• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Quantum Gray-Scale Image Encoding Scheme?

    2018-05-23 06:04:01MosayebNaseriMonaAbdolmalekyFariborzParandinNeginFatahiAhmedFaroukandRezaNazari
    Communications in Theoretical Physics 2018年2期

    Mosayeb Naseri,Mona Abdolmaleky,Fariborz Parandin,Negin Fatahi,Ahmed Farouk,and Reza Nazari

    1Department of Physics,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    2Department of Electrical Engineering,College of Engineering,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    3Computer Sciences Department,Faculty of Computers and Information,Mansoura University,Egypt

    4Department of IT Engineering,College of Engineering,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    1 Introduction

    The pioneering work of Bennett and Brassard has been developed for the purpose of understanding quantum cryptography,which is one of the most signi fi cant aspects of the laws of the quantum mechanics.[1]Afterwards,the improvement and growth of real applications in different fields of quantum computation and quantum information has been proposed in Refs.[2–20].One of the most growing fields is quantum information data hiding,which includes quantum watermarking and quantum steganography.different quantum information data hiding techniques to protect information were proposed in Refs.[21–30].

    In Ref.[21]a novel quantum steganography protocol was based on quantum secure direct communication to build up hidden channel within the improved ping-pong protocol to transmit secret messages.Quantum steganography with noisy quantum channels for hiding quantum information by disguising it as noise in a code word of a quantum error-correcting code was presented in Ref.[22].In Ref.[23]a secure quantum watermarking used entanglement swapping to build up a hidden layer of secure message under the conventional first layer of secure information sequence.A robust watermark strategy for quantum images based on quantum fourier transform as the watermark image is embedded into the fourier coefficients of the quantum carrier image,which will not affect the carrier image’s visual effect was discussed in Ref.[24].A novel dynamic watermarking scheme for quantum images based on Hadamard transform was proposed in Ref.[25].A novel multi-party quantum steganography protocol based on quantum secret sharing as Hidden channels are built in HBB and improved HBB quantum secret sharing protocols for secret messages transmitting,via the entanglement swapping of GHZ states and Bell measurement was presented in Ref.[26].In Ref.[27]two blind LSB steganography algorithms in the form of quantum circuits based on the novel enhanced quantum representation(NEQR)for quantum images were proposed.In Ref.[28]a new quantum gray-scale image watermarking scheme by using simple and small-scale quantum circuits where NEQR representation for quantum images was used.Hilbert image scrambling algorithm,which is commonly used in classical image processing,is carried out in quantum computer by giving the scrambling quantum circuits was proposed in Ref.[29].High-efficiency quantum steganography based on the tensor product of Bell states as a hidden channel is established to transfer a secret message within any quantum secure direct communication(QSDC)scheme that is based on 2-level quantum states and unitary transformations was presented in Ref.[30]. In Ref.[31],a new scheme for quantum watermarking based on quantum wavelet transform is proposed which includes scrambling,embedding and extracting procedures.In this paper,a new scheme for encoding the quantum images is proposed.The proposed scheme can be applied by four different encoding algorithms.The proposed scheme is working as follow; firstly,for each pixel of an initial image,a binary key is generated randomly.Secondly,according to the corresponding qubit pair of the generated randomized binary key,an appropriate encoding algorithm is selected.The security of the proposed protocol is assured by both the randomization of binary image key and the alteration of the gray-scale value of the original image’s pixels using the randomized binary key.This article is organized as:in Sec.2,the required preliminaries to implement the protocol are introduced.In Sec.3,the proposed protocol is presented.In Sec.4 the applicability and the efficiency of the proposed scheme are evaluated by software simulation.Finally,Sec.5 concludes the paper.

    2 Preliminaries

    2.1 Quantum Gate

    In quantum computation schemes,quantum gates can be considered as basic quantum circuits operating on a small number of qubits,i.e.,they are the building blocks of quantum circuits.

    To implement the proposed scheme,three quantum gates are mainly employed:

    (i)Quantum NOT Gate:A quantum NOT operator,which is also named as PauliXmatrix,acts on a single qubit.It is the quantum equivalent of the NOT Gate in classical logic.It maps|0>to|1>and|1>to|0>.

    (ii)Quantum Controlled Not Gate(Quantum CNOT gate):A simple quantum CNOT operator(or a quantum controlled NOT)acts on two qubits,and performs the NOT operation on the second qubit only when the first qubit is|1>.Otherwise nothing happens.This gate is the quantum equivalent of the XOR gate in classical logic.

    (iii)Quantum SWAP Gate:A quantum SWAP gate acts on two qubits and swaps them.

    The circuit diagram and matrix form representation of these gates are shown in Fig.1.

    Fig.1 The circuit diagram and matrix form representation of quantum NOT,CNOT and SWAP gates.

    2.2 Quantum Image Representation

    A number of quantum representation models for digital images have been presented in the recent years.A common used quantum representation of digital images named as flexible representation of quantum images(FRQI)was presented in Ref.[20].As mentioned in the introduction,a very famous quantum representation for digital images named as a novel enhanced quantum representation(NEQR)for quantum images was proposed in 2013.[21]In the(NEQR)model,two entangled qubit sequences are used to store the gray-scale value and position information of the all pixels of an image.

