• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulating the mean residence time difference ofwide-size particles in a fluidized bed☆

    2018-05-25 19:07:40HuZhaoJunLiQingshanZhuHongzhongLi

    Hu Zhao ,Jun Li*,Qingshan Zhu ,*,Hongzhong Li

    1 State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    Fluidized bed reactors are widely used to treat gas-solid heterogeneous reactions,such as coal combustion[1],roasting of ilmenite[2]and direct reduction of iron ores[3-5].In these processes,the feed materials usually have a wide size distribution(WSD).For example,most of raw mineral powders after the conventional grinding treatment have a wide range of particle size,from 10 μm to 500 μm[2,5].Due to the fact that the reaction performance and the complete reaction times of the solid particles are closely related to their diameters,different residence times are needed for the solid particles with different size distributions.Therefore,the mean residence time(MRT)of particles is one of the key parameters affecting the conversion efficiency.

    In theory,the complete reaction time(tc)of a particle varies with its particle diameter(dp).For example,tcis proportional to the value of dpunder a first-order chemical reaction controlling mechanism,and is proportional to the value of dp2under a film diffusion controlling mechanism[6].If the MRT ratio could be modulated to a proper range to fulfill the film diffusion controlling reaction mechanism and also the MRT of fine particles reaches tc,the synchronous conversion of the whole particles with WSD would be achieved.Therefore,it is crucial to study the MRT difference of the particles with different size distributions to match the theoretical conversion time and further improve the overall conversion efficiency.

    The residence times of the particles with different sizes have been investigated for the past several decades.Most of the previous studies focused on the residence time distribution of the particles with narrow size distribution(NSD)[7-16],while little attentions were paid to investigating the residence time difference for the particles with WSD.Yagi and Kunii[17]found that the MRT of the particles with different sizes showed nearly no difference for the fine particles and the coarse particles at the low gas velocity(0.15-0.35 m·s-1).Heukelman and Groot[18]found that the MRT ratio between the coarse particles(1000 μm)and the fine particles(500 μm)in a roaster is about 1.4.It is reported[19]that the MRT ratio between the coarse component(>800 μm)and the fine component(<420 μm)was lower than 2 at the gas velocity(Ug)less than 0.8 m·s-1.Hao et al.[20]further investigated the MRT of ilmenite particles with WSD in a fluidized bed with baf fles.The MRT ratio between the coarse particles(approximately 700 μm)and the fine particles(180 μm)was 5.Zhang et al.[21]found that the MRT ratio of the coarse particles and the fine particles can reach 5.5 with a size ratio(α)of 4 in a fluidized bed with four-layer baffles.The MRT ratios up to the present can reach the value of α for the requirement of chemical reaction controlling mechanism.However,they are less than the value of α2for the requirement of film diffusion controlling mechanism.Therefore,the MRT ratios between the coarse particles and the fine particles are not enough to match with the mechanism of the film diffusion controlling non-catalytic gas-solid reactions in practice,such as roasting of ilmenite and direct reduction of iron ore processes.

    The MRT of solids in a fluidized bed could be modulated through the design of reactor,change of solid flow rate and gas velocity[22].Among those methods,the control of gas velocity shows outstanding advantage,such as easy to operate and low cost.Therefore,in this study,a simple method for modulating the MRT difference of the fine particles and the coarse particles was proposed only by controlling the fluidized gas velocity in a fluidized bed with a side exit.The MRT characteristics of four binary mixtures of solid particles and two uniformly sized solid particles with same density but different size distributions were investigated under the gas velocity with a wide range.This work aims to develop a method to modulate the MRT ratio of different particles with WSD for the typical non-catalytic gas-solid reactions,such as ilmenite roasting and direct reduction of iron ores.

    2.Experimental

    2.1.Materials

    In this study,three types of spherical glass bead powders(particles Fine,Medium and Coarse)with the same density but different size distributions are employed.Table 1 shows the physical properties of particles Fine,Medium and Coarse.Fig.1 illustrates the size distribution of particles Fine,Medium and Coarse.The morphologies of particles Fine,Medium and Coarse are shown in Fig.2.It can be seen that the shape of the glass beads is nearly sphere.

    Table 1Physical properties of particles

    Fig.1.Size distributions of particles Fine,Medium and Coarse.particle Fine;particle Medium;particle Coarse.

    As listed in Table 2,four types of mixtures(mixtures I,II,III,IV)and two particles with NSD are employed by mixing two of the three types of powders with different ratios.The fluidizing gas is dry compressed air.The air flux was measured by a calibrated rotameter.

    2.2.Experimental setup and methods

    Fig.2.SEM images of the typical glass beads:(a)particle Fine,(b)particle Medium,(c)particle Coarse.

    Table 2Details of the size ratio

    As shown in Fig.3,the experimental apparatus is a fluidized column with a side exit.The column is made of Perspex with an inner diameter of 70 mm and a height of 5580 mm from the distributor to the gas exit.Seven air caps,which can prevent the particles from flowing into the distributor plate,are set in the gas distributor at the bottom of the riser.A screw feeder is used to feed the binary mixtures,which controls the solid flow rate from the hopper to the column.The feed inlet position is located 20 mm above the distributor plate in the fluidized column.The side exit is situated at a height of 1500 mm above the gas distributor.The ratio of height to diameter is 21.Because the products need to be cut off from the air in practice,three loop seals are set to prevent the gas flowing out through the side exit.All the gas flow out through the top exit and the cyclones.

    Fig.3.Schematic diagram of the fluidized bed:(1)compressor,(2)moisture separator,(3)pressure regulator,(4)rota meter,(5)plenum chamber,(6)wind cap,(7) fluidized bed column,(8)side exit,(9)feed hopper,(10)screw feed,(11) first cyclone separator,(12)second cyclone separator,(13)collection tank of top product,(14)collection tank of bottom product.

