid ion exchange resins had poor thermal stability.Bahulayan et al.[10]developed an efficient method for the synthesis of 4,4′-MDA catalyzed by kaolinite clay.The conversion of aniline was significantly high with a selectivity in the range of 68%-98%,butthe properties of kaolinite clay would severely affect its catalytic activity.Our group studied the synthesis of 4,4′-MDA using[HSO3-bmim]CF3SO3as catalyst.Under the suitable reaction condition of reaction temperature=80°C and reaction time=8 h,the yield and selectivity of 4,4′-MDA were 79.4%and 87.9%,respectively[11].However,the high price of ionic liquids caused high production cost and ionic liquids could be reused only after it was re-acidized by CF3SO3H because there was a chemical interaction between aniline and the sulfonic acid group of[HSO3-bmim]CF3SO3.So it was necessary to explore an environmentally friendly and highly effective catalyst.

    As a solid acid,heteropolyacid has some advantages[12-16],e.g.,no equipment corrosion and no emission of acidic waste water.What's more,heteropolyacid has been widely used in acid-catalyzed reactions and good results have been achieved.Based on the advantages of high activity and high selectivity in condensation reactions,heteropolyacid is chosen as a catalyst in this paper.However,heteropolyacid can dissolve in the reaction system of 4,4′-MDA synthesis,which leads to the difficult recycle.Metal-organic frameworks(MOFs)encapsulated heteropolyacid usually shows not only high catalytic activity but also excellent reusability[17,18].Therefore,we prepared MIL-100(Fe)encapsulated heteropolyacid,characterized its structure,and finally investigated its catalytic performance for 4,4′-MDA synthesis.

    2.Experimental

    2.1.Materials and reagents

    Aniline(AR,Sinopharm Chemical Reagent Co.,Ltd.,China),silicotungstic acid,phosphotungstic acid and phosphomolybdic acid(AR,Tianjin Kemiou Chemical Reagent Co.,Ltd.,China),trimesitinic acid(AR,Tianjin Heowns Biochem LLC,China),ferric nitrate(AR,Tianjin Damao Chemical Reagent Factory,China),formaldehyde(37 wt%aqueous solution)and N,N-dimethylformamide(AR,Tianjin Fengchuan Chemical Reagent Science and Technology Co.,Ltd.,China),and 4,4′-methylenedianiline(AR,J&K Chemical Technology Co.,Ltd.,China)were used.

    2.2.Catalyst preparation

    8.08 g of Fe(NO3)3·9H2O,2.8 g of trimesic acid,8 g of H4SiW12O40and 12 ml of water were charged into a three-necked flask equipped with a stirrer.Afterstirred atroom temperature for 30 min,the mixture was heated to 95°C and then re fluxed with stirring for another 12 h.The resultant solid-liquid mixture was filtered and the cake was washed with water and then dried in vacuum for 5 h.The dried cake was washed by three steps:(1)mixed with water and stirred at 80°C for 5 h in water bath, filtered and then dried in vacuum at 80°C for 3 h;(2)then mixed with DMF and stirred for 2 h, filtered and then dried in vacuum at 80°C for 3 h;(3) finally mixed with ethanol and stirred at 60 °C for 3 h, filtered and then dried in vacuum at 150 °C for 6 h.The above puri fication procedure was repeated twice.

    2.3.Catalyst characterization

    The textural properties of the catalysts were measured using an ASAP 2020 specific surface area and porosity analyzer.Prior to the test,0.2 g ofsample was degassed at150°C for4 h in vacuumto remove the impurities adsorbed on the sample surface.Then N2adsorptiondesorption test was performed at-195.8°C.The specific surface area was calculated by the Brunauer-Emmett-Teller(BET)method while the pore volume and pore diameter were calculated by the Barrett-Joyner-Halenda(BJH)method.

    The X-ray diffraction(XRD)analysis was performed on a Rigaku D/max-2500 X-ray diffractometer using Cu Kαradiation and a graphite monochromator at 40 kV and 100 mA.The scan range covered from 3 to 30°at a rate of 8(°)·min-1.

    The FT-IR spectra of H4SiW12O40@MIL-100(Fe)were recorded on a Bruker VECTOR 22 infrared spectroscopy.The instrument resolution was 4 cm-1and scanning rate was 0.2 cm·s-1in the wavenumber range of 400 to 4000 cm-1.

    The thermal stability analysis of H4SiW12O40@MIL-100(Fe)was performed on a SDT-2960 TG-DTA Thermal Analyzer.The furnace atmosphere was the dynamic air(30 ml·min-1)and the sample was heated from 25 °C to 600 °C at a ramping rate of 10 °C·min-1.

    The loading of H4SiW12O40was determined by inductively coupled plasma atomic emission spectrometry(ICP-AES)on an Optima 7300 V.

    2.4.Catalyst activity

    4,4′-MDA synthesis from the condensation reaction of aniline with formaldehyde on H4SiW12O40@MIL-100(Fe)was conducted in a 100 ml stainless steel autoclave.A typical procedure was described as follows:30 g of aniline,8.715 g of formaldehyde aqueous solution and 3.225 g of H4SiW12O40@MIL-100(Fe)were added into the autoclave and then the air inside was replaced with nitrogen.The reaction was conducted at 120°C for 6 h while stirring.And then the mixture was cooled to room temperature after the completion of reaction.The product mixture was separated by centrifugal separation and quantitatively analyzed by a liquid chromatography.The reaction equation of aniline with formaldehyde to 4,4′-MDA is shown in Fig.1.

    Fig.1.Reaction of aniline with formaldehyde to 4,4′-MDA.

    2.5.Product analysis

    4,4′-MDA was quantitatively analyzed by Waters HPLC with a Waters 1515 pump,a Kromasil C18 column(4.6 mm×150 mm),and a Waters 2489 UV-vis detector operated at 254 and 232 nm.Methanolwater with a volumetric ratio of 5/5 was used as the mobile phase whose flowrate was 0.4 ml·min-1.The yield of 4,4′-MDA was calculated on the basis of formaldehyde while the selectivity of 4,4′-MDA was calculated on the basis of aniline.