    A representation of a 2N×2Nimage with a gray-scale range of 2qby using NEQR model is defined as follows:

    A simple example of a 2×2 quantum image using NEQR model and its quantum representation is shown in Fig.2.

    Fig.2 A simple example of image representation using NEQR model.[18]

    Using an improved version of NEQR model,a representation of a 2M×2Nimage with the gray-scale range of 2qis as follows:

    3 Previous Works

    3.1 Quantum Image Gray-Code and Bit-Plane Scrambling

    A quantum image gray-code and bit-plane scrambling algorithm was proposed by Zhouet al.in 2015.[32]The proposed algorithm for quantum image gray-code and bitplane scrambling is based on encoding the gray-scale value of the pixels,where for the aim of scrambling,8 binary bit-planes are built from the original image.Thek-th bitplane(1≤k≤8)is formed by thek-th bits of gray-scale value of all pixels of the image.Then,according to the Gray-code scheme,XOR operators are applied on all of these bit-planes.At last,using a reverse procedure,a new scrambled image is generated by the encoded bit-planes.

    Needless to say,by using this method,the gray-scale values of original image’s pixels are changed seriously.

    This scheme is formulated as follows:

    wheret=(M+N)/2,Scr denotes the scrambling,g(y,x)is the gray-scale value of the output pixels of the scrambling process and?denotes the tensor product.

    3.2 Quantum Hilbert Image Scrambling Algorithm

    The Hilbert Image Scrambling Algorithm is commonly used in the classical image processing.A quantum version of the Hilbert Image Scrambling Algorithm was proposed by Jianget al.,in 2014.[27]In this algorithm,as the first step,a modified recursive generation algorithm of Hilbert scanning matrix is given.Then based on the flexible representation of quantum images(FRQI),the Hilbert scrambling quantum circuits,which are recursive and progressively layered,are proposed.

    This scrambling method encodes a 2N×2Noriginal image,which can be considered as a matrix,called the Start matrix(or the Original matrix)Snand use 1 to 22nto code all the pixels.By using the start matrix a Hilbert scanning matrix(Hn)is generated,which is formed by Hilbert curve and is defined as a permutation of the start matrix.Using the Hilbert matrix,the Hilbert curve and the scrambled image can be obtained.

    Considering the Hilbert curve and the geometric transportation(Fig.3),the original image will be encoded.In this method no change appears in the gray-scale value of the pixels,concluding,the histogram diagrams of the original and encoded images are the same.

    There are two main weaknesses in this scheme:First,since the Hilbert curve and Hilbert scanning matrixHnare only determined byn,the same geometric transportation is used for any 2N×2Nimage.Therefore,by capturing the Hilbert scanning matrix,an attacker can simply decrypt the encoded image and retrieve the original one.Second,since the Hilbert scanning matrix is a square matrix,the algorithm can only be used to encode a square image.

    Fig.3 Hilbert curves and a scrambling example.

    4 Proposed Algorithm

    In this section,our new algorithm for quantum image encoding is presented.In this algorithm a random binary image is used to increase the security of the protocol.In order to encoding image,according to the corresponding qubits of the key,one of the four different encoding schemes is employed to change the gray-scale value of the pixels.It is worth to pointing out that the employed key image is not only used in selecting the suitable scheme,but also it is used directly in the scrambling scheme,which enhances the security of the proposed method,and by having this binary key image the encoded image can be simply decoded.

    By using the improved NEQR representation of quantum images,the proposed algorithm can be summarized in the following simple formula:

    wheret=(M+N)/2,Scr denotes the encoding task,f′(y,x)is the gray-scale value of theyxpixel of the encoded image and?denotes the tensor product.A simple schematic diagram of the proposed scheme is represented in Fig.4.

    In which,for the aim of encoding a 2N×2Msized quantum image,a random binary key image is generated,i.e.,a 2N×2Msized quantum binary image with random values for each pixel is generated by the encoder(say Alice).

    By using the improved NEQR representation of quantum images,the random binary key image is formulated as follows:

    wheret=(M+N)/2,RBK denotes the Random Binary Key and,1 is the binary value of the(y,x)pixel.Then she stores the random binary key image that is used in the encoding and decoding processes,which are as follows:

    Fig.4 Schematic of proposed algorithm.

    4.1 Encoding Process

    Step 1Selecting the encoding algorithm based on the random binary key:

    At first,based on the random binary key image qubits,Alice selects the encoding algorithm for every pixel.Suppose that,she wants to encode thePijpixel.According to the value ofin whichusing the rule described in Table 1,one of the four encoding algorithms is selected.

    For more clarity,a simple example is given in Fig.5.As seen in Fig.5,since the binary values of the(1,1)andpixels of the key image are,Alice will apply the encoding algorithm B on(1,1)pixel of the original image.

    The quantum circuit of the key qubits and selected encoding algorithm is shown in Fig.6.

    Fig.5 Corresponding qubits of the binary key imageand the selected encoding algorithm.