    Glass bead particles coming from the side exit,where the solid flux is defined as F2,fall into the bottom collection tank.Two cyclone separators are used to separate the gas and the particles.Entrained particles leaving the disengagement section,whose solid flux is defined as F1,are captured by the cyclone and drop into the top collection tank.The electrostatic charges generated among the particles are eliminated by connecting the column to the earth using a copper wire.

    The powder mixtures are introduced from the hopper into the bed through a screw feeder with the solid mass flow rate(Gs)of 25 kg·h-1.The super ficial gas velocity ranges from 0.5 m·s-1to 1.8 m·s-1.The system remains in the steady state(F1+F2=F0)followed by a sudden stop of the gas and solids.The particles in the fluidized bed are collected and then sieved to segregate the fine particles from the coarse particles.The samples collected from the side exit(F1)and the top exit(F2)are also sieved and the weights of fine particles and coarse particles are measured by the electronic scales.All the experiments are carried out three times.

    The MRT of particle i(i represents Fine,Medium or Coarse)can be calculated as follows[22]:

    where,Wirepresents the holdup of particle i(particles Fine,Medium and Coarse),F1irepresents the entrainment flux of particle i(particles Fine,Medium and Coarse),and F2irepresents the over flow flux of particle i(particles Fine,Medium and Coarse).

    The MRT difference between the fine particles and the coarse particles can be characterized by the MRT ratio(M),which is defined as follows:

    where,tCrepresents the MRT of coarse particles(particles Medium and Coarse),represents the MRT of fine particles.

    The elutriation rate(KF)and the entrainment rate(KC)[6]are defined as follows:

    where,KFrepresents the elutriation rate of the particle Fine.KCrepresents the entrainment rate of the particle Medium or Coarse.X1Frepresents the concentration of the particle Fine in entrainment.XbFrepresents the concentration of the particle Fine in bed.X1Mrepresents the concentration of the particle Medium in entrainment.XbMrepresents the concentration of the particle Medium in bed.Atrepresents the cross-sectional area of bed surface.

    3.Results and Discussion

    3.1.Effect of gas velocity on the MRT ratio

    Fig.4(a)shows the MRT ratio between the particle Medium and the particle Fine in mixture II at different gas velocities.It can be observed that the MRT ratio firstly increases to about 9 and then decreases to 1.8 with increasing the gas velocity.The transition velocity appears at the gas velocity of approximately 1.0 m·s-1.This can be attributed to the difference of terminal velocities between the particle Fine and the particle Medium.

    Fig.4.Effect of the gas velocity on the MRT ratio and MRT of mixture II:(a)MRT ratio,(b)MRT of particle Fine and particle Medium.MRT ratio;particle Fine;particle Medium.

    When the gas velocity is lower than 1.0 m·s-1,the particles are ejected or entrained by bubble breakup in the dilution region[23].According to Fig.4(b),the MRT of the particle Fine decreases significantly with increasing the gas velocity,while the MRT of the particle Medium decreases much slower than that of the particle Fine,resulting in an increase of the MRT ratio.This can be attributed to the velocity difference of the Fine and Medium particles in the dilute region.Due to the wake momentum of the bubble bursting,the velocity of the particle Fine is higher than that of the particle Medium[23,24].Thus,more fines of the ejected particles are discharged from the side exit[21].Therefore,the entrainment probabilities of the particle Fine are higher than that of the particle Medium[21,23,25],leading to more particle Medium staying in the fluidized bed.

    When the super ficial gas velocity exceeds 1.0 m·s-1,with a further super ficial gas velocity increase,the MRT of the particle Fine changes little and maintains at 6-20 s,which agrees well with the results in literatures[26,27].However,the MRT of the particle Medium decreases significantly with a further increase of super ficial gas velocity,which leads to a decrease of MRT ratio with an increasing gas velocity at high gas velocity.It should be noted that the turning point of the gas velocity is according to the terminal velocity of the particle Medium.It was reported[28,29]that the holdup of particles has a sharp decrease when the super ficial gas velocities exceed the terminal velocity of the particles(Ut).The holdup of the particles is proportional to the MRT of particles for mixture II due to the same solid flux of the particle Medium and the particle Fine.Therefore,the MRT ratio decreases with increasing gas velocity at high gas velocity.

    The effect of the gas velocity on the MRT of the particles with different size distributions has been investigated[16,19-21].However,the operating gas velocity generally ranges in low velocity(bubbling fluidization)and the MRT ratio ranges from 1.3 to 2 for the size ratio of 1.9-4 in a fluidized bed,which is not sufficiently large to meet the requirements for the synchronous conversion of the particles with WSD under a film diffusion controlling mechanism.In this work,we demonstrated that the MRT ratio could be extended up to~9 for a size ratio of 2.2 through fluidized bed reactors,which could better meet the requirements for the synchronous conversion of the particles with WSD.

    3.2.Effect of feed composition on the MRT ratio

    Fig.5.Effect of the particle Medium feed concentration on the MRT ratios.X0=0.25;X0=0.50;X0=0.75.

    Three different mixtures with the mass fraction of the particles Medium of 0.25(mixture I),0.50(mixture II)and 0.75(mixture III)were used to reveal the effect of feed composition on the MRT ratio.As shown in Fig.5,the MRT ratio increases with increasing the mass fraction of the particles Medium(X0)ata certain super ficialgas velocity.Near the transition velocity,the MRT ratio increases from 7.2 to 10.5 with increasing the mass fraction of the particles Medium.This phenomenon can also be attributed to the variation of the MRT for the particles Fine and Medium.