    3.Results and Discussion

    3.1.Catalytic performance of heteropolyacids

    The catalytic performance of H3PW12O40,H4SiW12O40and H3PMo12O40was evaluated in the synthesis of 4,4′-MDA from aniline and formaldehyde,and the results were listed in Table 1.No reaction occurred and two phases in the reaction solution were observed in the absence of catalyst(aniline and formaldehyde aqueous solution were not dissolved with each other).There was no significant difference in the conversion of aniline over the three heteropolyacids and the reasons could be analyzed as follows.The condensation reaction of aniline with formaldehyde proceeds in two steps:(1)a rapid reaction of aniline with formaldehyde to for man intermediate,aminal,in a presence ofan acidic catalyst;(2)cleavage of C--N bond in the molecule of aminal and rearrangement to MDA over an acidic catalyst at high temperature[19].The conversion of aniline was determined by the first step,i.e.the condensation reaction of aniline with formaldehyde which would occur easily and quickly under acidic condition,so there was little difference in the conversion of aniline over the three heteropolyacids.But H4SiW12O40exhibited the highest catalytic performance;the yield and selectivity of 4,4′-MDA attained 62.2%and 80.4%,respectively.The acid strength of the common Keggin-type heteropolyacids decreased in the following order:H3PW12O40>H4SiW12O40>H3PMo12O40[13].H3PW12O40with much stronger acid strength would cause more side-reactions and decrease the selectivity of4,4′-MDAwhile H3PMo12O40with much weaker acid strength caused lower selectivity also.In conclusion,the catalytic performance of H4SiW12O40with a moderate acid strength was the highest.However,it is difficult for recovering and reusing H4SiW12O40because it was easily dissolved in aniline during the process of reaction.So H4SiW12O40@MIL-100(Fe)was prepared by encapsulating H4SiW12O40within the pores of MIL-100(Fe)according to the process described as 1.2 and good reusability will be expected.

    Table 1 Catalytic performance of different heteropolyacids

    3.2.Characterization of H4SiW12O40@MIL-100(Fe)

    3.2.1.Crystal structure

    XRD patterns of MIL-100(Fe)and H4SiW12O40@MIL-100(Fe)with a H4SiW12O40loading of 43.2wt%were shown in Fig.2.The characteristic diffraction peaks of MIL-100(Fe)were consistent with those simulated by single crystal structure data[20],suggesting that MIL-100(Fe)was well-prepared.The characteristic diffraction peaks of H4SiW12O40@MIL-100(Fe)were similar with those of MIL-100(Fe)as a whole,but there was a slight change in the positions and relative intensities of the characteristic diffraction peaks at small angles owing to a significant change in the electronic density within the pores of MIL-100(Fe).X-rays atsmallangles were especially sensitive to the heterogeneity of the electron density of the sample because of the interaction of X-rays with the electron in the atoms of the sample.So,loading of H4SiW12O40would increase the electron density within the pores of MIL-100(Fe)and cause the change in the positions and relative intensities of peaks.Canioni[21]demonstrated a similar result in the characterization of H3PMo12O40@MIL-100(Fe).In Fig.2,no characteristic diffraction peak of H4SiW12O40could be detected,indicating that H4SiW12O40was highly dispersed in the pores of MIL-100(Fe).

    Fig.2.XRD patterns of MIL-100(Fe)and H4SiW12O40@MIL-100(Fe).(a)MIL-100(Fe)simulated by crystal structure data;(b)MIL-100(Fe);(c)H4SiW12O40@MIL-100(Fe);(d)H4SiW12O40.

    3.2.2.FT-IR analysis

    Fig.3.FT-IR spectra of MIL-100(Fe),H4SiW12O40@MIL-100(Fe)and H4SiW12O40.(a)MIL-100(Fe);(b)H4SiW12O40@MIL-100(Fe);(c)H4SiW12O40.

    Fig.3 presented the FT-IR spectra of MIL-100(Fe),H4SiW12O40@MIL-100(Fe)and H4SiW12O40.In the FT-IR spectra of MIL-100(Fe),the peaks observed at 1385 cm-1and 1625 cm-1could be assigned to νs(COO-)and νas(COO-)of trimesic acid,and the peaks in 712-762 cm-1region could be assigned to ν(C--C)of benzene.In the FT-IR spectra of H4SiW12O40,the peaks at 980 cm-1,926 cm-1,1028 cm-1and 779 cm-1could be assigned to ν(W=O),ν(Si--O)and ν(W--O--W)[22].The FT-IR spectra of H4SiW12O40@MIL-100(Fe)combined the peaks of MIL-100(Fe)and H4SiW12O40.Therefore,H4SiW12O40molecules were dispersed in the pores of MIL-100(Fe)and the encapsulated H4SiW12O40still maintained its Keggin structure.

    3.2.3.Thermal gravimetric analysis

    TG curves of MIL-100(Fe)and H4SiW12O40@MIL-100(Fe)were displayed in Fig.4.Three mass losses occurred between 0°C and 600°C for MIL-100(Fe)and H4SiW12O40@MIL-100(Fe).In the first and second stages,their mass losses were similar.The first mass loss stage started from room temperature to 90°C,accounting for about 8%owing to the removal of surface free water;the second stage started from 90 °C to 280 °C,accounting for about 5%because of the removal of the bound water in pores and MOF skeleton.In the third stage,the mass loss of MIL-100(Fe)started from 280 °C to 370 °C,accounting for about 56%owing to the decomposition of trimesitinic acid in the skeleton.The mass would not change after 380°C and finally Fe2O3was obtained.The mass loss of H4SiW12O40@MIL-100(Fe)started from 280°C to 400°C accounting for about 20%,exhibiting a lower loss than MIL-100(Fe)because H4SiW12O40was decomposed into oxides such as WO3.And the weight would not change after 400°C.So,the thermal stability of MIL-100(Fe)would not decrease after H4SiW12O40was encapsulated within the pores of MIL-100(Fe).