    Fig.6 Quantum circuit of key qubits and selected encoding algorithm.

    Table 1 Qubits of the key and corresponding encoding algorithm.

    Step 2Applying the corresponding encoding algorithm on pixels:

    After selecting the encoding algorithm based on corresponding qubits of the key image,one of the A,B,C or D encoding algorithms is applied on the corresponding pixel of the original image.These four encoding algorithms can be described as follows:

    Algorithm AThis algorithm swaps theandqubits of the gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then it applies NOT gates on the

    Algorithm BThis algorithm swaps thequbits of gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then it applies NOT gates on

    Algorithm CAlgorithm C swaps thequbits of the gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then to encode the value of qubit

    (i)Ifcis an odd number,an NOT gate is applied on the qubit

    ii Ifcis an even number,an XOR gate is applied on the qubitand the qubitof the key image,and the resulted value is copied to

    Algorithm DThis algorithm swaps thequbits of the gray-scale value of an input pixel withqubits of its gray-scale value respectively.Then to encode the value of qubit

    (i)Ifcis an odd number,an XOR gate is applied on the qubitand the qubitof the key image and resulted value is copied to

    (ii)Ifcis an even number,an NOT gate is applied on the qubit

    The proposed algorithms are schematically represented in Fig.7.

    Fig.7 Quantum circuits of(a)Encoding algorithm A,(b)Encoding algorithm B,(c)Encoding algorithm C and(d)Encoding algorithm D.

    4.2 Decoding Process

    The decoding process of the proposed scheme can be done in the following steps:

    Step 1Selecting the decoding algorithm based on the random binary key:

    To decode the encoded image,according to the corresponding qubits of the key image,one of thealgorithms is employed to decode the pixels.This procedure is similar to the encoding procedure.

    Table 2 shows the qubits of the key image and their corresponding decoding algorithm,and the quantum circuit of the selection procedure is shown in Fig.8.

    Fig.8 Quantum circuit of corresponding qubits of the key image and selected decoding algorithm.

    Table 2 Qubits of the key and corresponding encoding algorithm.

    Step 2Applying the corresponding decoding algorithm on pixel:

    In this step,according to the corresponding qubits of the key image,the decoder applies the corresponding decoding algorithms on the pixel.The four decoding algorithms are described as follows:

    Algorithm A′This algorithm first applies NOT gates onqubits of the gray-scale value of a pixel.Then it swaps thequbits withandqubits respectively.

    Algorithm B′This algorithm applies Not gates onqubits of the gray-scale value of the pixel.Then it swaps thequbits withqubits respectively.

    Algorithm C′Using this algorithm,to decode the original value of qubitof the gray-scale value of a pixel;

    (i)Ifcis an odd number,an NOT gate is applied on the qubit

    (ii)Ifcis an even number,an XOR gate is applied on the qubitand the qubitof the key image and the resulted value is copied to

    Then this algorithm swaps thequbits withqubits respectively.

    Algorithm D′Using this algorithm,to decode the original value of qubitof the gray-scale value of a pixel;

    (i)Ifcis an odd number,an XOR gate is applied on the qubitand the qubitof the the key image and the resulted value is copied to

    (ii)Ifcis an even number,an NOT gate is applied on the qubit

    Then this algorithm swaps thequbits of gray-scale value of the pixel withqubits respectively.Figure 9 shows the quantum circuits of these four decoding algorithms.

    To more clarity,let us present a simple example.

    Consider a simple 4×8 original image and a random binary key image as shown in Figs.10(a)and 10(b).By using the proposed algorithm,the original image can be simply encoded as shown in Fig.10(c),in which one can not obtain useful information.The detail of the encoding procedure is presented in Table 3.

    Fig.9 Quantum circuits of(a)Decoding algorithm A′,(b)Decoding algorithm B′,(c)Decoding algorithm C′and(d)Decoding algorithm D′.

    Fig.10 (a)The original image.(b)The binary random key image.(c)Encoded image.

    Table 3 Pixels of original image,corresponding qubits of the key,selected algorithm and output of the algorithm.

    5 Simulations

    Since the present state-of-the-art quantum hardware currently cannot go beyond proof-of principle examples,using a computer with Intel(R)Core(TM)i7-4500u CPU 2.40 GHz,8.00 GB RAM equipped with theMATLABR2015a environment,the proposed algorithm is evaluated by simulation.

    In our simulation,we evaluate the results of applying our proposed encoding algorithm on some real images(Figs.11 and 12)by analyzing three essential properties,the histogram diagrams,the Peak Signal-to-Noise Ratio(PSNR),and the Shannon’s entropy.

    Since the histogram diagram shows the affluence of pixels with every gray-scale value in image therefore,the histogram diagram of the encoded image has to be flatter than the original one’s,which can be quanti fi ed using Shannon’s entropy.

    The original images,the encoded images and their corresponding histogram diagrams are represented in Figs.11 and 12.As seen in Figs.11 and 12,the histogram of the final encoded image is obviously flatter than the histograms of the original ones.