    Fig.6 illustrates the effect of feed composition on the MRT of the particles Medium and Fine.It can be seen that the MRT of the particle Medium increases with increasing X0at the same gas velocity,while the MRT of the particle Fine changes little.Because the gas velocity exceeds the terminal velocity of the particle Fine,the elutriation of the particle Fine changes little with increasing X0[26,31,32]at the gas velocity of 1.0-1.25 m·s-1.This trend can also be seen from Fig.7(a).Therefore,the MRT of the particle Fine is rarely affected by X0.

    Fig.6.Effect of the mass fraction of the coarse particles in feed on the MRT of particles:(a)particle Medium,(b)particle Fine.X0=0.25,particle Medium;X0=0.50,particle Medium;X0=0.75,particle Medium;X0=1.00,particle Medium;X0=0.25,particle Fine;X0=0.50,particle Fine;X0=0.75,particle Fine;X0=0.00,particle Fine.

    Fig.6(a)also illustrates that the MRT of the particle Medium with NSD is bigger than that of the particle Medium with WSD.This should be attributed to the effect of the particle Fine on the MRT of the particle Medium.The particle Medium is considered to receive the momentum from the particle Fine and the gas[30].The momentum of the particle Medium receiving from the particle Fine increases with increasing the fraction of the particle Fine at the same gas velocity,resulting in an increase in the entrainment probabilities of the particle Medium[30].Therefore,the MRT of the particle Medium decreases with increasing the mass fraction of the particle Fine.

    Moreover,it can be seen from Fig.6(a)that the MRT of the particle Medium decreases fast with increasing the gas velocity to the terminal velocity at X0=0.25.Because the elutriation rate of the particle Fine increases at higher concentration of particle Fine for higher Ug/Ut[31],which can be confirmed by the elutriation rate presented in Fig.7(a).With the increase of the gas velocity over UtF,the proportion of the particle Fine decreases fast.Therefore,the effect of the particle Fine on the elutriation of coarse particles is stronger at higher mass fraction of the particle Fine[30],which leads to a decrease in the MRT of the coarse particles.

    Fig.7.(a):Changes in the elutriation rate of the particle Fine at different gas velocities and(b):changes in the entrainment rate of the particle Medium.U g=0.51,particle Fine;U g=0.71,particle Fine;U g=1.01,particle Fine;U g=1.10,particle Fine;U g=1.26,particle Fine;U g=1.01,particle Medium;U g=1.10,particle Medium;U g=1.26,particle Medium.

    Fig.7(a)shows the changes in the elutriation rate of the particle Fine.The elutriation of the particle Fine is not affected by the size distribution of bed particles at the gas velocity of 1.01-1.26 m·s-1.Fig.7(b)shows the changes in the entrainment rate of the particle Medium.It seems to mean that the effect of the particle Fine on the elutriation of the particle Medium increases with increasing the mass fraction of the particle Fine in the fluidized bed.These results agree well with those of Choi et al.[31]and Geldart and Pope[33].

    The effect of the feed composition on the MRT ratio has not been reported previously.However,the present study shows that X0has a great influence on the MRT ratio between the particle Medium and the particle Fine.The maximum values of the MRT ratio reaches 7.2,8.9 and 10.5 for the mixtures with X0of0.25,0.50 and 0.75,respectively.Therefore,it can be concluded that increasing X0will increase the MRT ratio to 10.5 for various mixtures.

    3.3.Effect of particle size ratio on the MRT ratio

    The particle size ratio may also have a significant effect on the MRT difference between the fine and coarse particles.Two different size ratios of 2.2(mixture II)and 3.3(mixture IV)were tested in this work.The particle Fine used in the two mixtures has the same sized distribution.

    Fig.8.Effect of the size ratio on the MRT ratios.Mixture IV;Mixture II.

    Fig.8 shows the effect of the particle size ratio on the MRT ratio.It can be observed that the peak value of the MRT ratio with the size ratio of 3.3 is higher than that with the size ratio of 2.2.The transition velocity of the MRT ratio(UT0)appears at a gas velocity of 1.0 m·s-1and 1.2 m·s-1for the mixtures with the size ratio of2.2 and 3.3,respectively.The transition velocity moves to a higher gas velocity with the increase of size ratio,which agrees with the terminal velocity of the larger particle,as shown in Table 1.

    Fig.9(a)illustrates the MRT of the particle Medium and particle Coarse.Fig.9(b)shows the MRTs of the particle Fine in mixtures II and IV.Itcan be observed that the MRT of the coarse particle with different size ratios exhibits the same downward trend.However,the MRT of coarse particles sharply decreases at 1.0 m·s-1for mixture II,and at 1.2 m·s-1for mixture IV.The difference is caused by the elutriation rate of particles,which increases sharply when the gas velocity exceeds their terminal velocity[28,29].

    Fig.9.Effect of the size ratio on the MRT of particles,(a)particle Medium and particle Coarse,(b)particle Fine.particle Coarse in Mixture IV;particle Medium in Mixture II;particle Fine in Mixture IV;particle Fine in Mixture II.

    Considering the same distribution of the particle Fine in mixture II and mixture IV,the variations of the MRT of the particle Fine have the same trend,as shown in Fig.9(b).However,the MRT of the particle Fine in mixture II is smaller than that in mixture IV.It can be attributed to the momentum of the particle Fine receiving from the gas[30].With the increase of the size ratio,the particle Coarse has a large holdup than that of the particle Medium at the same gas velocity,which means that the particle Coarse occupies more volume than that of the particle Medium.Correspondingly,the momentum of the particle Coarse receiving from the gas is larger than that of the particle Medium at the same gas velocity.Due to the fix value of the momentum passed from the gas,the momentum of the particle Fine receiving from the gas is less in mixture IV.Therefore,the MRT of the particle Fine in mixture II is smaller than that in mixture IV.