    Fig.4.TG curve of MIL-100(Fe)and H4SiW12O40@MIL-100(Fe).(a)MIL-100(Fe);(b)H4SiW12O40@MIL-100(Fe).

    3.2.4.Speci fic surface area and pore structure

    Table 2 showed the textural properties of MIL-100(Fe)and H4SiW12O40@MIL-100(Fe)with a H4SiW12O40loading of 43.2 wt%.As for MIL-100(Fe),the specific surface area,pore volume,and the average pore size were 1352 m2·g-1,0.125 cm3·g-1and 3.86 nm,respectively.After H4SiW12O40was encapsulated within the pores of MIL-100(Fe),the specific surface area,pore volume and average pore size decreased to 402 m2·g-1,0.096 cm3·g-1and 2.87 nm,respectively,demonstrating further that H4SiW12O40was encapsulated within the pores of MIL-100(Fe).

    Table 2 Textural properties of H4SiW12O40@MIL-100(Fe)and MIL-100(Fe)

    3.3.Catalytic performance of H4SiW12O40@MIL-100(Fe)

    3.3.1.Effect of H4SiW12O40 loading

    MIL-100(Fe)showed a certain catalytic activity for 4,4′-MDA synthesis because of its Lewis acidity of the available unsaturated metal sites[20];the yield and selectivity of 4,4′-MDA could reach 46.2%and 48.0%,respectively.The catalytic activity of H4SiW12O40@MIL-100(Fe)would be promoted with the increase of the loading of H4SiW12O40.The catalytic activity of H4SiW12O40@MIL-100(Fe)reached the highest when the loading of H4SiW12O40was 43.2%;the yield and selectivity of 4,4′-MDA could reach 66.6%and 69.8%,respectively.When the molar ratio of tungsten to iron(W/Fe)increased to 0.243,the yield and selectivity of 4,4′-MDA decreased to 65.5%and 67.1%,respectively.The specific surface area decreased from 402 m2·g-1to 308 m2·g-1while the W/Fe increased from 0.035 to 0.243,which directly led to a poor dispersion of H4SiW12O40and low active surface area,then affected the yield and selectivity of 4,4′-MDA(Table 3).

    3.3.2.Effect of molar ratio of aniline to formaldehyde

    To avoid generating polynuclear condensation products and improve the selectivity of desired product,formaldehyde was chosen as the limiting reactant[23].The effect of molar ratio of aniline to formaldehyde was studied and the result was exhibited in Fig.5.With the increase of molar ratio of aniline to formaldehyde,the conversion of aniline decreased while the yield and selectivity of 4,4′-MDA increased first and then decreased.When the molar ratio of aniline to formaldehyde was 5,the yield and selectivity of 4,4′-MDA reached the highest,81.6%and 79.2%,respectively.When the molar ratio was lower than 5,the yield and selectivity of 4,4′-MDA decreased because high concentration of formaldehyde caused deep condensation to polynuclear products.On the contrary,when the molar ratio was higher than 5,the concentration of formaldehyde was so low that the reaction rate decreased.So the suitable molar ratio of aniline to formaldehyde was 5.

    Fig.5.Effect of molar ratio of aniline to formaldehyde for synthesis 4,4′-MDA.Reaction conditions:a mass ratio of catalyst to formaldehyde=1.2,a reaction temperature of 120°C and a reaction time of 6 h.X:conversion;Y:yield;S:selectivity;AN:aniline.

    3.3.3.Effect of reaction time

    The influence of reaction time on the synthesis of 4,4′-MDA was displayed in Fig.6.With the extension of reaction time,the conversion of aniline remained stable while the yield and selectivity of4,4′-MDA increased first and then unchanged.When reaction time was 6 h,the yield and selectivity of 4,4′-MDA reached the highest,81.6%and 79.2%,respectively.When the reaction time was less than 6 h,the yield and selectivity of 4,4′-MDA decreased because insufficient of reaction time would confine the conversion of intermediate,aminal.On the contrary,when the reaction time was longer than 6 h,the yield and selectivity of 4,4′-MDA would also decrease because long reaction time resulted in deep condensation of 4,4′-MDA to polynuclear products.So the appropriate reaction time was 6 h.

    3.3.4.Effect of catalyst dosage

    The effect of catalyst dosage on the synthesis of 4,4′-MDA was studied and the result was shown in Fig.7.With the increase of catalyst dosage,the yield and selectivity of 4,4′-MDA increased first and then unchanged.When the mass ratio of catalyst to formaldehyde was less than 1.2,the yield and selectivity of 4,4′-MDA decreased because of the insufficient number of catalytic active center.When the mass ratio of catalyst to formaldehyde was more than 1.2,the yield and selectivity of 4,4′-MDA would remain unchanged.So the appropriate mass ratio of catalyst to formaldehyde was 1.2.

    Table 3 Effect of H4SiW12O40 loading on the catalytic performance of H4SiW12O40@MIL-100(Fe)

    Fig.6.Effect of reaction time for synthesis of4,4′-MDA.Reaction conditions:a mass ratio of catalyst to formaldehyde=1.2,a mole ratio of aniline to formaldehyde=5 and a reaction temperature of 120°C.X:conversion;Y:yield;S:selectivity;AN:aniline.

    Fig.7.Effect of cataly stdosage for synthesis of 4,4′-MDA.Reaction conditions:a mole ratio of aniline to formaldehyde=5,a reaction temperature of120°C and a reaction time was 6 h.X:conversion;Y:yield;S:selectivity;AN:aniline.