    As seen in Figs.11 and 12,for an image with a smooth background such as the arrows case,which contains a few couple of gray-scale values where a discrete histogram diagram is achieved,the histogram of the encoded image is more flatter than the original image’s histogram,i.e.,the appearance of the gray-scale values of the final encoded image is changed seriously.The Shannon’s entropy is one of the useful properties to express the uncertainty of a series of random variables,which is used in information theory to quantify the minimum descriptive complexity of a random variable.For the case of an image,the amount of information that can be achieved from the image is indicated by entropy.

    Fig.11 (a)Original image.(b)Histogram of the original image.(c)Encoded image,(d)Histogram of encoded image.

    For a random variableX,withnoutcomes{x1,x2,...,xn},the Shannon entropyH(X)is defined as:

    Obviously,if all pixels in an image have the same gray-scale value,the minimum entropy is achieved.On the other hand,when each pixel of an image presents a speci fi c gray-scale value,the image will exhibit maximum entropy,i.e.,the higher the value of entropy gets,the less information can be revealed.

    The calculated Shannon entropy for the simulated sample images is presented in Table 4.As it is illustrated in Table 4,the encoding algorithm makes a considerable increase in the image’s entropies,therefore the proposed encoding method imposed a signi fi cant diversity or uncertainty to the original image.

    Fig.12 (a)Original image.(b)Histogram of the original image.(c)Encoded image.(d)Histogram of encoded image.

    Finally,The peak-signal-to-noise ratio(PSNR),can be considered as an efficient tool for comparing the fi delity of the encoded image with its original version.When evaluating an image encoding scheme,the original image can be assumed as a signal,and the encoded image can be assumed as a noisy signal.On the other hands,the more noisy signal(image)the better encoding procedure.The more noisy signal(image),the lower PSNR.

    The PSNR is easily defined via the concept of the mean squared error(MSE).For twom×nmonochrome images(the original cover imageIand its stego versionK)the MSE is defined as

    where,frepresents the matrix data of the original image,grepresents the matrix data of the decoded image,mrep-resents the numbers of rows of pixels of the images andirepresents the index of the row,nrepresents the number of columns of pixels of the image andjrepresents the index of the column,and the MAXfis the maximum of the signal value exists in the original image.

    Needless to say,in using NEQR representation method,we are dealing with a standard 2D matrix of data.The dimensions of the original image matrix and the dimensions of the encoded image matrix are identical.The calculated PSNR for the simulated sample images is presented in Table 4.As it is illustrated in Table 4,using the proposed encoding method,for all of the considered original images,the calculated PSNR of the encoded images is less than 10,which means that the encoding algorithm strongly a ff ects the original image and makes it very difficult for an eavesdropper to obtain useful information from the encoded image.

    Table 4 Calculated Shannon entropy for the simulated sample images.

    6 Conclusion

    A new secure efficient quantum images encoding algorithm is proposed.Here,four different encoding algorithms are introduced.In this method,for the aim of completing the encoding task,a randomized binary image key is generated during the procedure.Based on the both original images pixel and its corresponding qubits of the generated binary key,one of the four encoding algorithms is employed.

    In the encoding step,the randomized key image not only is used to select the applying encoding algorithm for each pixel,but also some qubits of the key is used directly to change the gray-scale value of the pixel.This means that,if one does not have the randomized key images,it is impossible for him to decode the original image correctly.

    From the experimental results,it can be seen that the proposed algorithm can effectively encode different kinds of images and the encoded images can not be decoded by an eavesdropper.The security and the applicability of the proposed algorithm are evaluated by computer simulation,where,analyzing the histogram diagrams,the Peak Signal-to-Noise Ratio(PSNR),and the Shannon’s entropy suggest the proposed method as an efficient scheme in quantum image encoding procedures.

    [1]C.H.Bennett and G.Brassard,inProceedings of the IEEE International Conference on Computers,Systems and Signal Processing,Bangalore,India IEEE,New York(1984)p.175.

    [2]Y.S.Zhang,C.F.Li,and G.C.Guo,Phys.Rev.A 64(2001)024302.

    [3]N.Zhou,G.Zeng,W.Zeng,and F.Zhu,Opt.Commun.254(2005)380.

    [4]M.Abdolmaleky,M.Naseri,J.Batle,et al.,Optik.128(2017)121.

    [5]M.Naseri,Opt.Commun.282(2009)278.

    [6]M.Naseri,Quantum Inf.Process.9(2009)693.

    [7]N.R.Zhou,L.J.Wang,J.Ding,and L.H.Gong,Physica Scripta 81(2010)045009.

    [8]M.Naseri,Int.J.Phys.Sci.6(2011)5051.

    [9]X.B.Chen,Q.Y.Wen,F.Z.Gou,et al.,Int.J.Theor.Phys.6(2008)899.

    [10]N.Fatahi and M.Naseri,Int.J.Theor.Phys.51(2012)2094.

    [11]N.R.Zhou,L.J.Wang,J.Ding,et al.,Int.J.Theor.Phys.49(2010)2035.

    [12]X.B.Chen,N.Zhang,S.Lin,et al.,Opt.Commun.281(2008)2331.