    Generally,the size ratio for the fine particles and the coarse particles in the mixtures with WSD can be more than 4 during the roasting of ilmenite powders[9,19]and direct reduction of iron ore.The synchronous conversion of such mixtures with WSD would require a theoretical MRT ratio of4 and 16 under the chemical reaction and the film diffusion controlling mechanism,respectively.Our previous study[20,21]achieved a MRT ratio of 5 and 5.5 for the mixtures with the size ratio of 3.8 and 4,respectively,which cannot meet the requirements for the synchronous conversion under the film diffusion controlling mechanism.In this study,the MRT ratios were modulated up to 8.9 and 12 for the mixtures with the size ratio of 2.2 and 3.3,respectively.These ratios can meet the requirements for the synchronous conversion under the diffusion controlling mechanism as well as the chemical reaction controlling mechanism.These results can be applied in the roasting of ilmenite powders and the direct reduction of iron ore.

    However,there are still some limitations for the application of these results since the influences of the particle shape and the height of the side exit were not considered.It is reported that the shape of particles can affect the entrain mentrate[34],drag coefficient and terminal velocity(Ut)[35],which may influence the MRT of particles.Thus,the values of MRT and MRT ratio for non-spherical particles may be different from those of spherical particles.Nevertheless,the variation trend of the MRT ratio at different gas velocities will not change.The changes in the height of the side exit may also affect the entrainment rate of particles,especially for the MRT of the coarse particles.Therefore,it is necessary to further study the effects of the solid characteristics and the height of the side exit on the MRT difference.

    4.Conclusions

    For the binary mixture,the MRT ratio between the coarse particles and the fine particles can be modulated by the gas velocity in a fluidized bed with a side exit.The terminal velocity of the particles plays an important role in modulating the MRT ratio between the coarse particles and the fine particles.The MRT ratio increases firstly and then decreases with increasing the gas velocity.By controlling the gas velocity and the feed composition of coarse particles,the MRT ratio can be modulated from 1.8 to 10.5 at the gas velocity of 1.0 m·s-1for the binary mixture with the size ratio of 2.2.The MRT ratio can reach to~12 for the binary mixture with the ratio of 3.3 at the gas velocity of 1.2 m·s-1.

    By modulating the gas velocity,the MRT difference for binary mixture can reach their MRT ratio for the requirement of the film diffusion controlling mechanism.It offers an achievable method that particles with different sizes will obtain synchronous conversion in a fluidized bed by adjusting the gas velocity.Further work is needed to investigate the detailed mechanisms of the residence time distribution for the binary mixtures and the MRT of particle mixtures with different densities.

    Nomenclature

    Atcross-sectional area of bed surface

    dpdiameter of particles,μm

    F0solid flux,kg·s-1

    F1ientrainment flux of particle i(particles Fine,Medium and Coarse),kg·s-1

    F2iover flow flux of particle i(particles Fine,Medium and Coarse),kg·s-1

    Gssolid flux,kg·h-1

    KCelutriation rate of particle Medium,kg·m-2·s-1

    KFelutriation rate of particle Fine,kg·m-2·s-1

    M MRT ratio

    tccomplete reaction time of particles,s

    tCmean residence time of coarse particles(particles Medium and Coarse),s

    tFmean residence time of fine particles,s

    tiMean residence time of particle i(particles Fine,Medium and Coarse),s

    Ugoperating gas velocity,m·s-1

    Umfminimum fluidization velocity,m·s-1

    Utparticle terminal velocity,m·s-1

    UT0transition velocity of MRT ratio,m·s-1

    UtFparticle terminal velocity of particle Fine,m·s-1

    Wiholdup of particle i(particles Fine,Medium and Coarse),kg

    XbMconcentration of particle Medium in bed

    XbFconcentration of particle Fine in bed

    X1Mconcentration of particle Medium in entrainment

    X1Fconcentration of particle Fine in entrainment

    X0concentration of particles Medium in feed

    XFconcentration of particle Fine in feed

    α size ratio

    ρ density,kg·m-3

    [1]L.Zhong,M.Zhong,L.Dong,J.Zhang,F.Ma,G.Xu,Pneumatic classification of coal in bottom- fluidized transport column,CIESC J.51(3)(2011)150-153(in Chinese).

    [2]Q.Zhu,H.Li,Status quo and development prospect of magnetizing roasting vialfuidized bed for low grade iron ore,CIESC J.65(7)(2014)2437-2442(in Chinese).

    [3]Q.Zhu,R.Wu,H.Li,Direct reduction of hematite powders in a fluidized bed reactor,Particuology 11(3)(2013)294-300.

    [4]H.G.Kim,O.Lee,C.Chung,H.Kim,Fluidization characteristics of iron ore fines of wide size distribution in a cold tapered gas-solid fluidized bed,ISIJ Int.40(1)(2000)16-22.

    [5]T.Ariyama,S.Isozaki,S.Matsubara,H.Kawata,I.Kobayashi,Fluidization and degradation characteristics of iron ore fines in prereduction fluidized bed,ISIJ Int.33(12)(1993)1220-1227.

    [6]O.Levenspiel,Chemical Reaction Engineering,3rd edition John Wiley&Sons,the United States of America,1999.

    [7]D.Wolf,W.Resnick,Residence time distribution in real systems,Ind.Eng.Chem.Fundam.2(4)(1963)287-293.

    [8]J.Ragyraman,Y.B.G.Varma,A model for residence time distribution in multistage systems with cross- flow between active and dead regions,Chem.Eng.Sci.28(2)(1973)585-591.

    [9]K.Krisrnaiah,Y.Pydisetty,Y.B.G.Varna,Residence time distribution of solids in multistage fluidization,Chem.Eng.Sci.37(9)(1982)1371-1377.