    3.3.5.Effect of reaction temperature

    Fig.8 showed the effect of reaction temperature on the synthesis of 4,4′-MDA.With the increase of reaction temperature,the conversion of aniline remained unchanged while the yield and selectivity of4,4′-MDA decreased first and then increased.When the temperature increased to 120 °C,the yield and selectivity of 4,4′-MDA reached the highest,81.6%and 79.2%,respectively.At a lower temperature,animal was not rapidly converted to the desired product because the reaction rate was slow.However,at a much higher temperature,the yield and selectivity of 4,4′-MDA decreased because polynuclear condensation products were easily generated.So the appropriate reaction temperature was 120°C.

    3.3.6.Reusability of catalyst

    Fig.8.Effect of reaction temperature for synthesis of 4,4′-MDA.Reaction conditions:a mass ratio of catalyst to formaldehyde=1.2,a mole ratio of aniline to formaldehyde=5 and a reaction time of 6 h.X:conversion;Y:yield;S:selectivity;AN:aniline.

    The biggest problem about the reusability of supported heteropolyacid catalyst was the dissolution of heteropolyacid.Fortunately,this problem could be efficiently solved by encapsulating heteropolyacid within the pores of MIL-100(Fe)[24].H4SiW12O40@MIL-100(Fe)was recovered after the completion of reaction,washed three times with methanol,dried in vacuum at 80°C for 8 h and then reused in the reaction for the synthesis of 4,4′-MDA.The result was shown in Table 4.Compared with the fresh H4SiW12O40@MIL-100(Fe),the catalytic activity of the recovered one decreased severely and the yield of 4,4′-MDA decreased about 26%when the catalyst was used in the second cycle.The dissolution of H4SiW12O40was not the reason for catalyst deactivation because the catalyst had been washed with water,DMF and ethanol during the preparation process.Based on the study on the causes for Cs2.5H1.5SiW12O40deactivation[25],it was speculated that the change of the catalyst acidity and pore structure caused the deactivation ofthe recovered H4SiW12O40@MIL-100(Fe).The recovered H4SiW12O40@MIL-100(Fe)adsorbed some alkaline organic compounds and these organic compounds could not be removed entirely by washing with methanol,causing the change of the catalyst acidity and pore structure.In order to further remove these alkaline organic compounds,the recovered H4SiW12O40@MIL-100(Fe)was washed twice with DMF after it was washed three times with methanol.After that,the color of DMF solution changed to dark red,illustrating that H4SiW12O40@MIL-100(Fe)washed with methanol still contained organics.H4SiW12O40@MIL-100(Fe)could be reused after it was washed three times with methanol,twice with DMF,then three times with methanol and finally dried.As a result,the catalytic performance of the recovered H4SiW12O40@MIL-100(Fe)remained essentially unchanged after H4SiW12O40@MIL-100(Fe)was reused for three runs.

    Table 4 Reusability of H4SiW12O40@MIL-100(Fe)

    In order to further explore the deactivation and activity recovery of H4SiW12O40@MIL-100(Fe),IR spectra of H4SiW12O40@MIL-100(Fe)washed with only methanol and with both methanol and DMF were compared and the results are showed in Fig.9.The infrared peaks at 980 cm-1,926 cm-1,1028 cm-1and 779 cm-1could be assigned to ν(W=O),ν(Si--O)and ν(W--O--W),illustrating that the recovered catalyst still contained H4SiW12O40.By comparing the infrared spectra of the fresh catalyst with the recovered one washed with methanol,the peaks of the recovered catalyst at 1190 cm-1and 1510 cm-1could be assigned to ν(C--N)and benzene,suggesting that the recovered H4SiW12O40@MIL-100(Fe)washed with methanol still absorbed alkaline organics such as aromatic amines.To further confirm the existence of the aromatic amines,the fresh and the recovered DMF which had been used for washing H4SiW12O40@MIL-100(Fe)were analyzed by HPLC and the result showed that there were aniline and 4,4′-MDA in the recovered DMF.Therefore,it was confirmed that the recovered H4SiW12O40@MIL-100(Fe)washed with methanol still absorbed aromatic amines,causing a decrease of catalytic activity.After H4SiW12O40@MIL-100(Fe)was washed with methanol and DMF,the FT-IR peaks vanished at 1190 cm-1and 1510 cm-1,illustrating that DMF could clean up alkaline organics such as aniline and 4,4′-MDA.Furthermore,the H4SiW12O40@MIL-100(Fe)was reused for three runs and its catalytic activity remained unchanged,suggesting that the catalytic activity was completely recovered.

    Fig.9.FT-IR spectra of H4SiW12O40@MIL-100(Fe).(a)The recovered H4SiW12O40@MIL-100(Fe)washed with methanol.(b)The recovered H4SiW12O40@MIL-100(Fe)washed with methanol and DMF.(c)The fresh H4SiW12O40@MIL-100(Fe).

    4.Conclusions

    (1)The catalytic performance of the three common heteropolyacids(H3PW12O40,H4SiW12O40and H3PMo12O40)for 4,4′-MDA synthesis from aniline and formaldehyde was investigated.The result showed that H4SiW12O40with moderate acid strength exhibited the best catalytic performance.

    (2)H4SiW12O40@MIL-100(Fe)was prepared and characterized by means of FT-IR,N2adsorption-desorption and XRD.The H4SiW12O40@MIL-100(Fe)showed excellent catalytic performance for 4,4′-MDA synthesis;the conversion of aniline was 41.1%,the yield and selectivity of 4,4′-MDA were 81.6%and 79.2%respectively under the conditions ofa molarratio ofaniline to formaldehyde=5,a mass ratio of catalyst to formaldehyde=1.2,a reaction temperature of 120°C and a reaction time of 6 h.