    [13]S.Heidari and M.Naseri,Int.J.Theor.Phys.55(2016)4205.

    [14]M.Naseri,M.Ahmadzadeh Raji,M.R.Hantehzadeh,et al.,Quantum Inf.Process.14(2015)4279.

    [15]Xiu-Bo Chen,Zhao Dou,Gang Xu,et al.,Quantum Inf.Process.13(2014)85.

    [16]Xiu-Bo Chen,Int.J.Quantum Inf.11(2013)13500101.

    [17]N.Zhou,J.Li,Z.Yu,et al.,Quantum Inf.Process.16(2017)1.

    [18]S.E.Venegas-Andraca and S.Bose,Storing,Processing and Retrieving an Image Using Quantum Mechanics,Proceeding of the SPIE Conference Quantum Information and Computation,Orlando,FL,United States,International Society for Optics Photonics,Vol.5105(2003)pp.137-147.

    [19]J.I.Latorre,Image Compression and Entanglement.arXiv:preprint/quant-ph/0510031(2005).

    [20]P.Q.Le,F.Dong,and K.Hirota,Quantum Inf.Process.10(2011)63.

    [21]Y.Zhang,K.Lu,Y.H.Gao,and M.Wang,Inf.Process.12(2013)2833.

    [22]P.Q.Le,A.M.Iliyasu,F.Dong,and K.Hirota,A Flexible Representation and Invertible Transformations for Images on Quantum Computers,In New Advances in Intelligent Signal Processing,Springer,Berlin,Heidelberg(2011)179-202.

    [23]W.W.Zhang,F.Gao,B.Liu,et al.,Quantum Inf.Process.12(2013)793.

    [24]X.H.Song,S.Wang,S.Liu,et al.,Multimedia Systems 20(2014)379.

    [25]N.Jiang,N.Zhao,and L.Wang,Int.J.Theor.Phys.55(2016)107123.

    [26]S.Miyake and K.Nakamae,Quantum Inf.Process.15(2016)1849.

    [27]N.Jiang,L.Wang,and W.Y.Wu,Int.J.Theor.Phys.53(2014)2463.

    [28]L.H.Gong,H.Song,C.He,et al.,Physica Scripta 89(2014)035101.

    [29]N.Zhou,T.Hua,L.H.Gong,et al.,Quantum Inf.Process.14(2015)1193.

    [30]M.Naseri,S.Heidari,R.Gheibi,et al.,Optik.131(2016)678.

    [31]S.Heidari,M.Naseri,R.Gheibi,et al.,Commun.Theor.Phys.67(2017)732.

    [32]R.G.Zhou,et al.,Quantum Inf.Process.14(2015)1717.