    [10]P.A.Ambler,B.J.Milne,F.Berruti,D.S.Scott,Residence time distribution of solids in a circulating fluidized bed:experimental and modeling studies,Chem.Eng.Sci.45(8)(1990)2179-2186.

    [11]K.Kato,T.Takarda,N.Matsuo,T.Suto,N.Nakagawa,Residence-time distribution of fine particles in a powder-particle fluidized bed,Int.Chem.Eng.17(4)(1994)970-975.

    [12]H.S.Ranaswant,K.A.Abdelrahim,B.K.Simpson,J.P.Smith,Residence time distribution(RTD)in aseptic processing of particulate foods:a review,Food Res.Int.28(3)(1995)291-310.

    [13]S.S.Chapadgaokar,Y.P.Setty,Residence time distribution of solids in a fluidised bed,Indian J.Chem.Technol.6(2)(1999)100-106.

    [14]M.P.Babu,Y.P.Setty,Residence time distribution of solids in a fluidized bed,Can.J.Chem.Eng.81(1)(2003)118-123.

    [15]S.Rodr Guez-Rojo,N.L.Pez-Valdezate,M.J.Cocero,Residence time distribution studies of high pressure fluidized bed of microparticles,J.Supercrit.Fluids 44(3)(2008)433-440.

    [16]W.Nie,Y.Wang,G.Sun,W.Ji,G.Xu,Particle residence time distribution in a continuous fluidized bed reactor,The 7th World Congress on Particle Technology.7th Annual Conference of Chinese Society of Particuology cum Symposium on Particle Technology Across Taiwan Straits 2010,pp.359-363.

    [17]S.Yagi,D.Kunii,Fluidized-solids reactors with continuous solids feed—I:residence time of particles in fluidized beds,Chem.Eng.Sci.16(3-4)(1961)364-371.

    [18]S.Heukelman,D.Groot,Fluidized bed roasting of micro-pelletized zinc concentrate:part II—particle entrainment and residence time,J.South.Afr.Inst.Min.Metall.111(11)(2011)767-772.

    [19]I.C.Van Putten,M.V.S.Annaland,G.Weickert,Fluidization behavior in a circulating slugging fluidized bed reactor.Part I:residence time and residence time distribution of polyethylene solids,Chem.Eng.Sci.62(9)(2007)2522-2534.

    [20]Z.Hao,Q.Zhu,H.Li,Particle residence time and pressure drop in a fluidized bed with internals,Chin.J.Process.Eng.6(S2)(2006)359-363.

    [21]L.Zhang,J.Li,Q.Zhu,C.Hu,H.Li,Control of mean residence time difference for particles with wide size distribution in fluidized beds,Powder Technol.312(2017)270-276.

    [22]D.Kunii,O.Levenspiel,Fluidization Engineering,Butter wort h-Heine mann,1991 354-356.

    [23]M.Kwauk,H.Li,Handbook of Fluidization,243,Chemical Industry Press,Beijing,2007.

    [24]K.G.Palappan,P.S.T.Sai,Studies on segregation of binary mixture of solids in continuous fast fluidized bed:Part II.Effect of particle size,Chem.Eng.J.139(2)(2008)330-338.

    [25]H.Hatano,M.Ishida,Study on the entrainment of FCC particles from a fluidized bed,Powder Technol.35(2)(1983)201-209.

    [26]B.Hirschberg,J.Werther,Factors affecting solids segregation in circulating fluidized bed riser,AIChE J.44(1)(1998)25-34.

    [27]A.T.Harris,J.F.Davidson,R.B.Thorpe,Particle residence time distributions in circulating fluidised beds,Chem.Eng.Sci.58(11)(2003)2181-2202.

    [28]C.W.Chan,J.P.K.Seville,D.J.Parker,J.Baeyens,Particle velocities and their residence time distribution in the riser of a CFB,Powder Technol.203(2)(2010)187-197.

    [29]G.L.Osberg,D.H.Charles worth,Elutriation in a fluidized bed,Chem.Eng.Prog.47(11)(1951)566-570.

    [30]E.Kewes,F.Dahlem,S.Bec,N.Estime,E.Risse,The sequential elutriation behavior of wide particle size distributions,Powder Technol.286(2015)230-239.

    [31]J.-H.Choi,J.-M.Suh,I.-Y.Chang,D.-W.Shun,C.-K.Yi,The effect of fine particles on elutriation of coarse particles in a gas fluidized bed,Powder Technol.121(2-3)(2001)190-194.

    [32]E.R.Monazam,R.W.Breault,J.Weber,K.Lay field,Elutriation of fines from binary particle mixtures in bubbling fluidized bed cold model,Powder Technol.305(2017)340-346.

    [33]D.Geldart,D.J.Pope,Interaction of fine and coarse particles in the freeboard of a fluidized bed,Powder Technol.34(1)(1983)95-97.

    [34]Wouter De Vos,W.Nicol,E.D.Toit,Entrainment behaviour of high-density Geldart A powders with different shapes,Powder Technol.190(3)(2009)297-303.

    [35]A.Haider,O.Levenspiel,Drag coefficient and terminal velocity of spherical and nonspherical particles,Powder Technol.58(1)(1989)63-70.