    (3)The change of the catalyst acidity and pore structure caused the catalytic activity decrease of the recovered H4SiW12O40@MIL-100(Fe)because the H4SiW12O40@MIL-100(Fe)adsorbed alkaline organic compounds.The adsorbed alkaline organics could be removed by washing with methanol followed by washing with DMF.The catalytic activity of the H4SiW12O40@MIL-100(Fe)was restored and no appreciable loss in the catalytic activity was observed after the H4SiW12O40@MIL-100(Fe)was reused for three runs.

    [1]Y.F.Liu,C.Y.Liao,Z.Z.Hao,The polymerization behavior and thermal properties of benzoxazine based on o-allylphenol and 4,4′-diaminodiphenyl methane,React.Funct.Polym.75(2014)9-15.

    [2]The Upjohn Company,Process for preparing methylene-di-anilines,U.S.Pat.,3857890(1974).

    [3]R.S.Varma,Solvent-free organic syntheses using supported reagents and microwave irradiation,Green Chem.1(1999)43.

    [4]Texaco Inc.,Tungsten catalyzed aniline-formaldehyde condensation,U.S.Pat.,4284815(1981).

    [5]The Dow Chemical Company,Process for preparing polyamines with ion exchange resin catalysts,U.S.Pat.,4554378(1985).

    [6]T.Kugita,S.Hirose,S.Namba,Catalytic activity of zeolites for synthesis reaction of methylenedianiline from aniline and formaldehyde,Catal.Today 111(2006)275-279.

    [7]Chen LJ and Jimenez J,Process for making polyaminopolyphenyl methanes using a mixed solid acid catalyst system,U.S.Pat.,20110021741A1(2011).

    [8]M.Salzinger,B.Fichtl,J.A.Lercher,On the influence of pore geometry and acidity on the activity of parent and modified zeolites in the synthesis of methylenedianiline,Appl.Catal.A Gen.393(1)(2011)189-194.

    [9]Nafziger JL,Rader LA and Seward Jr I J,Process for preparing polyamines with ion exchange resin catalysts,U.S.Pat.,4554378(1985).

    [10]D.Bahulayan,R.Sukumar,K.R.Sabu,M.Lalithambika,An easy synthesis of 4,4′-diaminodiphenyl methanes on natural kaolinites,Green Chem.1(1999)191-193.

    [11]J.P.Tian,H.L.An,X.M.Cheng,X.Q.Zhao,Y.J.Wang,Synthesis of 4,4′-methylenedianiline catalyzed by SO3H-functionalized ionic liquids,Ind.Eng.Chem.Res.54(53)(2015)7571-7579.

    [12]L.Y.Wen,E.Z.Min,The research progress of solid heteropoly acid catalyst,Petrochem.Technol.1(29)(2000)49-54.

    [13]R.Tesser,M.D.Serio,M.Ambrosio,M.Santacesaria,Heterogeneous catalysts for the production of anthraquinone from 2-benzoylbenzoic acid,Chem.Eng.J.90(2002)195-201.

    [14]M.M.Heravi,K.Bakhtiari,F.F.Bamoharram,12-Molybdophosphoric acid:A recyclable catalyst for the sythesis of biginelli-type 3,4-dihydropyrimidine-2(1H)-ones,Catal.Commun.7(6)(2006)373-376.

    [15]X.Zeng,Q.L.Deng,X.Yuan,J.Wu,H.A.Luo,Catalytic activity of heteropoly acids(salts)for ammoximation of cyclohexanone,Acta Pet.Sin.(Pet.Process.Sect.)26(5)(2010)779-784.

    [16]T.K.Huang,L.Shi,R.Wang,X.Z.Guo,X.X.Lu,Keggin type heteropolyacids catalyzed synthesis of quinoxaline derivatives in water,Chin.Chem.Lett.20(2)(2009)161-164.

    [17]X.L.Yang,H.B.Li,Y.X.Miao,Preparation,characterization and catalytic performance of novel HPWs@MIL-101 catalyst,Chem.Res.Appl.27(2015)642-648.

    [18]F.M.Zhang,Y.Jin,J.Shi,Y.J.Zhong,W.D.Zhu,M.Samy EI-Shall,Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe):Efficient heterogeneous catalysts for esteri fication and acetalization reactions,Chem.Eng.J.269(2015)236-244.

    [19]A.Corma,P.Botella,C.Mitchell,Replacing HCl by solid acids in industrial processes:Synthesis of diamino diphenyl methane(DADPM)for producing polyurethanes,Chem.Commun.17(2004)2008-2010.

    [20]F.M.Zhang,Y.Jin,J.Shi,Y.H.Fu,Y.J.Zhong,W.D.Zhu,Facile synthesis of MIL-100(Fe)under HF-free conditions and its application in the acetalization of aldehydes with diols,Chem.Eng.J.259(2015)183-190.

    [21]C.Romain,R.M.Catherine,S.Francis,H.Patricia,S.Christian,H.D.Menaschi,et al.,Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe),J.Mater.Chem.21(2010)1226-1233.

    [22]Yu-ki Miura,Hiroyuki Imai,Toshiyuki Yokoi,T.Tatsumi,Y.Kamiya,Microporous cesium salts of tetravalent Keggin-type polyoxotungstates Cs4[SiW12O40],Cs4[PW11O39(Sn-n-C4H9)],and Cs4[PW11O39(Sn-OH)]and their adsorption properties,Microporous Mesoporous Mater.174(2013)34-43.

    [23]C.Y.Wang,H.Q.Li,Y.Cao,H.T.Liu,X.J.Hou,Y.Zhang,Thermodynamic analysis on synthesis of 4,4-methylenedianiline by reaction of aniline and formaldehyde,CIESC J.63(8)(2012)2348-2355.

    [24]J.Q.Yan,Y.Tan,Y.F.Li,Z.M.Wu,M.Chen,L.S.Pan,Y.J.Liu,Synthesis of bisphenol F catalyzed by phosphotungstic acid encapsulated in metal-organic frameworks MIL-100(Cr)and MIL-101(Cr),CIESC J.66(2015)576-582.