    中出人妻视频一区二区| 国产精品久久久久久久电影| 国产探花极品一区二区| 特级一级黄色大片| 免费av不卡在线播放| av在线观看视频网站免费| 国产成人福利小说| 人妻少妇偷人精品九色| 淫妇啪啪啪对白视频| 色综合色国产| 精品人妻视频免费看| 哪里可以看免费的av片| 国产亚洲精品久久久com| 别揉我奶头 嗯啊视频| 日韩成人伦理影院| 村上凉子中文字幕在线| 我要看日韩黄色一级片| 色视频www国产| 亚洲成av人片在线播放无| 男女啪啪激烈高潮av片| 舔av片在线| 欧美xxxx性猛交bbbb| 人妻丰满熟妇av一区二区三区| 高清午夜精品一区二区三区 | 黄色视频,在线免费观看| 亚洲国产精品成人久久小说 | 国产午夜福利久久久久久| 九九久久精品国产亚洲av麻豆| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 欧美高清成人免费视频www| 国产乱人视频| 淫秽高清视频在线观看| 亚洲av第一区精品v没综合| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全电影3| 久久久久久久久久久丰满| 国产综合懂色| 欧美一级a爱片免费观看看| 午夜视频国产福利| 中文资源天堂在线| 亚洲色图av天堂| 我的老师免费观看完整版| 婷婷精品国产亚洲av在线| 男人舔女人下体高潮全视频| 欧美性感艳星| 成人亚洲精品av一区二区| 欧美绝顶高潮抽搐喷水| 搡女人真爽免费视频火全软件 | 久久久久久久久久久丰满| 一个人看的www免费观看视频| 日本色播在线视频| 91久久精品国产一区二区成人| 精品无人区乱码1区二区| 天堂av国产一区二区熟女人妻| 人妻夜夜爽99麻豆av| 日本精品一区二区三区蜜桃| 久久九九热精品免费| 男女那种视频在线观看| 欧美最新免费一区二区三区| 午夜a级毛片| 岛国在线免费视频观看| 九九爱精品视频在线观看| 看十八女毛片水多多多| 亚洲18禁久久av| 日韩亚洲欧美综合| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 国产一区亚洲一区在线观看| 毛片女人毛片| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 激情 狠狠 欧美| 国产视频内射| 久久久久国产精品人妻aⅴ院| eeuss影院久久| 性插视频无遮挡在线免费观看| 国产黄色视频一区二区在线观看 | 国产av不卡久久| 我要搜黄色片| 在线播放国产精品三级| 插逼视频在线观看| 麻豆国产97在线/欧美| 亚洲国产色片| 亚洲,欧美,日韩| 免费看a级黄色片| 中国国产av一级| 久久精品夜色国产| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 18禁在线播放成人免费| 嫩草影院入口| 国产精品久久视频播放| 欧美激情国产日韩精品一区| 一个人看视频在线观看www免费| 大香蕉久久网| 熟女电影av网| 人人妻,人人澡人人爽秒播| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久com| 日本撒尿小便嘘嘘汇集6| 晚上一个人看的免费电影| 国内精品久久久久精免费| 一个人看视频在线观看www免费| 午夜福利在线观看免费完整高清在 | 久久久久精品国产欧美久久久| 麻豆一二三区av精品| 在线a可以看的网站| 嫩草影视91久久| 国产私拍福利视频在线观看| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 久久人妻av系列| 成人特级黄色片久久久久久久| 免费高清视频大片| 性欧美人与动物交配| 欧美不卡视频在线免费观看| 久久精品国产清高在天天线| 国产淫片久久久久久久久| 人人妻人人看人人澡| 国产精品福利在线免费观看| 欧美zozozo另类| 在线播放国产精品三级| 国产免费一级a男人的天堂| 久久久久久久午夜电影| 校园春色视频在线观看| 色哟哟哟哟哟哟| 丰满乱子伦码专区| 老司机福利观看| av福利片在线观看| 欧美一区二区国产精品久久精品| 啦啦啦啦在线视频资源| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 少妇熟女欧美另类| 亚洲色图av天堂| 亚洲av美国av| 男人狂女人下面高潮的视频| 精品不卡国产一区二区三区| 国产亚洲91精品色在线| 欧美极品一区二区三区四区| 国语自产精品视频在线第100页| 22中文网久久字幕| 高清日韩中文字幕在线| 1024手机看黄色片| 看片在线看免费视频| av天堂在线播放| 两个人视频免费观看高清| 尤物成人国产欧美一区二区三区| 悠悠久久av| 亚洲性夜色夜夜综合| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品| 女的被弄到高潮叫床怎么办| 三级男女做爰猛烈吃奶摸视频| 国产亚洲91精品色在线| 一卡2卡三卡四卡精品乱码亚洲| 夜夜看夜夜爽夜夜摸| 亚洲内射少妇av| 在线免费观看不下载黄p国产| 国产探花极品一区二区| 少妇的逼好多水| 三级毛片av免费| 看免费成人av毛片| 精品久久国产蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 久久精品综合一区二区三区| 国产v大片淫在线免费观看| 99视频精品全部免费 在线| 成年女人永久免费观看视频| 少妇熟女欧美另类| av.