    欧美精品国产亚洲| 纯流量卡能插随身wifi吗| 黑人高潮一二区| 91久久精品电影网| 在线播放无遮挡| 日韩精品免费视频一区二区三区 | 国产一区亚洲一区在线观看| av免费观看日本| 亚洲av国产av综合av卡| 国产免费福利视频在线观看| 五月开心婷婷网| 国产成人freesex在线| 亚洲国产精品国产精品| 春色校园在线视频观看| 久久ye,这里只有精品| 伦理电影免费视频| 色婷婷av一区二区三区视频| av在线观看视频网站免费| 色94色欧美一区二区| 男人添女人高潮全过程视频| 热re99久久精品国产66热6| 夜夜骑夜夜射夜夜干| 欧美国产精品一级二级三级| 成人国产麻豆网| 一级,二级,三级黄色视频| 国产成人精品福利久久| 美女中出高潮动态图| 建设人人有责人人尽责人人享有的| 老司机亚洲免费影院| 91在线精品国自产拍蜜月| 精品久久久久久久久av| 亚洲av成人精品一二三区| 成人毛片a级毛片在线播放| 久久久久久久亚洲中文字幕| 丰满少妇做爰视频| 中文欧美无线码| 大话2 男鬼变身卡| 国产成人一区二区在线| 久久狼人影院| 亚洲国产精品成人久久小说| 亚洲精品久久午夜乱码| 一级片'在线观看视频| 五月伊人婷婷丁香| 国产成人精品无人区| 波野结衣二区三区在线| 亚洲,欧美,日韩| 国产精品麻豆人妻色哟哟久久| 久热久热在线精品观看| 狂野欧美激情性bbbbbb| 大片免费播放器 马上看| 青春草亚洲视频在线观看| 成人黄色视频免费在线看| 大香蕉久久网| 亚洲第一av免费看| 国产69精品久久久久777片| 妹子高潮喷水视频| 久久久久久久精品精品| 一级毛片电影观看| 国产伦精品一区二区三区视频9| 婷婷色麻豆天堂久久| 全区人妻精品视频| 91精品三级在线观看| 人妻 亚洲 视频| 亚洲图色成人| 超碰97精品在线观看| 精品一区二区三区视频在线| av在线播放精品| av又黄又爽大尺度在线免费看| 亚洲美女黄色视频免费看| 日本免费在线观看一区| 国产一区二区三区综合在线观看 | 丝袜在线中文字幕| 51国产日韩欧美| 丝袜美足系列| 毛片一级片免费看久久久久| √禁漫天堂资源中文www| 桃花免费在线播放| 午夜av观看不卡| 亚洲人成77777在线视频| 另类亚洲欧美激情| 亚洲少妇的诱惑av| 黑人巨大精品欧美一区二区蜜桃 | 国产精品熟女久久久久浪| 校园人妻丝袜中文字幕| 国产精品一区二区在线不卡| av又黄又爽大尺度在线免费看| 99久久中文字幕三级久久日本| 精品国产一区二区久久| 国产极品天堂在线| 天天操日日干夜夜撸| 国产精品久久久久久久电影| 久久久国产精品麻豆| 一个人看视频在线观看www免费| 尾随美女入室| 午夜免费观看性视频| 国产成人精品一,二区| 91成人精品电影| 狠狠精品人妻久久久久久综合| 韩国高清视频一区二区三区| 老司机影院成人| 久久国产亚洲av麻豆专区| 综合色丁香网| 制服人妻中文乱码| 日韩av免费高清视频| 亚洲av.av天堂| 少妇被粗大猛烈的视频| 日韩不卡一区二区三区视频在线| 欧美亚洲 丝袜 人妻 在线| 国产女主播在线喷水免费视频网站| 国产成人精品久久久久久| 欧美xxⅹ黑人| 成年美女黄网站色视频大全免费 | 国产亚洲午夜精品一区二区久久| 国产一区二区在线观看av| 国产国语露脸激情在线看| 少妇人妻 视频| 我的女老师完整版在线观看| 草草在线视频免费看| 26uuu在线亚洲综合色| 如日韩欧美国产精品一区二区三区 | 18禁动态无遮挡网站| 亚洲婷婷狠狠爱综合网| av国产精品久久久久影院| 亚洲精品av麻豆狂野| 日本猛色少妇xxxxx猛交久久| 色吧在线观看| 十分钟在线观看高清视频www| 少妇丰满av| 少妇丰满av| 精品国产乱码久久久久久小说| 精品国产一区二区久久| 国产欧美日韩综合在线一区二区| 一区二区av电影网| 国产一区二区在线观看日韩| 成人黄色视频免费在线看| 欧美日韩精品成人综合77777| 国产欧美日韩综合在线一区二区| 久久久久精品久久久久真实原创| 一区二区av电影网| 七月丁香在线播放| 久久久久视频综合| 中国国产av一级| av国产久精品久网站免费入址| 热99国产精品久久久久久7| 中文字幕精品免费在线观看视频 | 女人久久www免费人成看片| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 三级国产精品欧美在线观看| 少妇丰满av| 成人影院久久| 在线 av 中文字幕| 香蕉精品网在线| av线在线观看网站| 欧美激情国产日韩精品一区| 人妻夜夜爽99麻豆av| 日本色播在线视频| 色吧在线观看| 免费观看无遮挡的男女| 久久人人爽人人片av| 少妇精品久久久久久久| 国产伦理片在线播放av一区| 夜夜看夜夜爽夜夜摸| 国产一区二区三区av在线| 2018国产大陆天天弄谢| 久久97久久精品| 高清欧美精品videossex| 精品人妻熟女av久视频| 飞空精品影院首页| 精品亚洲成国产av| 久久亚洲国产成人精品v| 肉色欧美久久久久久久蜜桃| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 久久午夜综合久久蜜桃| 久久久久久久精品精品| 99九九在线精品视频| av不卡在线播放| 飞空精品影院首页| 亚洲丝袜综合中文字幕| 免费大片黄手机在线观看| 欧美xxⅹ黑人| 成人黄色视频免费在线看| 爱豆传媒免费全集在线观看| 国产高清有码在线观看视频| 国产老妇伦熟女老妇高清| 国产一级毛片在线| 亚洲第一av免费看| 欧美人与善性xxx| 伊人亚洲综合成人网| 日本av免费视频播放| www.