    [25]X.M.Cheng,H.L.An,X.Q.Zhao,Y.J.Wang,In fluences of treatment with ethanol on structure and performances of Cs2.5H1.5SiW12O40catalyst for synthesis of 4,4′-diaminodiphenylmethanes,Petrochem.Technol.45(3)(2016)285-290.

    国产乱人伦免费视频| 亚洲熟妇中文字幕五十中出 | 国产精品 国内视频| 午夜老司机福利片| 午夜免费鲁丝| 老司机在亚洲福利影院| 亚洲片人在线观看| 久久99一区二区三区| 国产国语露脸激情在线看| 久久久久视频综合| 国产成人精品久久二区二区免费| 老熟妇仑乱视频hdxx| 久久久精品免费免费高清| 亚洲九九香蕉| 精品熟女少妇八av免费久了| 国产精品免费大片| 欧美日韩av久久| 新久久久久国产一级毛片| 亚洲熟妇中文字幕五十中出 | 法律面前人人平等表现在哪些方面| 精品卡一卡二卡四卡免费| 婷婷成人精品国产| 99国产精品免费福利视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美激情久久久久久爽电影 | 日韩免费av在线播放| 亚洲第一青青草原| 欧美日韩成人在线一区二区| 最新美女视频免费是黄的| 国产乱人伦免费视频| 国产又爽黄色视频| 最近最新中文字幕大全免费视频| 婷婷丁香在线五月| 欧美日韩av久久| 精品人妻1区二区| 国产男靠女视频免费网站| 人人妻,人人澡人人爽秒播| 老熟女久久久| 午夜福利欧美成人| 免费在线观看完整版高清| 国产蜜桃级精品一区二区三区 | 伦理电影免费视频| 国产精品一区二区在线不卡| 国精品久久久久久国模美| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区久久| 老司机深夜福利视频在线观看| 国产乱人伦免费视频| 国产99白浆流出| 久久婷婷成人综合色麻豆| 伊人久久大香线蕉亚洲五| 精品国产美女av久久久久小说| 亚洲av熟女| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 19禁男女啪啪无遮挡网站| 后天国语完整版免费观看| 国产高清国产精品国产三级| 精品国产亚洲在线| 日韩三级视频一区二区三区| 免费在线观看黄色视频的| 脱女人内裤的视频| 精品电影一区二区在线| 成在线人永久免费视频| 国产成人欧美在线观看 | 国产精品久久视频播放| 91老司机精品| 999久久久精品免费观看国产| 18禁国产床啪视频网站| 免费观看a级毛片全部| 人人澡人人妻人| 国产亚洲一区二区精品| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 国产av一区二区精品久久| 国产有黄有色有爽视频| 午夜久久久在线观看| 下体分泌物呈黄色| 午夜福利一区二区在线看| 母亲3免费完整高清在线观看| 久久久国产一区二区| 亚洲一区中文字幕在线| 另类亚洲欧美激情| 99riav亚洲国产免费| 成人18禁高潮啪啪吃奶动态图| 亚洲专区国产一区二区| 人妻 亚洲 视频| av网站免费在线观看视频| 国产精品免费大片| 老汉色∧v一级毛片| 十八禁网站免费在线| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频| 美女视频免费永久观看网站| 美女高潮到喷水免费观看| 操出白浆在线播放| 不卡av一区二区三区| 国产真人三级小视频在线观看| а√天堂www在线а√下载 | 一个人免费在线观看的高清视频| 成人国语在线视频| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av香蕉五月 | 纯流量卡能插随身wifi吗| 19禁男女啪啪无遮挡网站| 99久久国产精品久久久| 免费日韩欧美在线观看| 国产不卡av网站在线观看| 一区二区三区精品91| 人妻丰满熟妇av一区二区三区 | 久久久久久久久久久久大奶| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲综合一区二区三区_| 极品人妻少妇av视频| 在线观看舔阴道视频| 精品亚洲成a人片在线观看| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 精品福利观看| 久久天堂一区二区三区四区| 在线观看日韩欧美| 中文字幕精品免费在线观看视频| 亚洲精品一二三| 国产色视频综合| 国产99久久九九免费精品| 91字幕亚洲| 极品教师在线免费播放| 一级片'在线观看视频| 在线观看66精品国产| 亚洲av美国av| 午夜精品久久久久久毛片777| 男男h啪啪无遮挡| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 91精品国产国语对白视频| 乱人伦中国视频| 黄频高清免费视频| 人人澡人人妻人| 韩国精品一区二区三区| 男女下面插进去视频免费观看| 国产精品永久免费网站| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产在视频线精品| 亚洲成人国产一区在线观看| 国产区一区二久久| 9热在线视频观看99| 国产一卡二卡三卡精品| aaaaa片日本免费| 两性午夜刺激爽爽歪歪视频在线观看 | 丝瓜视频免费看黄片| 香蕉丝袜av| 国产精品欧美亚洲77777| 动漫黄色视频在线观看| 狠狠婷婷综合久久久久久88av| 亚洲avbb在线观看| 成人av一区二区三区在线看| 啪啪无遮挡十八禁网站| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| 一级,二级,三级黄色视频| 人妻久久中文字幕网| 午夜91福利影院| 亚洲一区中文字幕在线| 妹子高潮喷水视频| videos熟女内射| 久久久水蜜桃国产精品网| 夜夜爽天天搞| 欧美黄色淫秽网站| 黑人欧美特级aaaaaa片| 热99国产精品久久久久久7| 亚洲国产欧美日韩在线播放| 午夜福利乱码中文字幕| 日本黄色日本黄色录像| 久久精品成人免费网站| 一级片'在线观看视频| 精品久久久精品久久久| 999久久久国产精品视频| 久久天堂一区二区三区四区| av超薄肉色丝袜交足视频| av网站在线播放免费| 精品国产国语对白av| 成年动漫av网址| 高清毛片免费观看视频网站 | 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 亚洲欧美激情综合另类| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 