在线天堂| 我要看日韩黄色一级片| 老师上课跳d突然被开到最大视频| 久久热精品热| 国产成人a∨麻豆精品| 亚洲在线观看片| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱 | 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 亚洲欧美日韩无卡精品| 99在线视频只有这里精品首页| 赤兔流量卡办理| 91av网一区二区| 乱人视频在线观看| 韩国av在线不卡| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 观看美女的网站| 欧美另类亚洲清纯唯美| 国内精品美女久久久久久| 男女下面进入的视频免费午夜| 嫩草影院精品99| 亚洲人与动物交配视频| 啦啦啦观看免费观看视频高清| 国产探花极品一区二区| 亚洲一区二区三区色噜噜| 99热只有精品国产| 午夜免费激情av| 精品人妻一区二区三区麻豆 | 一级黄色大片毛片| eeuss影院久久| 两个人视频免费观看高清| 久久久国产成人精品二区| 看黄色毛片网站| ponron亚洲| 亚洲18禁久久av| 国产成人影院久久av| 久久人妻av系列| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 国产黄色小视频在线观看| 桃色一区二区三区在线观看| 看黄色毛片网站| 在线观看av片永久免费下载| 国产高清视频在线观看网站| 99久国产av精品国产电影| 久久久久免费精品人妻一区二区| 99久久中文字幕三级久久日本| 免费在线观看成人毛片| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| av专区在线播放| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 欧美日韩在线观看h| 国内精品宾馆在线| 伊人久久精品亚洲午夜| 露出奶头的视频| 级片在线观看| 2021天堂中文幕一二区在线观| 亚洲欧美清纯卡通| 白带黄色成豆腐渣| 精品免费久久久久久久清纯| 国产伦精品一区二区三区四那| 男女做爰动态图高潮gif福利片| 少妇人妻精品综合一区二区 | 午夜福利高清视频| 国产精华一区二区三区| 婷婷精品国产亚洲av| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 国产成人a区在线观看| 欧美日本亚洲视频在线播放| 麻豆国产av国片精品| 精品福利观看| 久久6这里有精品| 国产精品野战在线观看| 精品午夜福利在线看| 色av中文字幕| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 亚洲色图av天堂| 成人漫画全彩无遮挡| 亚洲在线自拍视频| 美女黄网站色视频| av黄色大香蕉| 草草在线视频免费看| 成年免费大片在线观看| 亚洲激情五月婷婷啪啪| 可以在线观看的亚洲视频| 插逼视频在线观看| 成人无遮挡网站| 久久久久久久久久成人| 亚洲最大成人av| 99热这里只有是精品50| 精品国产三级普通话版| 午夜精品国产一区二区电影 | 搡女人真爽免费视频火全软件 | 老熟妇仑乱视频hdxx| 18禁在线无遮挡免费观看视频 | 高清毛片免费观看视频网站| 日韩精品中文字幕看吧| 国产精品女同一区二区软件| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 精品久久久久久成人av| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| 亚洲成人久久性| 午夜老司机福利剧场| 又黄又爽又免费观看的视频| 国产精品女同一区二区软件| 小蜜桃在线观看免费完整版高清| 精品午夜福利在线看| 亚洲国产精品国产精品| 一区福利在线观看| 欧美成人精品欧美一级黄| 久久欧美精品欧美久久欧美| 简卡轻食公司| ponron亚洲| 99久国产av精品国产电影| 在线观看66精品国产| 成人午夜高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 精品乱码久久久久久99久播| 免费黄网站久久成人精品| 日本色播在线视频| 国产精品久久久久久久久免| 国产av在哪里看| 国产黄色视频一区二区在线观看 | 亚洲成人av在线免费| 成人午夜高清在线视频| 婷婷亚洲欧美| 国产成人a∨麻豆精品| 国产探花极品一区二区| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 国国产精品蜜臀av免费| 欧美最黄视频在线播放免费| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 亚洲一级一片aⅴ在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品有码人妻一区| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩在线观看h| 在线看三级毛片| 日韩精品青青久久久久久| 麻豆成人午夜福利视频| 91久久精品电影网| 国产真实乱freesex| 亚洲第一区二区三区不卡| 69av精品久久久久久| 一个人看视频在线观看www免费| 亚洲性夜色夜夜综合| 看黄色毛片网站| 一级毛片电影观看 | 乱系列少妇在线播放| 欧美三级亚洲精品| 久久午夜亚洲精品久久| 身体一侧抽搐| 能在线免费观看的黄片| 97碰自拍视频| 在线看三级毛片| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| 午夜福利高清视频| 国产片特级美女逼逼视频| 精品一区二区三区视频在线观看免费| 午夜老司机福利剧场| 亚洲专区国产一区二区| 日韩高清综合在线| 亚洲欧美精品自产自拍| 简卡轻食公司| 午夜福利在线在线| 欧美3d第一页| 看非洲黑人一级黄片| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 成人二区视频| 男女下面进入的视频免费午夜| 老司机福利观看| 少妇丰满av| 99热这里只有精品一区| 热99在线观看视频| 国产在视频线在精品| 日韩制服骚丝袜av| 日韩欧美国产在线观看| 国产精品一区二区三区四区久久| 啦啦啦观看免费观看视频高清| 久久人人爽人人爽人人片va| 成人欧美大片| 九九热线精品视视频播放| 午夜日韩欧美国产| 国产精品女同一区二区软件| 久久久久久久久久成人| 色播亚洲综合网| 少妇高潮的动态图| 久久韩国三级中文字幕| 插逼视频在线观看| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 成人鲁丝片一二三区免费| 国产午夜精品久久久久久一区二区三区 | 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 99热精品在线国产| 激情 狠狠 欧美| 91狼人影院| 观看美女的网站| 久久久久国产网址| 亚洲精品影视一区二区三区av| 亚洲av五月六月丁香网| 99riav亚洲国产免费| 精品熟女少妇av免费看| 国产精品美女特级片免费视频播放器| 中文字幕av成人在线电影| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 