色视频.com| 免费大片18禁| 高清欧美精品videossex| 国产亚洲一区二区精品| 老女人水多毛片| 熟女av电影| 欧美日韩一区二区视频在线观看视频在线| 日韩av在线免费看完整版不卡| 久久久久精品久久久久真实原创| 精品久久国产蜜桃| 国产片内射在线| 日日摸夜夜添夜夜爱| 国内精品宾馆在线| 特大巨黑吊av在线直播| 成人综合一区亚洲| 日韩,欧美,国产一区二区三区| 99视频精品全部免费 在线| 久久免费观看电影| 美女主播在线视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品一区三区| 久久韩国三级中文字幕| 久久久久精品性色| 美女视频免费永久观看网站| 一个人免费看片子| 亚洲国产日韩一区二区| 亚洲欧美精品自产自拍| 在线观看免费日韩欧美大片 | 国产视频内射| 十八禁高潮呻吟视频| 在线精品无人区一区二区三| 狠狠婷婷综合久久久久久88av| 日韩人妻高清精品专区| 精品国产露脸久久av麻豆| 午夜福利网站1000一区二区三区| 亚洲av二区三区四区| 久久99蜜桃精品久久| 日本vs欧美在线观看视频| 伦理电影免费视频| 欧美日韩国产mv在线观看视频| 免费黄色在线免费观看| 精品亚洲乱码少妇综合久久| 十八禁网站网址无遮挡| 亚洲欧美精品自产自拍| 69精品国产乱码久久久| 大片电影免费在线观看免费| 亚洲精品av麻豆狂野| 毛片一级片免费看久久久久| 亚洲精品成人av观看孕妇| 新久久久久国产一级毛片| 欧美+日韩+精品| 伊人亚洲综合成人网| 少妇人妻久久综合中文| 国产精品一区二区在线不卡| 一本久久精品| 99久久人妻综合| 日日摸夜夜添夜夜添av毛片| 人成视频在线观看免费观看| 69精品国产乱码久久久| 色哟哟·www| 一本久久精品| 纯流量卡能插随身wifi吗| 亚洲综合精品二区| 人妻系列 视频| 自线自在国产av| 青春草视频在线免费观看| 全区人妻精品视频| 精品国产一区二区久久| 亚洲婷婷狠狠爱综合网| 熟妇人妻不卡中文字幕| 波野结衣二区三区在线| 亚洲国产av新网站| 久久午夜福利片| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看| 美女主播在线视频| 一区二区三区四区激情视频| 女的被弄到高潮叫床怎么办| 国产欧美亚洲国产| 看非洲黑人一级黄片| 亚洲精品av麻豆狂野| 中文字幕制服av| 国产在线免费精品| 国产一区二区在线观看日韩| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 少妇的逼水好多| 你懂的网址亚洲精品在线观看| 成人国产麻豆网| 男男h啪啪无遮挡| 蜜桃国产av成人99| 另类亚洲欧美激情| 久久久亚洲精品成人影院| 少妇的逼好多水| 国内精品宾馆在线| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 国产一区二区在线观看日韩| 国产成人av激情在线播放 | videos熟女内射| 黑丝袜美女国产一区| 亚洲综合色惰| 国内精品宾馆在线| 91成人精品电影| 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线 | 成人二区视频| 日日摸夜夜添夜夜添av毛片| 亚洲激情五月婷婷啪啪| 有码 亚洲区| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 精品国产露脸久久av麻豆| 极品人妻少妇av视频| 大片免费播放器 马上看| 国产精品蜜桃在线观看| 亚洲欧美成人精品一区二区| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 最后的刺客免费高清国语| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| √禁漫天堂资源中文www| 蜜桃国产av成人99| 成人免费观看视频高清| 国产一区二区三区av在线| 精品一区在线观看国产| 亚洲国产欧美日韩在线播放| 99国产精品免费福利视频| 视频区图区小说| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 夫妻性生交免费视频一级片| 爱豆传媒免费全集在线观看| 婷婷色综合www| av在线老鸭窝| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产av玫瑰| 最近手机中文字幕大全| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合| 国产精品久久久久久av不卡| 中文字幕免费在线视频6| 黄色配什么色好看| 亚洲精品日韩av片在线观看| 综合色丁香网| 欧美3d第一页| 一个人看视频在线观看www免费| 成人黄色视频免费在线看| 一级二级三级毛片免费看| 免费黄色在线免费观看| 熟女av电影| 久久久久精品久久久久真实原创| 大片免费播放器 马上看| 老女人水多毛片| 日韩一本色道免费dvd| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 国产成人精品福利久久| 九九久久精品国产亚洲av麻豆| 老司机影院成人| 亚洲丝袜综合中文字幕| 亚洲av国产av综合av卡| 精品一区在线观看国产| a级毛色黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品国产亚洲| 久久久精品区二区三区| 国产一区二区三区综合在线观看 | 国产伦精品一区二区三区视频9| 亚洲高清免费不卡视频| 久久精品久久久久久久性| 五月开心婷婷网| 一本色道久久久久久精品综合| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 另类亚洲欧美激情| 3wmmmm亚洲av在线观看| 午夜老司机福利剧场| 在线观看免费视频网站a站| 免费播放大片免费观看视频在线观看| 亚洲四区av| 蜜桃在线观看..| 69精品国产乱码久久久| 能在线免费看毛片的网站| 久久这里有精品视频免费| 五月伊人婷婷丁香| 国产亚洲精品久久久com| av不卡在线播放| 久久精品国产a三级三级三级| 波野结衣二区三区在线| 中国三级夫妇交换| 男人爽女人下面视频在线观看| 成人综合一区亚洲| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 丝袜在线中文字幕| 久久国产精品大桥未久av| 亚洲av福利一区| 国产乱来视频区| 欧美人与善性xxx| 欧美bdsm另类| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 999精品在线视频| 全区人妻精品视频| 精品久久国产蜜桃| 热re99久久精品国产66热6| 看十八女毛片水多多多| 国产精品人妻久久久影院| 简卡轻食公司| a级片在线免费高清观看视频| 午夜av观看不卡| 一本久久精品| 久久这里有精品视频免费| 