久久久久精品国产欧美久久久| 老司机靠b影院| 99精国产麻豆久久婷婷| 大码成人一级视频| 色婷婷久久久亚洲欧美| 美女视频免费永久观看网站| 久久国产精品人妻蜜桃| 亚洲专区国产一区二区| 伊人久久大香线蕉亚洲五| 日本黄色日本黄色录像| 精品无人区乱码1区二区| 精品久久久精品久久久| 在线视频色国产色| 俄罗斯特黄特色一大片| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 国产国语露脸激情在线看| 热re99久久国产66热| 亚洲专区中文字幕在线| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 啦啦啦在线免费观看视频4| 成人av一区二区三区在线看| 亚洲精品粉嫩美女一区| 如日韩欧美国产精品一区二区三区| 91老司机精品| 亚洲全国av大片| 亚洲九九香蕉| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 狂野欧美激情性xxxx| 两性午夜刺激爽爽歪歪视频在线观看 | 久久热在线av| 黑人欧美特级aaaaaa片| 欧美激情久久久久久爽电影 | 亚洲精品国产一区二区精华液| 不卡av一区二区三区| 91成人精品电影| 99国产综合亚洲精品| 99久久国产精品久久久| 久久国产亚洲av麻豆专区| 亚洲av成人不卡在线观看播放网| 久久久国产精品麻豆| 三级毛片av免费| 91精品国产国语对白视频| 一级黄色大片毛片| 丝袜美足系列| 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 亚洲aⅴ乱码一区二区在线播放 | av网站免费在线观看视频| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 可以免费在线观看a视频的电影网站| 欧美性长视频在线观看| 国产精品久久久av美女十八| 满18在线观看网站| 国产男女内射视频| 在线观看www视频免费| 精品久久久久久,| 国产亚洲一区二区精品| 久久亚洲精品不卡| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 天堂俺去俺来也www色官网| 午夜福利一区二区在线看| 国产成人精品久久二区二区91| 热99re8久久精品国产| 久久国产亚洲av麻豆专区| av线在线观看网站| 亚洲人成77777在线视频| 精品无人区乱码1区二区| 色老头精品视频在线观看| 亚洲片人在线观看| 这个男人来自地球电影免费观看| 欧美大码av| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 亚洲人成伊人成综合网2020| 香蕉久久夜色| av在线播放免费不卡| 男人的好看免费观看在线视频 | 中文字幕色久视频| 三上悠亚av全集在线观看| 久久久久国内视频| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 亚洲人成77777在线视频| 一区福利在线观看| 精品免费久久久久久久清纯 | 欧美日韩国产mv在线观看视频| 精品亚洲成国产av| 老司机影院毛片| 麻豆国产av国片精品| 成人影院久久| 国产视频一区二区在线看| 亚洲,欧美精品.| 青草久久国产| 国产成人av激情在线播放| 中文字幕制服av| 99国产综合亚洲精品| 亚洲综合色网址| 国产精品99久久99久久久不卡| 久久精品国产清高在天天线| 制服诱惑二区| 国产激情欧美一区二区| 十八禁高潮呻吟视频| 亚洲九九香蕉| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品古装| 亚洲性夜色夜夜综合| 免费av中文字幕在线| 国产精品亚洲一级av第二区| 一区二区日韩欧美中文字幕| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 超色免费av| 国产人伦9x9x在线观看| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 精品欧美一区二区三区在线| 午夜激情av网站| 久热这里只有精品99| 69精品国产乱码久久久| 丝袜美足系列| 亚洲国产精品sss在线观看 | 欧美午夜高清在线| 最新的欧美精品一区二区| av国产精品久久久久影院| 欧美精品高潮呻吟av久久| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 国产精品国产高清国产av | 水蜜桃什么品种好| 亚洲五月天丁香| 老司机亚洲免费影院| 大陆偷拍与自拍| 丁香六月欧美| 久久久水蜜桃国产精品网| 国产精品一区二区免费欧美| 十八禁网站免费在线| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 中出人妻视频一区二区| 亚洲欧美色中文字幕在线| 老司机午夜十八禁免费视频| 乱人伦中国视频| 人人妻人人澡人人看| 老汉色∧v一级毛片| 青草久久国产| 精品一区二区三区视频在线观看免费 | 亚洲久久久国产精品| 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 99久久综合精品五月天人人| 99re在线观看精品视频| 国产精品久久电影中文字幕 | 99热网站在线观看| 国产日韩欧美亚洲二区| 久久草成人影院| 亚洲国产精品sss在线观看 | 国产精品一区二区在线不卡| 18禁国产床啪视频网站| 欧美中文综合在线视频| 午夜视频精品福利| 他把我摸到了高潮在线观看| tube8黄色片| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影| 午夜免费鲁丝| 新久久久久国产一级毛片| 中亚洲国语对白在线视频| 久久青草综合色| 国产又爽黄色视频| 国产精华一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品久久久人人做人人爽| 三级毛片av免费| 老熟妇乱子伦视频在线观看| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 女同久久另类99精品国产91| 亚洲性夜色夜夜综合| 在线观看免费高清a一片| 五月开心婷婷网| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 国产亚洲精品一区二区www | av电影中文网址| 99国产综合亚洲精品| 亚洲一区二区三区不卡视频| 少妇裸体淫交视频免费看高清 | 精品一区二区三区视频在线观看免费 | 一夜夜www| 免费日韩欧美在线观看| 亚洲五月天丁香| 女同久久另类99精品国产91| 