午夜精品国产一区二区电影 | 亚洲精品国产成人久久av| 人人妻人人看人人澡| 俄罗斯特黄特色一大片| 人妻制服诱惑在线中文字幕| 国产精品久久视频播放| 三级国产精品欧美在线观看| 最近2019中文字幕mv第一页| 午夜影院日韩av| 中出人妻视频一区二区| 丰满的人妻完整版| 99热精品在线国产| 深爱激情五月婷婷| 黄色配什么色好看| 最近手机中文字幕大全| 在线观看av片永久免费下载| 夜夜夜夜夜久久久久| 91av网一区二区| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 精品久久久噜噜| 国产一区二区亚洲精品在线观看| 91狼人影院| 欧美激情在线99| 精品不卡国产一区二区三区| 在线免费十八禁| 人人妻,人人澡人人爽秒播| 免费看日本二区| 草草在线视频免费看| 老女人水多毛片| 亚洲内射少妇av| 在线播放无遮挡| 日本爱情动作片www.在线观看 | 国产精品久久视频播放| 1000部很黄的大片| 麻豆av噜噜一区二区三区| 欧美bdsm另类| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站| 搞女人的毛片| 最后的刺客免费高清国语| 午夜福利在线观看免费完整高清在 | 日本黄色片子视频| 草草在线视频免费看| 久久久精品大字幕| 我要看日韩黄色一级片| 成年版毛片免费区| 欧美色视频一区免费| 婷婷精品国产亚洲av在线| 女的被弄到高潮叫床怎么办| 97超视频在线观看视频| 天堂av国产一区二区熟女人妻| 日韩欧美免费精品| 女同久久另类99精品国产91| 久久国产乱子免费精品| 午夜精品国产一区二区电影 | 成人特级av手机在线观看| 99精品在免费线老司机午夜| 观看美女的网站| 变态另类成人亚洲欧美熟女| 国产精品一区www在线观看| 亚洲真实伦在线观看| 99热这里只有精品一区| 天堂√8在线中文| 亚洲精华国产精华液的使用体验 | 九九爱精品视频在线观看| 深夜精品福利| 在线国产一区二区在线| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| 久久久久性生活片| 精品国产三级普通话版| 一级毛片aaaaaa免费看小| 综合色丁香网| 夜夜看夜夜爽夜夜摸| 中文字幕精品亚洲无线码一区| 亚洲精品成人久久久久久| 老女人水多毛片| 综合色av麻豆| 波野结衣二区三区在线| 一进一出抽搐动态| 看非洲黑人一级黄片| 男女那种视频在线观看| 俄罗斯特黄特色一大片| 国产老妇女一区| 成人性生交大片免费视频hd| 91av网一区二区| 丝袜喷水一区| 舔av片在线| .国产精品久久| 麻豆成人午夜福利视频| www日本黄色视频网| 国产精品一区二区免费欧美| 久久综合国产亚洲精品| 高清午夜精品一区二区三区 | 国产午夜精品论理片| 久久午夜福利片| 中文字幕av成人在线电影| 色av中文字幕| 少妇的逼好多水| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区精品| 搡老岳熟女国产| 亚洲av成人精品一区久久| 中国国产av一级| 亚洲成人av在线免费| 美女 人体艺术 gogo| 男人舔女人下体高潮全视频| 可以在线观看毛片的网站| av在线播放精品| 三级国产精品欧美在线观看| 极品教师在线视频| 国产亚洲91精品色在线| 久久久久国产精品人妻aⅴ院| 老司机影院成人| 日韩欧美精品v在线| 中文字幕人妻熟人妻熟丝袜美| 狂野欧美激情性xxxx在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐动态| 男女做爰动态图高潮gif福利片| 天堂av国产一区二区熟女人妻| 卡戴珊不雅视频在线播放| 我的老师免费观看完整版| 极品教师在线视频| 哪里可以看免费的av片| 大香蕉久久网| 一进一出抽搐动态| 男女做爰动态图高潮gif福利片| 麻豆一二三区av精品| 亚洲精品影视一区二区三区av| 男女啪啪激烈高潮av片| 久久久久久久久久久丰满| 91久久精品国产一区二区三区| h日本视频在线播放| 51国产日韩欧美| 久久亚洲精品不卡| 小蜜桃在线观看免费完整版高清| 国产精品久久视频播放| 日本五十路高清| 国产又黄又爽又无遮挡在线| 我要搜黄色片| 人妻夜夜爽99麻豆av| 成人亚洲精品av一区二区| 亚洲国产欧美人成| av福利片在线观看| 久久99热6这里只有精品| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 1024手机看黄色片| avwww免费| 真人做人爱边吃奶动态| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 久久久久久久亚洲中文字幕| 少妇裸体淫交视频免费看高清| 午夜福利在线观看免费完整高清在 | 午夜久久久久精精品| 日韩欧美免费精品| 免费在线观看影片大全网站| 99热这里只有精品一区| 国产精品爽爽va在线观看网站| 国产亚洲精品久久久久久毛片| 亚洲成a人片在线一区二区| 亚洲自偷自拍三级| 婷婷亚洲欧美| 少妇熟女欧美另类| 色吧在线观看| 久久鲁丝午夜福利片| 国产精品美女特级片免费视频播放器| 久久久成人免费电影| 国产伦一二天堂av在线观看| 老司机影院成人| 亚洲欧美成人综合另类久久久 | 国产欧美日韩精品一区二区| 精品久久久久久久末码| av在线观看视频网站免费| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 日日啪夜夜撸| 真实男女啪啪啪动态图| 日本爱情动作片www.在线观看 | 国产91av在线免费观看| 激情 狠狠 欧美| 日本黄大片高清| 亚洲美女搞黄在线观看 | 变态另类成人亚洲欧美熟女| 成人鲁丝片一二三区免费| 九色成人免费人妻av| 在线a可以看的网站| 一级av片app| 国产一区二区在线av高清观看| av天堂中文字幕网| 久久精品国产99精品国产亚洲性色| 国产黄a三级三级三级人| 欧美日韩综合久久久久久| 干丝袜人妻中文字幕| 精品久久国产蜜桃| 国产老妇女一区| 亚洲欧美精品综合久久99| 综合色av麻豆| 日本黄大片高清| 国内久久婷婷六月综合欲色啪| 欧美性感艳星| 国产精品综合久久久久久久免费| 国产久久久一区二区三区| 少妇裸体淫交视频免费看高清| 天天躁夜夜躁狠狠久久av| 国产色爽女视频免费观看|