大香蕉久久成人网| 久久韩国三级中文字幕| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 9色porny在线观看| 久久精品国产a三级三级三级| 欧美xxⅹ黑人| 中国国产av一级| 蜜桃久久精品国产亚洲av| 永久网站在线| 国产视频首页在线观看| 特大巨黑吊av在线直播| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 香蕉精品网在线| 中文字幕人妻丝袜制服| 色哟哟·www| 如何舔出高潮| 日本-黄色视频高清免费观看| 精品一区在线观看国产| 欧美 日韩 精品 国产| 久久人妻熟女aⅴ| 美女xxoo啪啪120秒动态图| 黑人巨大精品欧美一区二区蜜桃 | 伦理电影大哥的女人| 五月玫瑰六月丁香| 丰满饥渴人妻一区二区三| 免费av不卡在线播放| 97在线视频观看| 国产欧美日韩一区二区三区在线 | 91精品国产国语对白视频| 午夜影院在线不卡| 日本与韩国留学比较| 午夜91福利影院| 热99久久久久精品小说推荐| 亚洲国产精品专区欧美| 国产精品一区www在线观看| 国产一区二区三区综合在线观看 | 精品一区二区免费观看| 国产精品99久久99久久久不卡 | 亚洲色图综合在线观看| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 国产亚洲最大av| 久久久久久久久久久丰满| 亚洲精品视频女| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 十分钟在线观看高清视频www| 国产精品一二三区在线看| 99精国产麻豆久久婷婷| 在线观看国产h片| 丝袜喷水一区| 黄片无遮挡物在线观看| av电影中文网址| 人人妻人人爽人人添夜夜欢视频| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性bbbbbb| 日韩熟女老妇一区二区性免费视频| 2018国产大陆天天弄谢| 纯流量卡能插随身wifi吗| 久久免费观看电影| 好男人视频免费观看在线| 日韩在线高清观看一区二区三区| 色婷婷av一区二区三区视频| a级毛色黄片| 成年美女黄网站色视频大全免费 | 午夜免费观看性视频| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 国产有黄有色有爽视频| 在线观看美女被高潮喷水网站| 日本欧美视频一区| 日韩中字成人| 免费黄色在线免费观看| 午夜福利在线观看免费完整高清在| 能在线免费看毛片的网站| 国产成人精品福利久久| 日本av手机在线免费观看| 免费人成在线观看视频色| 美女国产视频在线观看| 国产无遮挡羞羞视频在线观看| 日本免费在线观看一区| av在线播放精品| 国产精品国产三级国产av玫瑰| 下体分泌物呈黄色| 久久久久久久久久久免费av| 中文字幕av电影在线播放| 久久久久久久久久成人| 中文字幕最新亚洲高清| 夜夜爽夜夜爽视频| 国产成人91sexporn| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 国内精品宾馆在线| 九草在线视频观看| 观看美女的网站| 99久久精品一区二区三区| 亚洲一级一片aⅴ在线观看| 在线亚洲精品国产二区图片欧美 | 一二三四中文在线观看免费高清| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 乱人伦中国视频| 亚洲熟女精品中文字幕| 亚洲精品第二区| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频| 91精品一卡2卡3卡4卡| 大片电影免费在线观看免费| 十八禁高潮呻吟视频| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 春色校园在线视频观看| 国产白丝娇喘喷水9色精品| 综合色丁香网| 国产不卡av网站在线观看| 免费久久久久久久精品成人欧美视频 | 寂寞人妻少妇视频99o| 最后的刺客免费高清国语| 看免费成人av毛片| 欧美性感艳星| 考比视频在线观看| 亚洲av福利一区| 久久久国产欧美日韩av| 亚洲av成人精品一二三区| 亚洲av综合色区一区| 国产精品 国内视频| 色婷婷久久久亚洲欧美| 美女脱内裤让男人舔精品视频| 免费观看性生交大片5| 91精品一卡2卡3卡4卡| √禁漫天堂资源中文www| 国产成人精品一,二区| 久久久久久久久大av| 亚洲美女搞黄在线观看| 日韩中字成人| 蜜桃国产av成人99| 大香蕉久久成人网| 免费黄色在线免费观看| 中文天堂在线官网| 大香蕉97超碰在线| 色网站视频免费| 美女福利国产在线| av有码第一页| 色视频在线一区二区三区| 欧美变态另类bdsm刘玥| 高清av免费在线| 国产成人精品一,二区| 日韩制服骚丝袜av| 自线自在国产av| 精品国产乱码久久久久久小说| 国产一级毛片在线| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 纵有疾风起免费观看全集完整版| 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看| 婷婷色综合www| 中文字幕人妻丝袜制服| 中文字幕精品免费在线观看视频 | 国产在线视频一区二区| 亚洲精品久久午夜乱码| 久久久久国产网址| 日日爽夜夜爽网站| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 国产免费现黄频在线看| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 中文字幕最新亚洲高清| 97超碰精品成人国产| 中文字幕最新亚洲高清| 18+在线观看网站| 成人影院久久| 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 尾随美女入室| 校园人妻丝袜中文字幕| 国产在线免费精品| 久久午夜福利片| 高清午夜精品一区二区三区| 免费观看的影片在线观看| 亚洲国产精品一区二区三区在线| 日韩亚洲欧美综合| 纵有疾风起免费观看全集完整版| 熟女人妻精品中文字幕| 国产黄色免费在线视频| 亚洲成人一二三区av| 日韩中字成人|