免费观看a级毛片全部| 午夜视频精品福利| 日韩一卡2卡3卡4卡2021年| 国产精品影院久久| 国产单亲对白刺激| 精品视频人人做人人爽| 亚洲精品国产色婷婷电影| 国产精品久久久人人做人人爽| 成人影院久久| 国产欧美日韩精品亚洲av| 亚洲 欧美一区二区三区| 99在线人妻在线中文字幕 | 亚洲av第一区精品v没综合| 色婷婷久久久亚洲欧美| 久久精品成人免费网站| 欧美 日韩 精品 国产| 欧美日韩福利视频一区二区| 精品人妻1区二区| 成人国语在线视频| 国产主播在线观看一区二区| 两个人看的免费小视频| 亚洲欧美激情在线| cao死你这个sao货| 亚洲中文字幕日韩| 久久久国产成人免费| 中文字幕制服av| 国产麻豆69| 国产日韩欧美亚洲二区| 高清av免费在线| 午夜免费成人在线视频| 母亲3免费完整高清在线观看| 男女免费视频国产| 黑人猛操日本美女一级片| 十八禁高潮呻吟视频| 欧美日韩一级在线毛片| 欧美日韩瑟瑟在线播放| 日韩熟女老妇一区二区性免费视频| 国产精品 欧美亚洲| 精品久久久久久,| 后天国语完整版免费观看| 在线观看66精品国产| 叶爱在线成人免费视频播放| 91精品国产国语对白视频| 人妻 亚洲 视频| 自拍欧美九色日韩亚洲蝌蚪91| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 久久久久久免费高清国产稀缺| 手机成人av网站| 少妇被粗大的猛进出69影院| 无人区码免费观看不卡| 久久久久久免费高清国产稀缺| a级毛片在线看网站| 高清欧美精品videossex| 91成年电影在线观看| 窝窝影院91人妻| 午夜福利,免费看| 欧美精品av麻豆av| 国产高清激情床上av| 国产亚洲欧美98| 成人av一区二区三区在线看| 中国美女看黄片| 色婷婷久久久亚洲欧美| 久久国产精品大桥未久av| 亚洲人成伊人成综合网2020| 黑人猛操日本美女一级片| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 美女国产高潮福利片在线看| 99精国产麻豆久久婷婷| 黑人操中国人逼视频| 久久久国产精品麻豆| 中文字幕av电影在线播放| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 99热只有精品国产| 久久久久精品国产欧美久久久| 午夜福利乱码中文字幕| 久久久国产一区二区| 在线观看一区二区三区激情| 很黄的视频免费| 妹子高潮喷水视频| 中文欧美无线码| 久久久精品区二区三区| 又大又爽又粗| 国产亚洲av高清不卡| 又大又爽又粗| 麻豆成人av在线观看| av网站免费在线观看视频| 久久精品亚洲熟妇少妇任你| 久久性视频一级片| av中文乱码字幕在线| 欧美国产精品一级二级三级| 大香蕉久久网| 美女国产高潮福利片在线看| 午夜精品久久久久久毛片777| 色在线成人网| 9色porny在线观看| 香蕉丝袜av| 国产亚洲精品久久久久久毛片 | 激情视频va一区二区三区| 午夜老司机福利片| 久久精品国产亚洲av香蕉五月 | 欧美日韩亚洲综合一区二区三区_| 午夜91福利影院| 亚洲精品久久成人aⅴ小说| 免费女性裸体啪啪无遮挡网站| 真人做人爱边吃奶动态| 国产免费现黄频在线看| 色综合婷婷激情| 久久久国产精品麻豆| 日韩免费高清中文字幕av| 黄色视频不卡| 精品国内亚洲2022精品成人 | 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲高清精品| 免费观看人在逋| 高清av免费在线| 美女视频免费永久观看网站| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 色精品久久人妻99蜜桃| 国产成人欧美在线观看 | 亚洲伊人色综图| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 视频在线观看一区二区三区| 中文亚洲av片在线观看爽 | 成人永久免费在线观看视频| 男女之事视频高清在线观看| 日日夜夜操网爽| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 亚洲性夜色夜夜综合| 国产免费男女视频| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 中文字幕另类日韩欧美亚洲嫩草| 国产成+人综合+亚洲专区| av有码第一页| 黑人操中国人逼视频| 捣出白浆h1v1| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 久久人人爽av亚洲精品天堂| 一a级毛片在线观看| 久久久国产成人精品二区 | 大型黄色视频在线免费观看| a在线观看视频网站| 亚洲中文字幕日韩| 中文字幕人妻丝袜制服| 欧美国产精品va在线观看不卡| 久久99一区二区三区| 香蕉久久夜色| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 午夜福利免费观看在线| av天堂久久9| 深夜精品福利| 久久久久国产一级毛片高清牌| 亚洲国产看品久久| 十分钟在线观看高清视频www| 欧美精品高潮呻吟av久久| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 人人妻人人澡人人看| 另类亚洲欧美激情| 久久精品亚洲精品国产色婷小说| 日本a在线网址| 女人被躁到高潮嗷嗷叫费观| 夫妻午夜视频| 亚洲,欧美精品.| 国产1区2区3区精品| 久久精品成人免费网站| 色在线成人网| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 久久中文看片网| 窝窝影院91人妻| 国产亚洲欧美在线一区二区| 久久国产精品大桥未久av| 黑人猛操日本美女一级片| 在线视频色国产色| 大片电影免费在线观看免费| 国产av一区二区精品久久| 狂野欧美激情性xxxx| 成年动漫av网址| 美女 人体艺术 gogo| 亚洲第一av免费看| 国产精品永久免费网站| 久热这里只有精品99| 制服人妻中文乱码| 黄色女人牲交| xxxhd国产人妻xxx| a级片在线免费高清观看视频| 国产激情久久老熟女| 丰满的人妻完整版| 亚洲欧洲精品一区二区精品久久久| 日本精品一区二区三区蜜桃| 日日爽夜夜爽网站| 亚洲片人在线观看| 国产成人av激情在线播放| 亚洲av日韩精品久久久久久密| 99国产精品99久久久久| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 大型av网站在线播放| 国产在视频线精品| 天堂中文最新版在线下载| 精品高清国产在线一区| 久久精品国产清高在天天线|